1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
"""Conversion tool from SQD to FIF.
RawKIT class is adapted from Denis Engemann et al.'s mne_bti2fiff.py.
"""
# Authors: Teon Brooks <teon.brooks@gmail.com>
# Christian Brodbeck <christianbrodbeck@nyu.edu>
#
# License: BSD (3-clause)
from collections import defaultdict
from math import sin, cos
from os import SEEK_CUR, path as op
from struct import unpack
import numpy as np
from scipy import linalg
from ..pick import pick_types
from ...coreg import fit_matched_points, _decimate_points
from ...utils import verbose, logger, warn
from ...transforms import (apply_trans, als_ras_trans,
get_ras_to_neuromag_trans, Transform)
from ..base import BaseRaw
from ..utils import _mult_cal_one
from ...epochs import BaseEpochs
from ..constants import FIFF
from ..meas_info import _empty_info, _read_dig_points, _make_dig_points
from .constants import KIT, LEGACY_AMP_PARAMS
from .coreg import read_mrk
from ...externals.six import string_types
from ...event import read_events
class UnsupportedKITFormat(ValueError):
"""Our reader is not guaranteed to work with old files."""
def __init__(self, sqd_version, *args, **kwargs): # noqa: D102
self.sqd_version = sqd_version
ValueError.__init__(self, *args, **kwargs)
class RawKIT(BaseRaw):
"""Raw object from KIT SQD file.
Parameters
----------
input_fname : str
Path to the sqd file.
mrk : None | str | array_like, shape (5, 3) | list of str or array_like
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
If list, all of the markers will be averaged together.
elp : None | str | array_like, shape (8, 3)
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : None | str | array, shape (n_points, 3)
Digitizer head shape points, or path to head shape file. If more than
10,000 points are in the head shape, they are automatically decimated.
stim : list of int | '<' | '>' | None
Channel-value correspondence when converting KIT trigger channels to a
Neuromag-style stim channel. For '<', the largest values are assigned
to the first channel (default). For '>', the largest values are
assigned to the last channel. Can also be specified as a list of
trigger channel indexes. If None, no synthesized channel is generated.
slope : '+' | '-'
How to interpret values on KIT trigger channels when synthesizing a
Neuromag-style stim channel. With '+', a positive slope (low-to-high)
is interpreted as an event. With '-', a negative slope (high-to-low)
is interpreted as an event.
stimthresh : float
The threshold level for accepting voltage changes in KIT trigger
channels as a trigger event. If None, stim must also be set to None.
preload : bool or str (default False)
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory).
stim_code : 'binary' | 'channel'
How to decode trigger values from stim channels. 'binary' read stim
channel events as binary code, 'channel' encodes channel number.
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Notes
-----
``elp`` and ``hsp`` are usually the exported text files (*.txt) from the
Polhemus FastScan system. hsp refers to the headshape surface points. elp
refers to the points in head-space that corresponds to the HPI points.
Currently, '*.elp' and '*.hsp' files are NOT supported.
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
@verbose
def __init__(self, input_fname, mrk=None, elp=None, hsp=None, stim='>',
slope='-', stimthresh=1, preload=False, stim_code='binary',
allow_unknown_format=False, verbose=None): # noqa: D102
logger.info('Extracting SQD Parameters from %s...' % input_fname)
input_fname = op.abspath(input_fname)
self.preload = False
logger.info('Creating Raw.info structure...')
info, kit_info = get_kit_info(input_fname, allow_unknown_format)
kit_info['slope'] = slope
kit_info['stimthresh'] = stimthresh
if kit_info['acq_type'] != KIT.CONTINUOUS:
raise TypeError('SQD file contains epochs, not raw data. Wrong '
'reader.')
logger.info('Creating Info structure...')
last_samps = [kit_info['n_samples'] - 1]
self._raw_extras = [kit_info]
self._set_stimchannels(info, stim, stim_code)
super(RawKIT, self).__init__(
info, preload, last_samps=last_samps, filenames=[input_fname],
raw_extras=self._raw_extras, verbose=verbose)
if isinstance(mrk, list):
mrk = [read_mrk(marker) if isinstance(marker, string_types)
else marker for marker in mrk]
mrk = np.mean(mrk, axis=0)
if mrk is not None and elp is not None and hsp is not None:
dig_points, dev_head_t = _set_dig_kit(mrk, elp, hsp)
self.info['dig'] = dig_points
self.info['dev_head_t'] = dev_head_t
elif mrk is not None or elp is not None or hsp is not None:
raise ValueError('mrk, elp and hsp need to be provided as a group '
'(all or none)')
logger.info('Ready.')
def read_stim_ch(self, buffer_size=1e5):
"""Read events from data.
