1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
|
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Teon Brooks <teon.brooks@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)
from collections import Counter
from copy import deepcopy
import datetime
import operator
import os.path as op
import re
import numpy as np
from scipy import linalg
from .pick import channel_type
from .constants import FIFF
from .open import fiff_open
from .tree import dir_tree_find
from .tag import read_tag, find_tag
from .proj import _read_proj, _write_proj, _uniquify_projs, _normalize_proj
from .ctf_comp import read_ctf_comp, write_ctf_comp
from .write import (start_file, end_file, start_block, end_block,
write_string, write_dig_points, write_float, write_int,
write_coord_trans, write_ch_info, write_name_list,
write_julian, write_float_matrix, write_id, DATE_NONE)
from .proc_history import _read_proc_history, _write_proc_history
from ..transforms import _to_const
from ..transforms import invert_transform
from ..utils import logger, verbose, warn, object_diff, _validate_type
from .. import __version__
from ..externals.six import b, BytesIO, string_types, text_type
from .compensator import get_current_comp
_kind_dict = dict(
eeg=(FIFF.FIFFV_EEG_CH, FIFF.FIFFV_COIL_EEG, FIFF.FIFF_UNIT_V),
mag=(FIFF.FIFFV_MEG_CH, FIFF.FIFFV_COIL_VV_MAG_T3, FIFF.FIFF_UNIT_T),
grad=(FIFF.FIFFV_MEG_CH, FIFF.FIFFV_COIL_VV_PLANAR_T1, FIFF.FIFF_UNIT_T_M),
ref_meg=(FIFF.FIFFV_REF_MEG_CH, FIFF.FIFFV_COIL_VV_MAG_T3,
FIFF.FIFF_UNIT_T),
misc=(FIFF.FIFFV_MISC_CH, FIFF.FIFFV_COIL_NONE, FIFF.FIFF_UNIT_NONE),
stim=(FIFF.FIFFV_STIM_CH, FIFF.FIFFV_COIL_NONE, FIFF.FIFF_UNIT_V),
eog=(FIFF.FIFFV_EOG_CH, FIFF.FIFFV_COIL_NONE, FIFF.FIFF_UNIT_V),
ecg=(FIFF.FIFFV_ECG_CH, FIFF.FIFFV_COIL_NONE, FIFF.FIFF_UNIT_V),
emg=(FIFF.FIFFV_EMG_CH, FIFF.FIFFV_COIL_NONE, FIFF.FIFF_UNIT_V),
seeg=(FIFF.FIFFV_SEEG_CH, FIFF.FIFFV_COIL_EEG, FIFF.FIFF_UNIT_V),
bio=(FIFF.FIFFV_BIO_CH, FIFF.FIFFV_COIL_NONE, FIFF.FIFF_UNIT_V),
ecog=(FIFF.FIFFV_ECOG_CH, FIFF.FIFFV_COIL_EEG, FIFF.FIFF_UNIT_V),
hbo=(FIFF.FIFFV_FNIRS_CH, FIFF.FIFFV_COIL_FNIRS_HBO, FIFF.FIFF_UNIT_MOL),
hbr=(FIFF.FIFFV_FNIRS_CH, FIFF.FIFFV_COIL_FNIRS_HBR, FIFF.FIFF_UNIT_MOL)
)
def _get_valid_units():
"""Get valid units according to the International System of Units (SI).
The International System of Units (SI, [1]) is the default system for
describing units in the Brain Imaging Data Structure (BIDS). For more
information, see the BIDS specification [2] and the appendix "Units"
therein.
References
----------
[1] .. https://en.wikipedia.org/wiki/International_System_of_Units
[2] .. http://bids.neuroimaging.io/bids_spec.pdf
"""
valid_prefix_names = ['yocto', 'zepto', 'atto', 'femto', 'pico', 'nano',
'micro', 'milli', 'centi', 'deci', 'deca', 'hecto',
'kilo', 'mega', 'giga', 'tera', 'peta', 'exa',
'zetta', 'yotta']
valid_prefix_symbols = ['y', 'z', 'a', 'f', 'p', 'n', u'µ', 'm', 'c', 'd',
'da', 'h', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']
valid_unit_names = ['metre', 'kilogram', 'second', 'ampere', 'kelvin',
'mole', 'candela', 'radian', 'steradian', 'hertz',
'newton', 'pascal', 'joule', 'watt', 'coulomb', 'volt',
'farad', 'ohm', 'siemens', 'weber', 'tesla', 'henry',
'degree Celsius', 'lumen', 'lux', 'becquerel', 'gray',
'sievert', 'katal']
valid_unit_symbols = ['m', 'kg', 's', 'A', 'K', 'mol', 'cd', 'rad', 'sr',
'Hz', 'N', 'Pa', 'J', 'W', 'C', 'V', 'F', u'Ω', 'S',
'Wb', 'T', 'H', u'°C', 'lm', 'lx', 'Bq', 'Gy', 'Sv',
'kat']
# Valid units are all possible combinations of either prefix name or prefix
# symbol together with either unit name or unit symbol. E.g., nV for
# nanovolt
valid_units = []
valid_units += ([''.join([prefix, unit]) for prefix in valid_prefix_names
for unit in valid_unit_names])
valid_units += ([''.join([prefix, unit]) for prefix in valid_prefix_names
for unit in valid_unit_symbols])
valid_units += ([''.join([prefix, unit]) for prefix in valid_prefix_symbols
for unit in valid_unit_names])
valid_units += ([''.join([prefix, unit]) for prefix in valid_prefix_symbols
for unit in valid_unit_symbols])
# units are also valid without a prefix
valid_units += valid_unit_names
valid_units += valid_unit_symbols
# we also accept "n/a" as a unit, which is the default missing value in
# BIDS
valid_units += ["n/a"]
return tuple(valid_units)
def _summarize_str(st):
"""Make summary string."""
return st[:56][::-1].split(',', 1)[-1][::-1] + ', ...'
def _stamp_to_dt(stamp):
"""Convert timestamp to datetime object in Windows-friendly way."""
# The min on windows is 86400
stamp = [int(s) for s in stamp]
if len(stamp) == 1: # In case there is no microseconds information
stamp.append(0)
return (datetime.datetime.utcfromtimestamp(stamp[0]) +
datetime.timedelta(0, 0, stamp[1])) # day, sec, μs
# XXX Eventually this should be de-duplicated with the MNE-MATLAB stuff...
class Info(dict):
"""Measurement information.
This data structure behaves like a dictionary. It contains all metadata
that is available for a recording.
This class should not be instantiated directly. To create a measurement
information strucure, use :func:`mne.create_info`.
The only entries that should be manually changed by the user are
``info['bads']`` and ``info['description']``. All other entries should
be considered read-only, or should be modified by functions or methods.
Parameters
----------
acq_pars : str | None
MEG system acquition parameters.
