File: test_kit.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (258 lines) | stat: -rw-r--r-- 10,903 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Author: Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD (3-clause)

import inspect
import os.path as op

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_equal)
import pytest
from scipy import linalg
import scipy.io

import mne
from mne import pick_types, Epochs, find_events, read_events
from mne.datasets.testing import requires_testing_data
from mne.transforms import apply_trans
from mne.tests.common import assert_dig_allclose
from mne.utils import run_tests_if_main, _TempDir
from mne.io import read_raw_fif, read_raw_kit, read_epochs_kit
from mne.io.constants import FIFF
from mne.io.kit.coreg import read_sns
from mne.io.kit.constants import KIT
from mne.io.tests.test_raw import _test_raw_reader
from mne.surface import _get_ico_surface

FILE = inspect.getfile(inspect.currentframe())
parent_dir = op.dirname(op.abspath(FILE))
data_dir = op.join(parent_dir, 'data')
sqd_path = op.join(data_dir, 'test.sqd')
sqd_umd_path = op.join(data_dir, 'test_umd-raw.sqd')
epochs_path = op.join(data_dir, 'test-epoch.raw')
events_path = op.join(data_dir, 'test-eve.txt')
mrk_path = op.join(data_dir, 'test_mrk.sqd')
mrk2_path = op.join(data_dir, 'test_mrk_pre.sqd')
mrk3_path = op.join(data_dir, 'test_mrk_post.sqd')
elp_txt_path = op.join(data_dir, 'test_elp.txt')
hsp_txt_path = op.join(data_dir, 'test_hsp.txt')
elp_path = op.join(data_dir, 'test.elp')
hsp_path = op.join(data_dir, 'test.hsp')

data_path = mne.datasets.testing.data_path(download=False)
sqd_as_path = op.join(data_path, 'KIT', 'test_as-raw.con')


@requires_testing_data
def test_data():
    """Test reading raw kit files."""
    pytest.raises(TypeError, read_raw_kit, epochs_path)
    pytest.raises(TypeError, read_epochs_kit, sqd_path)
    pytest.raises(ValueError, read_raw_kit, sqd_path, mrk_path, elp_txt_path)
    pytest.raises(ValueError, read_raw_kit, sqd_path, None, None, None,
                  list(range(200, 190, -1)))
    pytest.raises(ValueError, read_raw_kit, sqd_path, None, None, None,
                  list(range(167, 159, -1)), '*', 1, True)
    # check functionality
    raw_mrk = read_raw_kit(sqd_path, [mrk2_path, mrk3_path], elp_txt_path,
                           hsp_txt_path)
    raw_py = _test_raw_reader(read_raw_kit, input_fname=sqd_path, mrk=mrk_path,
                              elp=elp_txt_path, hsp=hsp_txt_path,
                              stim=list(range(167, 159, -1)), slope='+',
                              stimthresh=1)
    assert 'RawKIT' in repr(raw_py)
    assert_equal(raw_mrk.info['kit_system_id'], KIT.SYSTEM_NYU_2010)

    # check number/kind of channels
    assert_equal(len(raw_py.info['chs']), 193)
    kit_channels = (('kind', {FIFF.FIFFV_MEG_CH: 157, FIFF.FIFFV_REF_MEG_CH: 3,
                              FIFF.FIFFV_MISC_CH: 32, FIFF.FIFFV_STIM_CH: 1}),
                    ('coil_type', {FIFF.FIFFV_COIL_KIT_GRAD: 157,
                                   FIFF.FIFFV_COIL_KIT_REF_MAG: 3,
                                   FIFF.FIFFV_COIL_NONE: 33}))
    for label, target in kit_channels:
        actual = {id_: sum(ch[label] == id_ for ch in raw_py.info['chs']) for
                  id_ in target.keys()}
        assert_equal(actual, target)

    # Test stim channel
    raw_stim = read_raw_kit(sqd_path, mrk_path, elp_txt_path, hsp_txt_path,
                            stim='<', preload=False)
    for raw in [raw_py, raw_stim, raw_mrk]:
        stim_pick = pick_types(raw.info, meg=False, ref_meg=False,
                               stim=True, exclude='bads')
        stim1, _ = raw[stim_pick]
        stim2 = np.array(raw.read_stim_ch(), ndmin=2)
        assert_array_equal(stim1, stim2)