Parameter
---------
buffer_size : int
The size of chunk to by which the data are scanned.
Returns
-------
events : array, [samples]
The event vector (1 x samples).
"""
buffer_size = int(buffer_size)
start = int(self.first_samp)
stop = int(self.last_samp + 1)
pick = pick_types(self.info, meg=False, ref_meg=False,
stim=True, exclude=[])
stim_ch = np.empty((1, stop), dtype=np.int)
for b_start in range(start, stop, buffer_size):
b_stop = b_start + buffer_size
x = self[pick, b_start:b_stop][0]
stim_ch[:, b_start:b_start + x.shape[1]] = x
return stim_ch
def _set_stimchannels(self, info, stim, stim_code):
"""Specify how the trigger channel is synthesized from analog channels.
Has to be done before loading data. For a RawKIT instance that has been
created with preload=True, this method will raise a
NotImplementedError.
Parameters
----------
info : instance of MeasInfo
The measurement info.
stim : list of int | '<' | '>'
Can be submitted as list of trigger channels.
If a list is not specified, the default triggers extracted from
misc channels will be used with specified directionality.
'<' means that largest values assigned to the first channel
in sequence.
'>' means the largest trigger assigned to the last channel
in sequence.
stim_code : 'binary' | 'channel'
How to decode trigger values from stim channels. 'binary' read stim
channel events as binary code, 'channel' encodes channel number.
"""
if self.preload:
raise NotImplementedError("Can't change stim channel after "
"loading data")
elif stim_code not in ('binary', 'channel'):
raise ValueError("stim_code=%r, needs to be 'binary' or 'channel'"
% (stim_code,))
if stim is not None:
if isinstance(stim, str):
picks = _default_stim_chs(info)
if stim == '<':
stim = picks[::-1]
elif stim == '>':
stim = picks
else:
raise ValueError("stim needs to be list of int, '>' or "
"'<', not %r" % str(stim))
else:
stim = np.asarray(stim, int)
if stim.max() >= self._raw_extras[0]['nchan']:
raise ValueError(
'Got stim=%s, but sqd file only has %i channels' %
(stim, self._raw_extras[0]['nchan']))
# modify info
nchan = self._raw_extras[0]['nchan'] + 1
info['chs'].append(dict(
cal=KIT.CALIB_FACTOR, logno=nchan, scanno=nchan, range=1.0,
unit=FIFF.FIFF_UNIT_NONE, unit_mul=0, ch_name='STI 014',
coil_type=FIFF.FIFFV_COIL_NONE, loc=np.full(12, np.nan),
kind=FIFF.FIFFV_STIM_CH))
info._update_redundant()
self._raw_extras[0]['stim'] = stim
self._raw_extras[0]['stim_code'] = stim_code
@verbose
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
nchan = self._raw_extras[fi]['nchan']
data_left = (stop - start) * nchan
conv_factor = self._raw_extras[fi]['conv_factor']
n_bytes = 2
# Read up to 100 MB of data at a time.
blk_size = min(data_left, (100000000 // n_bytes // nchan) * nchan)
with open(self._filenames[fi], 'rb', buffering=0) as fid:
# extract data
fid.seek(144)
# data offset info
data_offset = unpack('i', fid.read(KIT.INT))[0]
pointer = start * nchan * KIT.SHORT
fid.seek(data_offset + pointer)
stim = self._raw_extras[fi]['stim']
for blk_start in np.arange(0, data_left, blk_size) // nchan:
blk_size = min(blk_size, data_left - blk_start * nchan)
block = np.fromfile(fid, dtype='h', count=blk_size)
block = block.reshape(nchan, -1, order='F').astype(float)
blk_stop = blk_start + block.shape[1]
data_view = data[:, blk_start:blk_stop]
block *= conv_factor
# Create a synthetic stim channel
if stim is not None:
params = self._raw_extras[fi]
stim_ch = _make_stim_channel(block[stim, :],
params['slope'],
params['stimthresh'],
params['stim_code'], stim)
block = np.vstack((block, stim_ch))
_mult_cal_one(data_view, block, idx, None, mult)
# cals are all unity, so can be ignored
def _default_stim_chs(info):
"""Return default stim channels for SQD files."""