See :class:`mne.AcqParserFIF` for details.
acq_stim : str | None
MEG system stimulus parameters.
bads : list of str
List of bad (noisy/broken) channels, by name. These channels will by
default be ignored by many processing steps.
ch_names : list of str
The names of the channels.
chs : list of dict
A list of channel information dictionaries, one per channel.
See Notes for more information.
comps : list of dict
CTF software gradient compensation data.
See Notes for more information.
ctf_head_t : dict | None
The transformation from 4D/CTF head coordinates to Neuromag head
coordinates. This is only present in 4D/CTF data.
custom_ref_applied : bool
Whether a custom (=other than average) reference has been applied to
the EEG data. This flag is checked by some algorithms that require an
average reference to be set.
description : str | None
String description of the recording.
dev_ctf_t : dict | None
The transformation from device coordinates to 4D/CTF head coordinates.
This is only present in 4D/CTF data.
dev_head_t : dict | None
The device to head transformation.
dig : list of dict | None
The Polhemus digitization data in head coordinates.
See Notes for more information.
events : list of dict
Event list, sometimes extracted from the stim channels by Neuromag
systems. In general this should not be used and
:func:`mne.find_events` should be used for event processing.
See Notes for more information.
experimenter : str | None
Name of the person that ran the experiment.
file_id : dict | None
The FIF globally unique ID. See Notes for more information.
highpass : float
Highpass corner frequency in Hertz. Zero indicates a DC recording.
hpi_meas : list of dict
HPI measurements that were taken at the start of the recording
(e.g. coil frequencies).
See Notes for details.
hpi_results : list of dict
Head position indicator (HPI) digitization points and fit information
(e.g., the resulting transform).
See Notes for details.
hpi_subsystem : dict | None
Information about the HPI subsystem that was used (e.g., event
channel used for cHPI measurements).
See Notes for details.
line_freq : float | None
Frequency of the power line in Hertz.
gantry_angle : float | None
Tilt angle of the gantry in degrees.
lowpass : float
Lowpass corner frequency in Hertz.
meas_date : tuple of int
The first element of this list is a UNIX timestamp (seconds since
1970-01-01 00:00:00) denoting the date and time at which the
measurement was taken. The second element is the additional number of
microseconds.
meas_id : dict | None
The ID assigned to this measurement by the acquisition system or
during file conversion. Follows the same format as ``file_id``.
nchan : int
Number of channels.
proc_history : list of dict
The MaxFilter processing history.
See Notes for details.
proj_id : int | None
ID number of the project the experiment belongs to.
proj_name : str | None
Name of the project the experiment belongs to.
projs : list of Projection
List of SSP operators that operate on the data.
See :class:`mne.Projection` for details.
sfreq : float
Sampling frequency in Hertz.
subject_info : dict | None
Information about the subject.
See Notes for details.
See Also
--------
mne.create_info
Notes
-----
The following parameters have a nested structure.
* ``chs`` list of dict:
cal : float
The calibration factor to bring the channels to physical
units. Used in product with ``range`` to scale the data read
from disk.
ch_name : str
The channel name.
coil_type : int
Coil type, e.g. ``FIFFV_COIL_MEG``.
coord_frame : int
The coordinate frame used, e.g. ``FIFFV_COORD_HEAD``.
kind : int
The kind of channel, e.g. ``FIFFV_EEG_CH``.
loc : array, shape (12,)
Channel location. For MEG this is the position plus the
normal given by a 3x3 rotation matrix. For EEG this is the
position followed by reference position (with 6 unused).
The values are specified in device coordinates for MEG and in
head coordinates for EEG channels, respectively.
logno : int
Logical channel number, conventions in the usage of this
number vary.
range : float
The hardware-oriented part of the calibration factor.
This should be only applied to the continuous raw data.
Used in product with ``cal`` to scale data read from disk.
scanno : int
Scanning order number, starting from 1.
unit : int
The unit to use, e.g. ``FIFF_UNIT_T_M``.
unit_mul : int
Unit multipliers, most commontly ``FIFF_UNITM_NONE``.
* ``comps`` list of dict:
ctfkind : int
CTF compensation grade.
colcals : ndarray
Column calibrations.
mat : dict
A named matrix dictionary (with entries "data", "col_names", etc.)
containing the compensation matrix.
rowcals : ndarray
Row calibrations.
save_calibrated : bool
Were the compensation data saved in calibrated form.
* ``dig`` dict:
kind : int
Digitization kind, e.g. ``FIFFV_POINT_EXTRA``.
ident : int
Identifier.
r : ndarary, shape (3,)
Position.
coord_frame : int
Coordinate frame, e.g. ``FIFFV_COORD_HEAD``.
* ``events`` list of dict:
channels : list of int
Channel indices for the events.
list : ndarray, shape (n_events * 3,)
Events in triplets as number of samples, before, after.
* ``file_id`` dict:
version : int
FIF format version, i.e. ``FIFFC_VERSION``.
machid : ndarray, shape (2,)
Unique machine ID, usually derived from the MAC address.
secs : int
Time in seconds.
usecs : int
Time in microseconds.
* ``hpi_meas`` list of dict:
creator : str
Program that did the measurement.
sfreq : float
Sample rate.
nchan : int
Number of channels used.
nave : int
Number of averages used.
ncoil : int
Number of coils used.
first_samp : int
First sample used.
last_samp : int
Last sample used.
hpi_coils : list of dict
Coils, containing:
number: int
Coil number
epoch : ndarray
Buffer containing one epoch and channel.
slopes : ndarray, shape (n_channels,)
HPI data.
corr_coeff : ndarray, shape (n_channels,)
HPI curve fit correlations.
coil_freq : float
HPI coil excitation frequency
* ``hpi_results`` list of dict:
dig_points : list
Digitization points (see ``dig`` definition) for the HPI coils.
order : ndarray, shape (ncoil,)
The determined digitization order.
used : ndarray, shape (nused,)
The indices of the used coils.
moments : ndarray, shape (ncoil, 3)
The coil moments.
goodness : ndarray, shape (ncoil,)
The goodness of fits.
good_limit : float
The goodness of fit limit.
dist_limit : float
The distance limit.
accept : int
Whether or not the fit was accepted.
coord_trans : instance of Transformation
The resulting MEG<->head transformation.
* ``hpi_subsystem`` dict:
ncoil : int
The number of coils.
event_channel : str
The event channel used to encode cHPI status (e.g., STI201).
hpi_coils : list of ndarray
List of length ``ncoil``, each 4-element ndarray contains the
event bits used on the event channel to indicate cHPI status
(using the first element of these arrays is typically
sufficient).