    # Binary file only stores the sensor channels
    py_picks = pick_types(raw_py.info, exclude='bads')
    raw_bin = op.join(data_dir, 'test_bin_raw.fif')
    raw_bin = read_raw_fif(raw_bin, preload=True)
    bin_picks = pick_types(raw_bin.info, stim=True, exclude='bads')
    data_bin, _ = raw_bin[bin_picks]
    data_py, _ = raw_py[py_picks]

    # this .mat was generated using the Yokogawa MEG Reader
    data_Ykgw = op.join(data_dir, 'test_Ykgw.mat')
    data_Ykgw = scipy.io.loadmat(data_Ykgw)['data']
    data_Ykgw = data_Ykgw[py_picks]

    assert_array_almost_equal(data_py, data_Ykgw)

    py_picks = pick_types(raw_py.info, stim=True, ref_meg=False,
                          exclude='bads')
    data_py, _ = raw_py[py_picks]
    assert_array_almost_equal(data_py, data_bin)

    # KIT-UMD data
    _test_raw_reader(read_raw_kit, input_fname=sqd_umd_path)
    raw = read_raw_kit(sqd_umd_path)
    assert_equal(raw.info['kit_system_id'], KIT.SYSTEM_UMD_2014_12)
    # check number/kind of channels
    assert_equal(len(raw.info['chs']), 193)
    for label, target in kit_channels:
        actual = {id_: sum(ch[label] == id_ for ch in raw.info['chs']) for
                  id_ in target.keys()}
        assert_equal(actual, target)

    # KIT Academia Sinica
    raw = read_raw_kit(sqd_as_path, slope='+')
    assert_equal(raw.info['kit_system_id'], KIT.SYSTEM_AS_2008)
    assert_equal(raw.info['chs'][100]['ch_name'], 'MEG 101')
    assert_equal(raw.info['chs'][100]['kind'], FIFF.FIFFV_MEG_CH)
    assert_equal(raw.info['chs'][100]['coil_type'], FIFF.FIFFV_COIL_KIT_GRAD)
    assert_equal(raw.info['chs'][157]['ch_name'], 'MEG 158')
    assert_equal(raw.info['chs'][157]['kind'], FIFF.FIFFV_REF_MEG_CH)
    assert_equal(raw.info['chs'][157]['coil_type'],
                 FIFF.FIFFV_COIL_KIT_REF_MAG)
    assert_equal(raw.info['chs'][160]['ch_name'], 'EEG 001')
    assert_equal(raw.info['chs'][160]['kind'], FIFF.FIFFV_EEG_CH)
    assert_equal(raw.info['chs'][160]['coil_type'], FIFF.FIFFV_COIL_EEG)
    assert_array_equal(find_events(raw), [[91, 0, 2]])


def test_epochs():
    """Test reading epoched SQD file."""
    raw = read_raw_kit(sqd_path, stim=None)
    events = read_events(events_path)
    raw_epochs = Epochs(raw, events, None, tmin=0, tmax=.099, baseline=None)
    data1 = raw_epochs.get_data()
    epochs = read_epochs_kit(epochs_path, events_path)
    data11 = epochs.get_data()
    assert_array_equal(data1, data11)


def test_raw_events():
    """Test creating stim channel from raw SQD file."""
    def evts(a, b, c, d, e, f=None):
        out = [[269, a, b], [281, b, c], [1552, c, d], [1564, d, e]]
        if f is not None:
            out.append([2000, e, f])
        return out

    raw = read_raw_kit(sqd_path)
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(255, 254, 255, 254, 255, 0))

    raw = read_raw_kit(sqd_path, slope='+')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 1, 0, 1, 0))

    raw = read_raw_kit(sqd_path, stim='<', slope='+')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 128, 0, 128, 0))

    raw = read_raw_kit(sqd_path, stim='<', slope='+', stim_code='channel')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 160, 0, 160, 0))

    raw = read_raw_kit(sqd_path, stim=range(160, 162), slope='+',
                       stim_code='channel')
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       evts(0, 160, 0, 160, 0))