return pick_types(info, meg=False, ref_meg=False, misc=True,
exclude=[])[:8]
def _make_stim_channel(trigger_chs, slope, threshold, stim_code,
trigger_values):
"""Create synthetic stim channel from multiple trigger channels."""
if slope == '+':
trig_chs_bin = trigger_chs > threshold
elif slope == '-':
trig_chs_bin = trigger_chs < threshold
else:
raise ValueError("slope needs to be '+' or '-'")
# trigger value
if stim_code == 'binary':
trigger_values = 2 ** np.arange(len(trigger_chs))
elif stim_code != 'channel':
raise ValueError("stim_code must be 'binary' or 'channel', got %s" %
repr(stim_code))
trig_chs = trig_chs_bin * trigger_values[:, np.newaxis]
return np.array(trig_chs.sum(axis=0), ndmin=2)
class EpochsKIT(BaseEpochs):
"""Epochs Array object from KIT SQD file.
Parameters
----------
input_fname : str
Path to the sqd file.
events : str | array, shape (n_events, 3)
Path to events file. If array, it is the events typically returned
by the read_events function. If some events don't match the events
of interest as specified by event_id,they will be marked as 'IGNORED'
in the drop log.
event_id : int | list of int | dict | None
The id of the event to consider. If dict,
the keys can later be used to access associated events. Example:
dict(auditory=1, visual=3). If int, a dict will be created with
the id as string. If a list, all events with the IDs specified
in the list are used. If None, all events will be used with
and a dict is created with string integer names corresponding
to the event id integers.
tmin : float
Start time before event.
baseline : None or tuple of length 2 (default (None, 0))
The time interval to apply baseline correction.
If None do not apply it. If baseline is (a, b)
the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used
and if b is None then b is set to the end of the interval.
If baseline is equal to (None, None) all the time
interval is used.
The baseline (a, b) includes both endpoints, i.e. all
timepoints t such that a <= t <= b.
reject : dict | None
Rejection parameters based on peak-to-peak amplitude.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
If reject is None then no rejection is done. Example::
reject = dict(grad=4000e-13, # T / m (gradiometers)
mag=4e-12, # T (magnetometers)
eeg=40e-6, # V (EEG channels)
eog=250e-6 # V (EOG channels)
)
flat : dict | None
Rejection parameters based on flatness of signal.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg', and values
are floats that set the minimum acceptable peak-to-peak amplitude.
If flat is None then no rejection is done.
reject_tmin : scalar | None
Start of the time window used to reject epochs (with the default None,
the window will start with tmin).
reject_tmax : scalar | None
End of the time window used to reject epochs (with the default None,
the window will end with tmax).
mrk : None | str | array_like, shape = (5, 3) | list of str or array_like
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
If list, all of the markers will be averaged together.
elp : None | str | array_like, shape = (8, 3)
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : None | str | array, shape = (n_points, 3)
Digitizer head shape points, or path to head shape file. If more than
10`000 points are in the head shape, they are automatically decimated.
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Notes
-----
``elp`` and ``hsp`` are usually the exported text files (*.txt) from the
Polhemus FastScan system. hsp refers to the headshape surface points. elp
refers to the points in head-space that corresponds to the HPI points.
Currently, '*.elp' and '*.hsp' files are NOT supported.
See Also
--------
mne.Epochs : Documentation of attribute and methods.