* ``proc_history`` list of dict:
block_id : dict
See ``id`` above.
date : ndarray, shape (2,)
2-element tuple of seconds and microseconds.
experimenter : str
Name of the person who ran the program.
creator : str
Program that did the processing.
max_info : dict
Maxwel filtering info, can contain:
sss_info : dict
SSS processing information.
max_st
tSSS processing information.
sss_ctc : dict
Cross-talk processing information.
sss_cal : dict
Fine-calibration information.
smartshield : dict
MaxShield information. This dictionary is (always?) empty,
but its presence implies that MaxShield was used during
acquisiton.
* ``subject_info`` dict:
id : int
Integer subject identifier.
his_id : str
String subject identifier.
last_name : str
Last name.
first_name : str
First name.
middle_name : str
Middle name.
birthday : tuple of int
Birthday in (year, month, day) format.
sex : int
Subject sex (0=unknown, 1=male, 2=female).
hand : int
Handedness (1=right, 2=left).
"""
def copy(self):
"""Copy the instance.
Returns
-------
info : instance of Info
The copied info.
"""
return Info(deepcopy(self))
def normalize_proj(self):
"""(Re-)Normalize projection vectors after subselection.
Applying projection after sub-selecting a set of channels that
were originally used to compute the original projection vectors
can be dangerous (e.g., if few channels remain, most power was
in channels that are no longer picked, etc.). By default, mne
will emit a warning when this is done.
This function will re-normalize projectors to use only the
remaining channels, thus avoiding that warning. Only use this
function if you're confident that the projection vectors still
adequately capture the original signal of interest.
"""
_normalize_proj(self)
def __repr__(self):
"""Summarize info instead of printing all."""
strs = ['<Info | %s non-empty fields']
non_empty = 0
for k, v in self.items():
if k in ['bads', 'ch_names']:
entr = (', '.join(b for ii, b in enumerate(v) if ii < 10)
if v else '0 items')
if len(v) > 10:
# get rid of of half printed ch names
entr = _summarize_str(entr)
elif k == 'projs' and v:
entr = ', '.join(p['desc'] + ': o%s' %
{0: 'ff', 1: 'n'}[p['active']] for p in v)
if len(entr) >= 56:
entr = _summarize_str(entr)
elif k == 'meas_date':
if v is None:
entr = 'unspecified'
else:
# first entry in meas_date is meaningful
entr = (_stamp_to_dt(v).strftime('%Y-%m-%d %H:%M:%S') +
' GMT')
elif k == 'kit_system_id' and v is not None:
from .kit.constants import KIT_SYSNAMES
entr = '%i (%s)' % (v, KIT_SYSNAMES.get(v, 'unknown'))
else:
this_len = (len(v) if hasattr(v, '__len__') else
('%s' % v if v is not None else None))
entr = (('%d items' % this_len) if isinstance(this_len, int)
else ('%s' % this_len if this_len else ''))
if entr:
non_empty += 1
entr = ' | ' + entr
if k == 'chs':
ch_types = [channel_type(self, idx) for idx in range(len(v))]
ch_counts = Counter(ch_types)
entr += " (%s)" % ', '.join("%s: %d" % (ch_type.upper(), count)
for ch_type, count
in ch_counts.items())
strs.append('%s : %s%s' % (k, type(v).__name__, entr))
if k in ['sfreq', 'lowpass', 'highpass']:
strs[-1] += ' Hz'
strs_non_empty = sorted(s for s in strs if '|' in s)
strs_empty = sorted(s for s in strs if '|' not in s)
st = '\n '.join(strs_non_empty + strs_empty)
st += '\n>'
st %= non_empty
return st
def _check_consistency(self):
"""Do some self-consistency checks and datatype tweaks."""
missing = [bad for bad in self['bads'] if bad not in self['ch_names']]
if len(missing) > 0:
raise RuntimeError('bad channel(s) %s marked do not exist in info'
% (missing,))
meas_date = self.get('meas_date')
if meas_date is not None and (
not isinstance(self['meas_date'], tuple) or
len(self['meas_date']) != 2):
raise RuntimeError('info["meas_date"] must be a tuple of length '
'2 or None, got "%r"'
% (repr(self['meas_date']),))
chs = [ch['ch_name'] for ch in self['chs']]
if len(self['ch_names']) != len(chs) or any(
ch_1 != ch_2 for ch_1, ch_2 in zip(self['ch_names'], chs)) or \
self['nchan'] != len(chs):
raise RuntimeError('info channel name inconsistency detected, '
'please notify mne-python developers')
# make sure we have the proper datatypes
for key in ('sfreq', 'highpass', 'lowpass'):
if self.get(key) is not None:
self[key] = float(self[key])
# make sure channel names are not too long
self._check_ch_name_length()
# make sure channel names are unique
unique_ids = np.unique(self['ch_names'], return_index=True)[1]
if len(unique_ids) != self['nchan']:
dups = set(self['ch_names'][x]
for x in np.setdiff1d(range(self['nchan']), unique_ids))
warn('Channel names are not unique, found duplicates for: '
'%s. Applying running numbers for duplicates.' % dups)
for ch_stem in dups:
overlaps = np.where(np.array(self['ch_names']) == ch_stem)[0]
n_keep = min(len(ch_stem),
14 - int(np.ceil(np.log10(len(overlaps)))))
ch_stem = ch_stem[:n_keep]
for idx, ch_idx in enumerate(overlaps):
ch_name = ch_stem + '-%s' % idx
assert ch_name not in self['ch_names']
self['ch_names'][ch_idx] = ch_name
self['chs'][ch_idx]['ch_name'] = ch_name
if 'filename' in self:
warn('the "filename" key is misleading '
'and info should not have it')
def _check_ch_name_length(self):
"""Check that channel names are sufficiently short."""
bad_names = list()
for ch in self['chs']:
if len(ch['ch_name']) > 15:
bad_names.append(ch['ch_name'])
ch['ch_name'] = ch['ch_name'][:15]
if len(bad_names) > 0:
warn('%d channel names are too long, have been truncated to 15 '
'characters:\n%s' % (len(bad_names), bad_names))
self._update_redundant()
def _update_redundant(self):
"""Update the redundant entries."""
self['ch_names'] = [ch['ch_name'] for ch in self['chs']]
self['nchan'] = len(self['chs'])
def _simplify_info(info):
"""Return a simplified info structure to speed up picking."""
chs = [{key: ch[key]
for key in ('ch_name', 'kind', 'unit', 'coil_type', 'loc')}
for ch in info['chs']]
sub_info = Info(chs=chs, bads=info['bads'], comps=info['comps'])
sub_info._update_redundant()
return sub_info
@verbose
def read_fiducials(fname, verbose=None):
"""Read fiducials from a fiff file.
Parameters
----------
fname : str
The filename to read.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
pts : list of dicts
List of digitizer points (each point in a dict).
coord_frame : int
The coordinate frame of the points (one of
mne.io.constants.FIFF.FIFFV_COORD_...)