def test_ch_loc():
    """Test raw kit loc."""
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_txt_path, hsp_txt_path,
                          stim='<')
    raw_bin = read_raw_fif(op.join(data_dir, 'test_bin_raw.fif'))

    ch_py = np.array([ch['loc'] for ch in
                      raw_py._raw_extras[0]['channels'][:160]])
    # ch locs stored as m, not mm
    ch_py[:, :3] *= 1e3
    ch_sns = read_sns(op.join(data_dir, 'sns.txt'))
    assert_array_almost_equal(ch_py, ch_sns, 2)

    assert_array_almost_equal(raw_py.info['dev_head_t']['trans'],
                              raw_bin.info['dev_head_t']['trans'], 4)
    for py_ch, bin_ch in zip(raw_py.info['chs'], raw_bin.info['chs']):
        if bin_ch['ch_name'].startswith('MEG'):
            # the stored ch locs have more precision than the sns.txt
            assert_array_almost_equal(py_ch['loc'], bin_ch['loc'], decimal=2)

    # test when more than one marker file provided
    mrks = [mrk_path, mrk2_path, mrk3_path]
    read_raw_kit(sqd_path, mrks, elp_txt_path, hsp_txt_path, preload=False)
    # this dataset does not have the equivalent set of points :(
    raw_bin.info['dig'] = raw_bin.info['dig'][:8]
    raw_py.info['dig'] = raw_py.info['dig'][:8]
    assert_dig_allclose(raw_py.info, raw_bin.info)


def test_hsp_elp():
    """Test KIT usage of *.elp and *.hsp files against *.txt files."""
    raw_txt = read_raw_kit(sqd_path, mrk_path, elp_txt_path, hsp_txt_path)
    raw_elp = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)

    # head points
    pts_txt = np.array([dig_point['r'] for dig_point in raw_txt.info['dig']])
    pts_elp = np.array([dig_point['r'] for dig_point in raw_elp.info['dig']])
    assert_array_almost_equal(pts_elp, pts_txt, decimal=5)

    # transforms
    trans_txt = raw_txt.info['dev_head_t']['trans']
    trans_elp = raw_elp.info['dev_head_t']['trans']
    assert_array_almost_equal(trans_elp, trans_txt, decimal=5)

    # head points in device space
    pts_txt_in_dev = apply_trans(linalg.inv(trans_txt), pts_txt)
    pts_elp_in_dev = apply_trans(linalg.inv(trans_elp), pts_elp)
    assert_array_almost_equal(pts_elp_in_dev, pts_txt_in_dev, decimal=5)


def test_decimate():
    """Test decimation of digitizer headshapes with too many points."""
    # load headshape and convert to meters
    hsp_mm = _get_ico_surface(5)['rr'] * 100
    hsp_m = hsp_mm / 1000.

    # save headshape to a file in mm in temporary directory
    tempdir = _TempDir()
    sphere_hsp_path = op.join(tempdir, 'test_sphere.txt')
    np.savetxt(sphere_hsp_path, hsp_mm)

    # read in raw data using spherical hsp, and extract new hsp
    with pytest.warns(RuntimeWarning,
                      match='was automatically downsampled .* FastScan'):
        raw = read_raw_kit(sqd_path, mrk_path, elp_txt_path, sphere_hsp_path)
    # collect headshape from raw (should now be in m)
    hsp_dec = np.array([dig['r'] for dig in raw.info['dig']])[8:]

    # with 10242 points and _decimate_points set to resolution of 5 mm, hsp_dec
    # should be a bit over 5000 points. If not, something is wrong or
    # decimation resolution has been purposefully changed
    assert len(hsp_dec) > 5000

    # should have similar size, distance from center
    dist = np.sqrt(np.sum((hsp_m - np.mean(hsp_m, axis=0))**2, axis=1))
    dist_dec = np.sqrt(np.sum((hsp_dec - np.mean(hsp_dec, axis=0))**2, axis=1))
    hsp_rad = np.mean(dist)
    hsp_dec_rad = np.mean(dist_dec)
    assert_array_almost_equal(hsp_rad, hsp_dec_rad, decimal=3)


run_tests_if_main()