"""
@verbose
def __init__(self, input_fname, events, event_id=None, tmin=0,
baseline=None, reject=None, flat=None, reject_tmin=None,
reject_tmax=None, mrk=None, elp=None, hsp=None,
allow_unknown_format=False, verbose=None): # noqa: D102
if isinstance(events, string_types):
events = read_events(events)
if isinstance(mrk, list):
mrk = [read_mrk(marker) if isinstance(marker, string_types)
else marker for marker in mrk]
mrk = np.mean(mrk, axis=0)
if (mrk is not None and elp is not None and hsp is not None):
dig_points, dev_head_t = _set_dig_kit(mrk, elp, hsp)
self.info['dig'] = dig_points
self.info['dev_head_t'] = dev_head_t
elif (mrk is not None or elp is not None or hsp is not None):
err = ("mrk, elp and hsp need to be provided as a group (all or "
"none)")
raise ValueError(err)
logger.info('Extracting KIT Parameters from %s...' % input_fname)
input_fname = op.abspath(input_fname)
self.info, kit_info = get_kit_info(input_fname, allow_unknown_format)
kit_info.update(filename=input_fname)
self._raw_extras = [kit_info]
self._filenames = []
if len(events) != self._raw_extras[0]['n_epochs']:
raise ValueError('Event list does not match number of epochs.')
if self._raw_extras[0]['acq_type'] == KIT.EPOCHS:
self._raw_extras[0]['data_length'] = KIT.INT
self._raw_extras[0]['dtype'] = 'h'
else:
raise TypeError('SQD file contains raw data, not epochs or '
'average. Wrong reader.')
if event_id is None: # convert to int to make typing-checks happy
event_id = dict((str(e), int(e)) for e in np.unique(events[:, 2]))
for key, val in event_id.items():
if val not in events[:, 2]:
raise ValueError('No matching events found for %s '
'(event id %i)' % (key, val))
data = self._read_kit_data()
assert data.shape == (self._raw_extras[0]['n_epochs'],
self.info['nchan'],
self._raw_extras[0]['frame_length'])
tmax = ((data.shape[2] - 1) / self.info['sfreq']) + tmin
super(EpochsKIT, self).__init__(
self.info, data, events, event_id, tmin, tmax, baseline,
reject=reject, flat=flat, reject_tmin=reject_tmin,
reject_tmax=reject_tmax, filename=input_fname, verbose=verbose)
logger.info('Ready.')
def _read_kit_data(self):
"""Read epochs data.
Returns
-------
data : array, [channels x samples]
the data matrix (channels x samples).
times : array, [samples]
returns the time values corresponding to the samples.
"""
info = self._raw_extras[0]
epoch_length = info['frame_length']
n_epochs = info['n_epochs']
n_samples = info['n_samples']
filename = info['filename']
dtype = info['dtype']
nchan = info['nchan']
with open(filename, 'rb', buffering=0) as fid:
fid.seek(144)
# data offset info
data_offset = unpack('i', fid.read(KIT.INT))[0]
count = n_samples * nchan
fid.seek(data_offset)
data = np.fromfile(fid, dtype=dtype, count=count)
data = data.reshape((n_samples, nchan)).T
data = data * info['conv_factor']
data = data.reshape((nchan, n_epochs, epoch_length))
data = data.transpose((1, 0, 2))
return data
def _set_dig_kit(mrk, elp, hsp):
"""Add landmark points and head shape data to the KIT instance.
Digitizer data (elp and hsp) are represented in [mm] in the Polhemus
ALS coordinate system. This is converted to [m].
Parameters
----------
mrk : None | str | array_like, shape = (5, 3)
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
elp : None | str | array_like, shape = (8, 3)
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : None | str | array, shape = (n_points, 3)
Digitizer head shape points, or path to head shape file. If more
than 10`000 points are in the head shape, they are automatically
decimated.
Returns
-------
dig_points : list
List of digitizer points for info['dig'].
dev_head_t : dict
A dictionary describe the device-head transformation.