"""
fid, tree, _ = fiff_open(fname)
with fid:
isotrak = dir_tree_find(tree, FIFF.FIFFB_ISOTRAK)
isotrak = isotrak[0]
pts = []
coord_frame = FIFF.FIFFV_COORD_HEAD
for k in range(isotrak['nent']):
kind = isotrak['directory'][k].kind
pos = isotrak['directory'][k].pos
if kind == FIFF.FIFF_DIG_POINT:
tag = read_tag(fid, pos)
pts.append(tag.data)
elif kind == FIFF.FIFF_MNE_COORD_FRAME:
tag = read_tag(fid, pos)
coord_frame = tag.data[0]
# coord_frame is not stored in the tag
for pt in pts:
pt['coord_frame'] = coord_frame
return pts, coord_frame
@verbose
def write_fiducials(fname, pts, coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
verbose=None):
"""Write fiducials to a fiff file.
Parameters
----------
fname : str
Destination file name.
pts : iterator of dict
Iterator through digitizer points. Each point is a dictionary with
the keys 'kind', 'ident' and 'r'.
coord_frame : int
The coordinate frame of the points (one of
mne.io.constants.FIFF.FIFFV_COORD_...).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
"""
write_dig(fname, pts, coord_frame)
def write_dig(fname, pts, coord_frame=None):
"""Write digitization data to a FIF file.
Parameters
----------
fname : str
Destination file name.
pts : iterator of dict
Iterator through digitizer points. Each point is a dictionary with
the keys 'kind', 'ident' and 'r'.
coord_frame : int | str | None
If all the points have the same coordinate frame, specify the type
here. Can be None (default) if the points could have varying
coordinate frames.
"""
if coord_frame is not None:
coord_frame = _to_const(coord_frame)
pts_frames = set((pt.get('coord_frame', coord_frame) for pt in pts))
bad_frames = pts_frames - set((coord_frame,))
if len(bad_frames) > 0:
raise ValueError(
'Points have coord_frame entries that are incompatible with '
'coord_frame=%i: %s.' % (coord_frame, str(tuple(bad_frames))))
with start_file(fname) as fid:
write_dig_points(fid, pts, block=True, coord_frame=coord_frame)
end_file(fid)
def _read_dig_fif(fid, meas_info):
"""Read digitizer data from a FIFF file."""
isotrak = dir_tree_find(meas_info, FIFF.FIFFB_ISOTRAK)
dig = None
if len(isotrak) == 0:
logger.info('Isotrak not found')
elif len(isotrak) > 1:
warn('Multiple Isotrak found')
else:
isotrak = isotrak[0]
dig = []
for k in range(isotrak['nent']):
kind = isotrak['directory'][k].kind
pos = isotrak['directory'][k].pos
if kind == FIFF.FIFF_DIG_POINT:
tag = read_tag(fid, pos)
dig.append(tag.data)
dig[-1]['coord_frame'] = FIFF.FIFFV_COORD_HEAD
return dig
def _read_dig_points(fname, comments='%', unit='auto'):
"""Read digitizer data from a text file.
If fname ends in .hsp or .esp, the function assumes digitizer files in [m],
otherwise it assumes space-delimited text files in [mm].
Parameters
----------
fname : str
The filepath of space delimited file with points, or a .mat file
(Polhemus FastTrak format).
comments : str
The character used to indicate the start of a comment;
Default: '%'.
unit : 'auto' | 'm' | 'cm' | 'mm'
Unit of the digitizer files (hsp and elp). If not 'm', coordinates will
be rescaled to 'm'. Default is 'auto', which assumes 'm' for *.hsp and
*.elp files and 'mm' for *.txt files, corresponding to the known
Polhemus export formats.
Returns
-------
dig_points : np.ndarray, shape (n_points, 3)
Array of dig points in [m].
"""
if unit not in ('auto', 'm', 'mm', 'cm'):
raise ValueError('unit must be one of "auto", "m", "mm", or "cm"')
_, ext = op.splitext(fname)
if ext == '.elp' or ext == '.hsp':
with open(fname) as fid:
file_str = fid.read()
value_pattern = r"\-?\d+\.?\d*e?\-?\d*"
coord_pattern = r"({0})\s+({0})\s+({0})\s*$".format(value_pattern)
if ext == '.hsp':
coord_pattern = '^' + coord_pattern
points_str = [m.groups() for m in re.finditer(coord_pattern, file_str,
re.MULTILINE)]
dig_points = np.array(points_str, dtype=float)
elif ext == '.mat': # like FastScan II
from scipy.io import loadmat
dig_points = loadmat(fname)['Points'].T
else:
dig_points = np.loadtxt(fname, comments=comments, ndmin=2)
if unit == 'auto':
unit = 'mm'
if dig_points.shape[1] > 3:
warn('Found %d columns instead of 3, using first 3 for XYZ '
'coordinates' % (dig_points.shape[1],))
dig_points = dig_points[:, :3]
if dig_points.shape[-1] != 3:
err = 'Data must be (n, 3) instead of %s' % (dig_points.shape,)
raise ValueError(err)
if unit == 'mm':
dig_points /= 1000.
elif unit == 'cm':
dig_points /= 100.
return dig_points
def _write_dig_points(fname, dig_points):
"""Write points to text file.
Parameters
----------
fname : str
Path to the file to write. The kind of file to write is determined
based on the extension: '.txt' for tab separated text file.
dig_points : numpy.ndarray, shape (n_points, 3)
Points.
"""
_, ext = op.splitext(fname)
dig_points = np.asarray(dig_points)
if (dig_points.ndim != 2) or (dig_points.shape[1] != 3):
err = ("Points must be of shape (n_points, 3), "
"not %s" % (dig_points.shape,))
raise ValueError(err)
if ext == '.txt':
with open(fname, 'wb') as fid:
version = __version__
now = datetime.datetime.now().strftime("%I:%M%p on %B %d, %Y")
fid.write(b("% Ascii 3D points file created by mne-python version "
"{version} at {now}\n".format(version=version,
now=now)))
fid.write(b("% {N} 3D points, "
"x y z per line\n".format(N=len(dig_points))))
np.savetxt(fid, dig_points, delimiter='\t', newline='\n')
else:
msg = "Unrecognized extension: %r. Need '.txt'." % ext
raise ValueError(msg)
def _make_dig_points(nasion=None, lpa=None, rpa=None, hpi=None,
extra_points=None, dig_ch_pos=None):
"""Construct digitizer info for the info.
Parameters
----------
nasion : array-like | numpy.ndarray, shape (3,) | None
Point designated as the nasion point.
lpa : array-like | numpy.ndarray, shape (3,) | None
Point designated as the left auricular point.
rpa : array-like | numpy.ndarray, shape (3,) | None
Point designated as the right auricular point.
hpi : array-like | numpy.ndarray, shape (n_points, 3) | None
Points designated as head position indicator points.
extra_points : array-like | numpy.ndarray, shape (n_points, 3)
Points designed as the headshape points.
dig_ch_pos : dict
Dict of EEG channel positions.
Returns
-------
dig : list
List of digitizer points to be added to the info['dig'].
"""
dig = []
if lpa is not None:
lpa = np.asarray(lpa)
if lpa.shape != (3,):
raise ValueError('LPA should have the shape (3,) instead of %s'
% (lpa.shape,))
dig.append({'r': lpa, 'ident': FIFF.FIFFV_POINT_LPA,
'kind': FIFF.FIFFV_POINT_CARDINAL,
'coord_frame': FIFF.FIFFV_COORD_HEAD})
if nasion is not None:
nasion = np.asarray(nasion)
if nasion.shape != (3,):
raise ValueError('Nasion should have the shape (3,) instead of %s'
% (nasion.shape,))
dig.append({'r': nasion, 'ident': FIFF.FIFFV_POINT_NASION,
'kind': FIFF.FIFFV_POINT_CARDINAL,
'coord_frame': FIFF.FIFFV_COORD_HEAD})
if rpa is not None:
rpa = np.asarray(rpa)
if rpa.shape != (3,):
raise ValueError('RPA should have the shape (3,) instead of %s'
% (rpa.shape,))
dig.append({'r': rpa, 'ident': FIFF.FIFFV_POINT_RPA,
'kind': FIFF.FIFFV_POINT_CARDINAL,
'coord_frame': FIFF.FIFFV_COORD_HEAD})
if hpi is not None:
hpi = np.asarray(hpi)
if hpi.ndim != 2 or hpi.shape[1] != 3:
raise ValueError('HPI should have the shape (n_points, 3) instead '
'of %s' % (hpi.shape,))
for idx, point in enumerate(hpi):
dig.append({'r': point, 'ident': idx + 1,
'kind': FIFF.FIFFV_POINT_HPI,
'coord_frame': FIFF.FIFFV_COORD_HEAD})
if extra_points is not None:
extra_points = np.asarray(extra_points)
if extra_points.shape[1] != 3:
raise ValueError('Points should have the shape (n_points, 3) '
'instead of %s' % (extra_points.shape,))
for idx, point in enumerate(extra_points):
dig.append({'r': point, 'ident': idx + 1,
'kind': FIFF.FIFFV_POINT_EXTRA,
'coord_frame': FIFF.FIFFV_COORD_HEAD})
if dig_ch_pos is not None:
keys = sorted(dig_ch_pos.keys())
try: # use the last 3 as int if possible (e.g., EEG001->1)
idents = [int(key[-3:]) for key in keys]
except ValueError: # and if any conversion fails, simply use arange
idents = np.arange(1, len(keys) + 1)
for key, ident in zip(keys, idents):
dig.append({'r': dig_ch_pos[key], 'ident': ident,
'kind': FIFF.FIFFV_POINT_EEG,
'coord_frame': FIFF.FIFFV_COORD_HEAD})
return dig
@verbose
def read_info(fname, verbose=None):
"""Read measurement info from a file.
Parameters
----------
fname : str
File name.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
info : instance of Info
Measurement information for the dataset.
"""
f, tree, _ = fiff_open(fname)
with f as fid:
info = read_meas_info(fid, tree)[0]
return info
def read_bad_channels(fid, node):
"""Read bad channels.
Parameters
----------
fid : file
The file descriptor.
node : dict
The node of the FIF tree that contains info on the bad channels.
Returns
-------
bads : list
A list of bad channel's names.
"""
nodes = dir_tree_find(node, FIFF.FIFFB_MNE_BAD_CHANNELS)
bads = []
if len(nodes) > 0:
for node in nodes:
tag = find_tag(fid, node, FIFF.FIFF_MNE_CH_NAME_LIST)
if tag is not None and tag.data is not None:
bads = tag.data.split(':')
return bads
@verbose
def read_meas_info(fid, tree, clean_bads=False, verbose=None):
"""Read the measurement info.
Parameters
----------
fid : file
Open file descriptor.
tree : tree
FIF tree structure.
clean_bads : bool
If True, clean info['bads'] before running consistency check.
Should only be needed for old files where we did not check bads
before saving.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
info : instance of Info
Info on dataset.
meas : dict
Node in tree that contains the info.
"""
# Find the desired blocks
meas = dir_tree_find(tree, FIFF.FIFFB_MEAS)
if len(meas) == 0:
raise ValueError('Could not find measurement data')
if len(meas) > 1:
raise ValueError('Cannot read more that 1 measurement data')
meas = meas[0]
meas_info = dir_tree_find(meas, FIFF.FIFFB_MEAS_INFO)
if len(meas_info) == 0:
raise ValueError('Could not find measurement info')
if len(meas_info) > 1:
raise ValueError('Cannot read more that 1 measurement info')
meas_info = meas_info[0]
# Read measurement info
dev_head_t = None
ctf_head_t = None
dev_ctf_t = None
meas_date = None
highpass = None
lowpass = None
nchan = None
sfreq = None
chs = []
experimenter = None
description = None
proj_id = None
proj_name = None
line_freq = None
gantry_angle = None
custom_ref_applied = False
xplotter_layout = None
kit_system_id = None
for k in range(meas_info['nent']):
kind = meas_info['directory'][k].kind
pos = meas_info['directory'][k].pos
if kind == FIFF.FIFF_NCHAN:
tag = read_tag(fid, pos)
nchan = int(tag.data)
elif kind == FIFF.FIFF_SFREQ:
tag = read_tag(fid, pos)
sfreq = float(tag.data)
elif kind == FIFF.FIFF_CH_INFO:
tag = read_tag(fid, pos)
chs.append(tag.data)
elif kind == FIFF.FIFF_LOWPASS:
tag = read_tag(fid, pos)
if not np.isnan(tag.data):
lowpass = float(tag.data)
elif kind == FIFF.FIFF_HIGHPASS:
tag = read_tag(fid, pos)
if not np.isnan(tag.data):
highpass = float(tag.data)
elif kind == FIFF.FIFF_MEAS_DATE:
tag = read_tag(fid, pos)
meas_date = tuple(tag.data)
if len(meas_date) == 1: # can happen from old C conversions
meas_date = (meas_date[0], 0)
elif kind == FIFF.FIFF_COORD_TRANS:
tag = read_tag(fid, pos)
cand = tag.data
if cand['from'] == FIFF.FIFFV_COORD_DEVICE and \
cand['to'] == FIFF.FIFFV_COORD_HEAD:
dev_head_t = cand
elif cand['from'] == FIFF.FIFFV_COORD_HEAD and \
cand['to'] == FIFF.FIFFV_COORD_DEVICE:
# this reversal can happen with BabyMEG data
dev_head_t = invert_transform(cand)
elif cand['from'] == FIFF.FIFFV_MNE_COORD_CTF_HEAD and \
cand['to'] == FIFF.FIFFV_COORD_HEAD:
ctf_head_t = cand
elif cand['from'] == FIFF.FIFFV_MNE_COORD_CTF_DEVICE and \
cand['to'] == FIFF.FIFFV_MNE_COORD_CTF_HEAD:
dev_ctf_t = cand
elif kind == FIFF.FIFF_EXPERIMENTER:
tag = read_tag(fid, pos)
experimenter = tag.data
elif kind == FIFF.FIFF_DESCRIPTION:
tag = read_tag(fid, pos)
description = tag.data
elif kind == FIFF.FIFF_PROJ_ID:
tag = read_tag(fid, pos)
proj_id = tag.data
elif kind == FIFF.FIFF_PROJ_NAME:
tag = read_tag(fid, pos)
proj_name = tag.data
elif kind == FIFF.FIFF_LINE_FREQ:
tag = read_tag(fid, pos)
line_freq = float(tag.data)
elif kind == FIFF.FIFF_GANTRY_ANGLE:
tag = read_tag(fid, pos)
gantry_angle = float(tag.data)
elif kind in [FIFF.FIFF_MNE_CUSTOM_REF, 236]: # 236 used before v0.11
tag = read_tag(fid, pos)
custom_ref_applied = bool(tag.data)
elif kind == FIFF.FIFF_XPLOTTER_LAYOUT:
tag = read_tag(fid, pos)
xplotter_layout = str(tag.data)
elif kind == FIFF.FIFF_MNE_KIT_SYSTEM_ID:
tag = read_tag(fid, pos)
kit_system_id = int(tag.data)
# Check that we have everything we need
if nchan is None:
raise ValueError('Number of channels is not defined')
if sfreq is None:
raise ValueError('Sampling frequency is not defined')
if len(chs) == 0:
raise ValueError('Channel information not defined')
if len(chs) != nchan:
raise ValueError('Incorrect number of channel definitions found')
if dev_head_t is None or ctf_head_t is None:
hpi_result = dir_tree_find(meas_info, FIFF.FIFFB_HPI_RESULT)
if len(hpi_result) == 1:
hpi_result = hpi_result[0]
for k in range(hpi_result['nent']):
kind = hpi_result['directory'][k].kind
pos = hpi_result['directory'][k].pos
if kind == FIFF.FIFF_COORD_TRANS:
tag = read_tag(fid, pos)
cand = tag.data
if (cand['from'] == FIFF.FIFFV_COORD_DEVICE and
cand['to'] == FIFF.FIFFV_COORD_HEAD and
dev_head_t is None):
dev_head_t = cand
elif (cand['from'] == FIFF.FIFFV_MNE_COORD_CTF_HEAD and
cand['to'] == FIFF.FIFFV_COORD_HEAD and
ctf_head_t is None):
ctf_head_t = cand
# Locate the Polhemus data
dig = _read_dig_fif(fid, meas_info)
# Locate the acquisition information
acqpars = dir_tree_find(meas_info, FIFF.FIFFB_DACQ_PARS)
acq_pars = None
acq_stim = None
if len(acqpars) == 1:
acqpars = acqpars[0]
for k in range(acqpars['nent']):
kind = acqpars['directory'][k].kind
pos = acqpars['directory'][k].pos
if kind == FIFF.FIFF_DACQ_PARS:
tag = read_tag(fid, pos)
acq_pars = tag.data
elif kind == FIFF.FIFF_DACQ_STIM:
tag = read_tag(fid, pos)
acq_stim = tag.data
# Load the SSP data
projs = _read_proj(fid, meas_info)
# Load the CTF compensation data
comps = read_ctf_comp(fid, meas_info, chs)
# Load the bad channel list
bads = read_bad_channels(fid, meas_info)
#
# Put the data together
#
if tree['id'] is not None:
info = Info(file_id=tree['id'])
else:
info = Info(file_id=None)
# Locate events list
events = dir_tree_find(meas_info, FIFF.FIFFB_EVENTS)
evs = list()
for event in events:
ev = dict()
for k in range(event['nent']):
kind = event['directory'][k].kind
pos = event['directory'][k].pos
if kind == FIFF.FIFF_EVENT_CHANNELS:
ev['channels'] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_EVENT_LIST:
ev['list'] = read_tag(fid, pos).data
evs.append(ev)
info['events'] = evs
# Locate HPI result
hpi_results = dir_tree_find(meas_info, FIFF.FIFFB_HPI_RESULT)
hrs = list()
for hpi_result in hpi_results:
hr = dict()
hr['dig_points'] = []
for k in range(hpi_result['nent']):
kind = hpi_result['directory'][k].kind
pos = hpi_result['directory'][k].pos
if kind == FIFF.FIFF_DIG_POINT:
hr['dig_points'].append(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_HPI_DIGITIZATION_ORDER:
hr['order'] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_HPI_COILS_USED:
hr['used'] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_HPI_COIL_MOMENTS:
hr['moments'] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_HPI_FIT_GOODNESS:
hr['goodness'] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_HPI_FIT_GOOD_LIMIT:
hr['good_limit'] = float(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_HPI_FIT_DIST_LIMIT:
hr['dist_limit'] = float(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_HPI_FIT_ACCEPT:
hr['accept'] = int(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_COORD_TRANS:
hr['coord_trans'] = read_tag(fid, pos).data
hrs.append(hr)
info['hpi_results'] = hrs
# Locate HPI Measurement
hpi_meass = dir_tree_find(meas_info, FIFF.FIFFB_HPI_MEAS)
hms = list()
for hpi_meas in hpi_meass:
hm = dict()
for k in range(hpi_meas['nent']):
kind = hpi_meas['directory'][k].kind
pos = hpi_meas['directory'][k].pos
if kind == FIFF.FIFF_CREATOR:
hm['creator'] = text_type(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_SFREQ:
hm['sfreq'] = float(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_NCHAN:
hm['nchan'] = int(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_NAVE:
hm['nave'] = int(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_HPI_NCOIL:
hm['ncoil'] = int(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_FIRST_SAMPLE:
hm['first_samp'] = int(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_LAST_SAMPLE:
hm['last_samp'] = int(read_tag(fid, pos).data)