"""
if isinstance(hsp, string_types):
hsp = _read_dig_points(hsp)
n_pts = len(hsp)
if n_pts > KIT.DIG_POINTS:
hsp = _decimate_points(hsp, res=0.005)
n_new = len(hsp)
warn("The selected head shape contained {n_in} points, which is "
"more than recommended ({n_rec}), and was automatically "
"downsampled to {n_new} points. The preferred way to "
"downsample is using FastScan.".format(
n_in=n_pts, n_rec=KIT.DIG_POINTS, n_new=n_new))
if isinstance(elp, string_types):
elp_points = _read_dig_points(elp)
if len(elp_points) != 8:
raise ValueError("File %r should contain 8 points; got shape "
"%s." % (elp, elp_points.shape))
elp = elp_points
elif len(elp) != 8:
raise ValueError("ELP should contain 8 points; got shape "
"%s." % (elp.shape,))
if isinstance(mrk, string_types):
mrk = read_mrk(mrk)
hsp = apply_trans(als_ras_trans, hsp)
elp = apply_trans(als_ras_trans, elp)
mrk = apply_trans(als_ras_trans, mrk)
nasion, lpa, rpa = elp[:3]
nmtrans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
elp = apply_trans(nmtrans, elp)
hsp = apply_trans(nmtrans, hsp)
# device head transform
trans = fit_matched_points(tgt_pts=elp[3:], src_pts=mrk, out='trans')
nasion, lpa, rpa = elp[:3]
elp = elp[3:]
dig_points = _make_dig_points(nasion, lpa, rpa, elp, hsp)
dev_head_t = Transform('meg', 'head', trans)
return dig_points, dev_head_t
def get_kit_info(rawfile, allow_unknown_format):
"""Extract all the information from the sqd file.
Parameters
----------
rawfile : str
KIT file to be read.
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
Returns
-------
info : instance of Info
An Info for the instance.
sqd : dict
A dict containing all the sqd parameter settings.
"""
sqd = dict()
sqd['rawfile'] = rawfile
unsupported_format = False
with open(rawfile, 'rb', buffering=0) as fid: # buffering=0 for np bug
fid.seek(16)
basic_offset = unpack('i', fid.read(KIT.INT))[0]
fid.seek(basic_offset)
# check file format version
version, revision = unpack('2i', fid.read(2 * KIT.INT))
if version < 2 or (version == 2 and revision < 3):
version_string = "V%iR%03i" % (version, revision)
if allow_unknown_format:
unsupported_format = True
logger.warning("Force loading KIT format %s", version_string)
else:
raise UnsupportedKITFormat(
version_string,
"SQD file format %s is not officially supported. "
"Set allow_unknown_format=True to load it anyways." %
(version_string,))
sysid = unpack('i', fid.read(KIT.INT))[0]
# basic info
system_name = unpack('128s', fid.read(128))[0].decode()
# model name
model_name = unpack('128s', fid.read(128))[0].decode()
# channels
sqd['nchan'] = channel_count = unpack('i', fid.read(KIT.INT))[0]
comment = unpack('256s', fid.read(256))[0].decode()
create_time, last_modified_time = unpack('2i', fid.read(2 * KIT.INT))
fid.seek(KIT.INT * 3, SEEK_CUR) # reserved
dewar_style = unpack('i', fid.read(KIT.INT))[0]
fid.seek(KIT.INT * 3, SEEK_CUR) # spare
fll_type = unpack('i', fid.read(KIT.INT))[0]
fid.seek(KIT.INT * 3, SEEK_CUR) # spare
trigger_type = unpack('i', fid.read(KIT.INT))[0]
fid.seek(KIT.INT * 3, SEEK_CUR) # spare
adboard_type = unpack('i', fid.read(KIT.INT))[0]
fid.seek(KIT.INT * 29, SEEK_CUR) # reserved
if version < 2 or (version == 2 and revision <= 3):
adc_range = float(unpack('i', fid.read(KIT.INT))[0])
else:
adc_range = unpack('d', fid.read(KIT.DOUBLE))[0]
adc_polarity, adc_allocated, adc_stored = unpack('3i',
fid.read(3 * KIT.INT))
system_name = system_name.replace('\x00', '')
system_name = system_name.strip().replace('\n', '/')
model_name = model_name.replace('\x00', '')
model_name = model_name.strip().replace('\n', '/')
logger.debug("SQD file basic information:")
logger.debug("Meg160 version = V%iR%03i", version, revision)
logger.debug("System ID = %i", sysid)
logger.debug("System name = %s", system_name)
logger.debug("Model name = %s", model_name)
logger.debug("Channel count = %i", channel_count)
logger.debug("Comment = %s", comment)
logger.debug("Dewar style = %i", dewar_style)
logger.debug("FLL type = %i", fll_type)
logger.debug("Trigger type = %i", trigger_type)
logger.debug("A/D board type = %i", adboard_type)
logger.debug("ADC range = +/-%s[V]", adc_range / 2.)