hpi_coils = dir_tree_find(hpi_meas, FIFF.FIFFB_HPI_COIL)
hcs = []
for hpi_coil in hpi_coils:
hc = dict()
for k in range(hpi_coil['nent']):
kind = hpi_coil['directory'][k].kind
pos = hpi_coil['directory'][k].pos
if kind == FIFF.FIFF_HPI_COIL_NO:
hc['number'] = int(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_EPOCH:
hc['epoch'] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_HPI_SLOPES:
hc['slopes'] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_HPI_CORR_COEFF:
hc['corr_coeff'] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_HPI_COIL_FREQ:
hc['coil_freq'] = read_tag(fid, pos).data
hcs.append(hc)
hm['hpi_coils'] = hcs
hms.append(hm)
info['hpi_meas'] = hms
subject_info = dir_tree_find(meas_info, FIFF.FIFFB_SUBJECT)
si = None
if len(subject_info) == 1:
subject_info = subject_info[0]
si = dict()
for k in range(subject_info['nent']):
kind = subject_info['directory'][k].kind
pos = subject_info['directory'][k].pos
if kind == FIFF.FIFF_SUBJ_ID:
tag = read_tag(fid, pos)
si['id'] = int(tag.data)
elif kind == FIFF.FIFF_SUBJ_HIS_ID:
tag = read_tag(fid, pos)
si['his_id'] = text_type(tag.data)
elif kind == FIFF.FIFF_SUBJ_LAST_NAME:
tag = read_tag(fid, pos)
si['last_name'] = text_type(tag.data)
elif kind == FIFF.FIFF_SUBJ_FIRST_NAME:
tag = read_tag(fid, pos)
si['first_name'] = text_type(tag.data)
elif kind == FIFF.FIFF_SUBJ_MIDDLE_NAME:
tag = read_tag(fid, pos)
si['middle_name'] = text_type(tag.data)
elif kind == FIFF.FIFF_SUBJ_BIRTH_DAY:
tag = read_tag(fid, pos)
si['birthday'] = tag.data
elif kind == FIFF.FIFF_SUBJ_SEX:
tag = read_tag(fid, pos)
si['sex'] = int(tag.data)
elif kind == FIFF.FIFF_SUBJ_HAND:
tag = read_tag(fid, pos)
si['hand'] = int(tag.data)
elif kind == FIFF.FIFF_SUBJ_WEIGHT:
tag = read_tag(fid, pos)
si['weight'] = tag.data
elif kind == FIFF.FIFF_SUBJ_HEIGHT:
tag = read_tag(fid, pos)
si['height'] = tag.data
info['subject_info'] = si
hpi_subsystem = dir_tree_find(meas_info, FIFF.FIFFB_HPI_SUBSYSTEM)
hs = None
if len(hpi_subsystem) == 1:
hpi_subsystem = hpi_subsystem[0]
hs = dict()
for k in range(hpi_subsystem['nent']):
kind = hpi_subsystem['directory'][k].kind
pos = hpi_subsystem['directory'][k].pos
if kind == FIFF.FIFF_HPI_NCOIL:
tag = read_tag(fid, pos)
hs['ncoil'] = int(tag.data)
elif kind == FIFF.FIFF_EVENT_CHANNEL:
tag = read_tag(fid, pos)
hs['event_channel'] = text_type(tag.data)
hpi_coils = dir_tree_find(hpi_subsystem, FIFF.FIFFB_HPI_COIL)
hc = []
for coil in hpi_coils:
this_coil = dict()
for j in range(coil['nent']):
kind = coil['directory'][j].kind
pos = coil['directory'][j].pos
if kind == FIFF.FIFF_EVENT_BITS:
tag = read_tag(fid, pos)
this_coil['event_bits'] = np.array(tag.data)
hc.append(this_coil)
hs['hpi_coils'] = hc
info['hpi_subsystem'] = hs
# Read processing history
info['proc_history'] = _read_proc_history(fid, tree)
# Make the most appropriate selection for the measurement id
if meas_info['parent_id'] is None:
if meas_info['id'] is None:
if meas['id'] is None:
if meas['parent_id'] is None:
info['meas_id'] = info['file_id']
else:
info['meas_id'] = meas['parent_id']
else:
info['meas_id'] = meas['id']
else:
info['meas_id'] = meas_info['id']
else:
info['meas_id'] = meas_info['parent_id']
info['experimenter'] = experimenter
info['description'] = description
info['proj_id'] = proj_id
info['proj_name'] = proj_name
if meas_date is None:
meas_date = (info['meas_id']['secs'], info['meas_id']['usecs'])
if np.array_equal(meas_date, DATE_NONE):
meas_date = None
info['meas_date'] = meas_date
info['sfreq'] = sfreq
info['highpass'] = highpass if highpass is not None else 0.
info['lowpass'] = lowpass if lowpass is not None else info['sfreq'] / 2.0
info['line_freq'] = line_freq
info['gantry_angle'] = gantry_angle
# Add the channel information and make a list of channel names
# for convenience
info['chs'] = chs
#
# Add the coordinate transformations
#
info['dev_head_t'] = dev_head_t
info['ctf_head_t'] = ctf_head_t
info['dev_ctf_t'] = dev_ctf_t
if dev_head_t is not None and ctf_head_t is not None and dev_ctf_t is None:
from ..transforms import Transform
head_ctf_trans = linalg.inv(ctf_head_t['trans'])
dev_ctf_trans = np.dot(head_ctf_trans, info['dev_head_t']['trans'])
info['dev_ctf_t'] = Transform('meg', 'ctf_head', dev_ctf_trans)
# All kinds of auxliary stuff
info['dig'] = dig
info['bads'] = bads
info._update_redundant()
if clean_bads:
info['bads'] = [b for b in bads if b in info['ch_names']]
info['projs'] = projs
info['comps'] = comps
info['acq_pars'] = acq_pars
info['acq_stim'] = acq_stim
info['custom_ref_applied'] = custom_ref_applied
info['xplotter_layout'] = xplotter_layout
info['kit_system_id'] = kit_system_id
info._check_consistency()
return info, meas
def write_meas_info(fid, info, data_type=None, reset_range=True):
"""Write measurement info into a file id (from a fif file).
Parameters
----------
fid : file
Open file descriptor.
info : instance of Info
The measurement info structure.
data_type : int
The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT),
5 (FIFFT_DOUBLE), or 16 (FIFFT_DAU_PACK16) for
raw data.
reset_range : bool
If True, info['chs'][k]['range'] will be set to unity.
Notes
-----
Tags are written in a particular order for compatibility with maxfilter.