logger.debug("ADC allocate = %i[bit]", adc_allocated)
logger.debug("ADC bit = %i[bit]", adc_stored)
# check that we can read this file
if fll_type not in KIT.FLL_SETTINGS:
fll_types = sorted(KIT.FLL_SETTINGS.keys())
use_fll_type = fll_types[
np.searchsorted(fll_types, fll_type) - 1]
warn('Unknown site filter settings (FLL) for system '
'"%s" model "%s" (ID %s), will assume FLL %d->%d, check '
'your data for correctness, including channel scales and '
'filter settings!'
% (system_name, model_name, sysid, fll_type, use_fll_type))
fll_type = use_fll_type
# channel information
fid.seek(64)
chan_offset, chan_size = unpack('2i', fid.read(2 * KIT.INT))
sqd['channels'] = channels = []
for i in range(channel_count):
fid.seek(chan_offset + chan_size * i)
channel_type, = unpack('i', fid.read(KIT.INT))
# System 52 mislabeled reference channels as NULL. This was fixed
# in system 53; not sure about 51...
if sysid == 52 and i < 160 and channel_type == KIT.CHANNEL_NULL:
channel_type = KIT.CHANNEL_MAGNETOMETER_REFERENCE
if channel_type in KIT.CHANNELS_MEG:
if channel_type not in KIT.CH_TO_FIFF_COIL:
raise NotImplementedError(
"KIT channel type %i can not be read. Please contact "
"the mne-python developers." % channel_type)
channels.append({
'type': channel_type,
# (x, y, z, theta, phi) for all MEG channels. Some channel
# types have additional information which we're not using.
'loc': np.fromfile(fid, dtype='d', count=5)
})
elif channel_type in KIT.CHANNELS_MISC:
channel_no, = unpack('i', fid.read(KIT.INT))
name, = unpack('64s', fid.read(64))
channels.append({
'type': channel_type,
'no': channel_no,
})
elif channel_type == KIT.CHANNEL_NULL:
channels.append({'type': channel_type})
else:
raise IOError("Unknown KIT channel type: %i" % channel_type)
# Channel sensitivity information:
# only sensor channels requires gain. the additional misc channels
# (trigger channels, audio and voice channels) are passed
# through unaffected
fid.seek(80)
sensitivity_offset, = unpack('i', fid.read(KIT.INT))
fid.seek(sensitivity_offset)
# (offset [Volt], gain [Tesla/Volt]) for each channel
sensitivity = np.fromfile(fid, dtype='d', count=channel_count * 2)
sensitivity.shape = (channel_count, 2)
channel_offset, channel_gain = sensitivity.T
# amplifier gain
fid.seek(112)
amp_offset = unpack('i', fid.read(KIT.INT))[0]
fid.seek(amp_offset)
amp_data = unpack('i', fid.read(KIT.INT))[0]
if fll_type >= 100: # Kapper Type
# gain: mask bit
gain1 = (amp_data & 0x00007000) >> 12
gain2 = (amp_data & 0x70000000) >> 28
gain3 = (amp_data & 0x07000000) >> 24
amp_gain = (KIT.GAINS[gain1] * KIT.GAINS[gain2] * KIT.GAINS[gain3])
# filter settings
hpf = (amp_data & 0x00000700) >> 8
lpf = (amp_data & 0x00070000) >> 16
bef = (amp_data & 0x00000003) >> 0
else: # Hanger Type
# gain
input_gain = (amp_data & 0x1800) >> 11
output_gain = (amp_data & 0x0007) >> 0
amp_gain = KIT.GAINS[input_gain] * KIT.GAINS[output_gain]
# filter settings
hpf = (amp_data & 0x007) >> 4
lpf = (amp_data & 0x0700) >> 8
bef = (amp_data & 0xc000) >> 14
hpf_options, lpf_options, bef_options = KIT.FLL_SETTINGS[fll_type]
sqd['highpass'] = KIT.HPFS[hpf_options][hpf]
sqd['lowpass'] = KIT.LPFS[lpf_options][lpf]
sqd['notch'] = KIT.BEFS[bef_options][bef]
# Acquisition Parameters
fid.seek(128)
acqcond_offset, = unpack('i', fid.read(KIT.INT))
fid.seek(acqcond_offset)
sqd['acq_type'], = acq_type, = unpack('i', fid.read(KIT.INT))
sqd['sfreq'], = unpack('d', fid.read(KIT.DOUBLE))
if acq_type == KIT.CONTINUOUS:
samples_count, = unpack('i', fid.read(KIT.INT))
sqd['n_samples'], = unpack('i', fid.read(KIT.INT))
elif acq_type == KIT.EVOKED or acq_type == KIT.EPOCHS:
sqd['frame_length'], = unpack('i', fid.read(KIT.INT))
sqd['pretrigger_length'], = unpack('i', fid.read(KIT.INT))
sqd['average_count'], = unpack('i', fid.read(KIT.INT))
sqd['n_epochs'], = unpack('i', fid.read(KIT.INT))
if acq_type == KIT.EVOKED:
sqd['n_samples'] = sqd['frame_length']
else:
sqd['n_samples'] = sqd['frame_length'] * sqd['n_epochs']
else:
raise IOError("Invalid acquisition type: %i. Your file is neither "
"continuous nor epoched data." % (acq_type,))
# precompute conversion factor for reading data
if unsupported_format:
if sysid not in LEGACY_AMP_PARAMS:
raise IOError("Legacy parameters for system ID %i unavailable" %
(sysid,))
adc_range, adc_stored = LEGACY_AMP_PARAMS[sysid]
is_meg = np.array([ch['type'] in KIT.CHANNELS_MEG for ch in channels])
ad_to_volt = adc_range / (2. ** adc_stored)
ad_to_tesla = ad_to_volt / amp_gain * channel_gain
conv_factor = np.where(is_meg, ad_to_tesla, ad_to_volt)
sqd['conv_factor'] = conv_factor[:, np.newaxis]
# Create raw.info dict for raw fif object with SQD data
info = _empty_info(float(sqd['sfreq']))
info.update(meas_date=(create_time, 0), lowpass=sqd['lowpass'],
highpass=sqd['highpass'], kit_system_id=sysid)
# Creates a list of dicts of meg channels for raw.info
logger.info('Setting channel info structure...')
info['chs'] = fiff_channels = []
channel_index = defaultdict(lambda: 0)
for idx, ch in enumerate(channels, 1):
if ch['type'] in KIT.CHANNELS_MEG:
ch_name = 'MEG %03d' % idx
# create three orthogonal vector
# ch_angles[0]: theta, ch_angles[1]: phi
theta, phi = np.radians(ch['loc'][3:])
x = sin(theta) * cos(phi)
y = sin(theta) * sin(phi)
z = cos(theta)
vec_z = np.array([x, y, z])
vec_z /= linalg.norm(vec_z)
vec_x = np.zeros(vec_z.size, dtype=np.float)
if vec_z[1] < vec_z[2]:
if vec_z[0] < vec_z[1]:
vec_x[0] = 1.0
else:
vec_x[1] = 1.0
elif vec_z[0] < vec_z[2]:
vec_x[0] = 1.0
else:
vec_x[2] = 1.0
vec_x -= np.sum(vec_x * vec_z) * vec_z
vec_x /= linalg.norm(vec_x)
vec_y = np.cross(vec_z, vec_x)
# transform to Neuromag like coordinate space
vecs = np.vstack((ch['loc'][:3], vec_x, vec_y, vec_z))
vecs = apply_trans(als_ras_trans, vecs)
unit = FIFF.FIFF_UNIT_T
loc = vecs.ravel()
else:
ch_type_label = KIT.CH_LABEL[ch['type']]
channel_index[ch_type_label] += 1
ch_type_index = channel_index[ch_type_label]
ch_name = '%s %03i' % (ch_type_label, ch_type_index)
unit = FIFF.FIFF_UNIT_V
loc = np.zeros(12)
fiff_channels.append(dict(
cal=KIT.CALIB_FACTOR, logno=idx, scanno=idx, range=KIT.RANGE,
unit=unit, unit_mul=KIT.UNIT_MUL, ch_name=ch_name,
coord_frame=FIFF.FIFFV_COORD_DEVICE,
coil_type=KIT.CH_TO_FIFF_COIL[ch['type']],
kind=KIT.CH_TO_FIFF_KIND[ch['type']], loc=loc))
info._update_redundant()
return info, sqd
def read_raw_kit(input_fname, mrk=None, elp=None, hsp=None, stim='>',
slope='-', stimthresh=1, preload=False, stim_code='binary',
allow_unknown_format=False, verbose=None):
"""Reader function for KIT conversion to FIF.
Parameters
----------
input_fname : str
Path to the sqd file.
mrk : None | str | array_like, shape (5, 3) | list of str or array_like
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
If list, all of the markers will be averaged together.
elp : None | str | array_like, shape (8, 3)
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : None | str | array, shape (n_points, 3)
Digitizer head shape points, or path to head shape file. If more than
10,000 points are in the head shape, they are automatically decimated.
stim : list of int | '<' | '>'
Channel-value correspondence when converting KIT trigger channels to a
Neuromag-style stim channel. For '<', the largest values are assigned
to the first channel (default). For '>', the largest values are
assigned to the last channel. Can also be specified as a list of
trigger channel indexes.
slope : '+' | '-'
How to interpret values on KIT trigger channels when synthesizing a
Neuromag-style stim channel. With '+', a positive slope (low-to-high)
is interpreted as an event. With '-', a negative slope (high-to-low)
is interpreted as an event.
stimthresh : float
The threshold level for accepting voltage changes in KIT trigger
channels as a trigger event.
preload : bool
If True, all data are loaded at initialization.
If False, data are not read until save.
stim_code : 'binary' | 'channel'
How to decode trigger values from stim channels. 'binary' read stim
channel events as binary code, 'channel' encodes channel number.
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
raw : Instance of RawKIT
A Raw object containing KIT data.
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
Notes
-----
If mrk, hsp or elp are array_like inputs, then the numbers in xyz
coordinates should be in units of meters.
"""
return RawKIT(input_fname=input_fname, mrk=mrk, elp=elp, hsp=hsp,
stim=stim, slope=slope, stimthresh=stimthresh,
preload=preload, stim_code=stim_code,
allow_unknown_format=allow_unknown_format, verbose=verbose)
def read_epochs_kit(input_fname, events, event_id=None, mrk=None, elp=None,
hsp=None, allow_unknown_format=False, verbose=None):
"""Reader function for KIT epochs files.
Parameters
----------
input_fname : str
Path to the sqd file.
events : array, shape (n_events, 3)
The events typically returned by the read_events function.
If some events don't match the events of interest as specified
by event_id, they will be marked as 'IGNORED' in the drop log.
event_id : int | list of int | dict | None
The id of the event to consider. If dict,
the keys can later be used to access associated events. Example:
dict(auditory=1, visual=3). If int, a dict will be created with
the id as string. If a list, all events with the IDs specified
in the list are used. If None, all events will be used with
and a dict is created with string integer names corresponding
to the event id integers.
mrk : None | str | array_like, shape (5, 3) | list of str or array_like
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
If list, all of the markers will be averaged together.
elp : None | str | array_like, shape (8, 3)
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : None | str | array, shape (n_points, 3)
Digitizer head shape points, or path to head shape file. If more than
10,000 points are in the head shape, they are automatically decimated.
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
epochs : instance of Epochs
The epochs.
Notes
-----
.. versionadded:: 0.9.0
"""
epochs = EpochsKIT(input_fname=input_fname, events=events,
event_id=event_id, mrk=mrk, elp=elp, hsp=hsp,
allow_unknown_format=allow_unknown_format,
verbose=verbose)
return epochs
|