"""
info._check_consistency()
# Measurement info
start_block(fid, FIFF.FIFFB_MEAS_INFO)
# Add measurement id
if info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id'])
for event in info['events']:
start_block(fid, FIFF.FIFFB_EVENTS)
if event.get('channels') is not None:
write_int(fid, FIFF.FIFF_EVENT_CHANNELS, event['channels'])
if event.get('list') is not None:
write_int(fid, FIFF.FIFF_EVENT_LIST, event['list'])
end_block(fid, FIFF.FIFFB_EVENTS)
# HPI Result
for hpi_result in info['hpi_results']:
start_block(fid, FIFF.FIFFB_HPI_RESULT)
write_dig_points(fid, hpi_result['dig_points'])
if 'order' in hpi_result:
write_int(fid, FIFF.FIFF_HPI_DIGITIZATION_ORDER,
hpi_result['order'])
if 'used' in hpi_result:
write_int(fid, FIFF.FIFF_HPI_COILS_USED, hpi_result['used'])
if 'moments' in hpi_result:
write_float_matrix(fid, FIFF.FIFF_HPI_COIL_MOMENTS,
hpi_result['moments'])
if 'goodness' in hpi_result:
write_float(fid, FIFF.FIFF_HPI_FIT_GOODNESS,
hpi_result['goodness'])
if 'good_limit' in hpi_result:
write_float(fid, FIFF.FIFF_HPI_FIT_GOOD_LIMIT,
hpi_result['good_limit'])
if 'dist_limit' in hpi_result:
write_float(fid, FIFF.FIFF_HPI_FIT_DIST_LIMIT,
hpi_result['dist_limit'])
if 'accept' in hpi_result:
write_int(fid, FIFF.FIFF_HPI_FIT_ACCEPT, hpi_result['accept'])
if 'coord_trans' in hpi_result:
write_coord_trans(fid, hpi_result['coord_trans'])
end_block(fid, FIFF.FIFFB_HPI_RESULT)
# HPI Measurement
for hpi_meas in info['hpi_meas']:
start_block(fid, FIFF.FIFFB_HPI_MEAS)
if hpi_meas.get('creator') is not None:
write_string(fid, FIFF.FIFF_CREATOR, hpi_meas['creator'])
if hpi_meas.get('sfreq') is not None:
write_float(fid, FIFF.FIFF_SFREQ, hpi_meas['sfreq'])
if hpi_meas.get('nchan') is not None:
write_int(fid, FIFF.FIFF_NCHAN, hpi_meas['nchan'])
if hpi_meas.get('nave') is not None:
write_int(fid, FIFF.FIFF_NAVE, hpi_meas['nave'])
if hpi_meas.get('ncoil') is not None:
write_int(fid, FIFF.FIFF_HPI_NCOIL, hpi_meas['ncoil'])
if hpi_meas.get('first_samp') is not None:
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, hpi_meas['first_samp'])
if hpi_meas.get('last_samp') is not None:
write_int(fid, FIFF.FIFF_LAST_SAMPLE, hpi_meas['last_samp'])
for hpi_coil in hpi_meas['hpi_coils']:
start_block(fid, FIFF.FIFFB_HPI_COIL)
if hpi_coil.get('number') is not None:
write_int(fid, FIFF.FIFF_HPI_COIL_NO, hpi_coil['number'])
if hpi_coil.get('epoch') is not None:
write_float_matrix(fid, FIFF.FIFF_EPOCH, hpi_coil['epoch'])
if hpi_coil.get('slopes') is not None:
write_float(fid, FIFF.FIFF_HPI_SLOPES, hpi_coil['slopes'])
if hpi_coil.get('corr_coeff') is not None:
write_float(fid, FIFF.FIFF_HPI_CORR_COEFF,
hpi_coil['corr_coeff'])
if hpi_coil.get('coil_freq') is not None:
write_float(fid, FIFF.FIFF_HPI_COIL_FREQ,
hpi_coil['coil_freq'])
end_block(fid, FIFF.FIFFB_HPI_COIL)
end_block(fid, FIFF.FIFFB_HPI_MEAS)
# Polhemus data
write_dig_points(fid, info['dig'], block=True)
# megacq parameters
if info['acq_pars'] is not None or info['acq_stim'] is not None:
start_block(fid, FIFF.FIFFB_DACQ_PARS)
if info['acq_pars'] is not None:
write_string(fid, FIFF.FIFF_DACQ_PARS, info['acq_pars'])
if info['acq_stim'] is not None:
write_string(fid, FIFF.FIFF_DACQ_STIM, info['acq_stim'])
end_block(fid, FIFF.FIFFB_DACQ_PARS)
# Coordinate transformations if the HPI result block was not there
if info['dev_head_t'] is not None:
write_coord_trans(fid, info['dev_head_t'])
if info['ctf_head_t'] is not None:
write_coord_trans(fid, info['ctf_head_t'])
if info['dev_ctf_t'] is not None:
write_coord_trans(fid, info['dev_ctf_t'])
# Projectors
_write_proj(fid, info['projs'])
# Bad channels
if len(info['bads']) > 0:
start_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS)
write_name_list(fid, FIFF.FIFF_MNE_CH_NAME_LIST, info['bads'])
end_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS)
# General
if info.get('experimenter') is not None:
write_string(fid, FIFF.FIFF_EXPERIMENTER, info['experimenter'])
if info.get('description') is not None:
write_string(fid, FIFF.FIFF_DESCRIPTION, info['description'])
if info.get('proj_id') is not None:
write_int(fid, FIFF.FIFF_PROJ_ID, info['proj_id'])
if info.get('proj_name') is not None:
write_string(fid, FIFF.FIFF_PROJ_NAME, info['proj_name'])
if info.get('meas_date') is not None:
write_int(fid, FIFF.FIFF_MEAS_DATE, info['meas_date'])
write_int(fid, FIFF.FIFF_NCHAN, info['nchan'])
write_float(fid, FIFF.FIFF_SFREQ, info['sfreq'])
if info['lowpass'] is not None:
write_float(fid, FIFF.FIFF_LOWPASS, info['lowpass'])
if info['highpass'] is not None:
write_float(fid, FIFF.FIFF_HIGHPASS, info['highpass'])
if info.get('line_freq') is not None:
write_float(fid, FIFF.FIFF_LINE_FREQ, info['line_freq'])
if info.get('gantry_angle') is not None:
write_float(fid, FIFF.FIFF_GANTRY_ANGLE, info['gantry_angle'])
if data_type is not None:
write_int(fid, FIFF.FIFF_DATA_PACK, data_type)
if info.get('custom_ref_applied'):
write_int(fid, FIFF.FIFF_MNE_CUSTOM_REF, info['custom_ref_applied'])
if info.get('xplotter_layout'):
write_string(fid, FIFF.FIFF_XPLOTTER_LAYOUT, info['xplotter_layout'])
# Channel information
for k, c in enumerate(info['chs']):
# Scan numbers may have been messed up
c = deepcopy(c)
c['scanno'] = k + 1
# for float/double, the "range" param is unnecessary
if reset_range is True:
c['range'] = 1.0
write_ch_info(fid, c)
# Subject information
if info.get('subject_info') is not None:
start_block(fid, FIFF.FIFFB_SUBJECT)
si = info['subject_info']
if si.get('id') is not None:
write_int(fid, FIFF.FIFF_SUBJ_ID, si['id'])
if si.get('his_id') is not None:
write_string(fid, FIFF.FIFF_SUBJ_HIS_ID, si['his_id'])
if si.get('last_name') is not None:
write_string(fid, FIFF.FIFF_SUBJ_LAST_NAME, si['last_name'])
if si.get('first_name') is not None:
write_string(fid, FIFF.FIFF_SUBJ_FIRST_NAME, si['first_name'])
if si.get('middle_name') is not None:
write_string(fid, FIFF.FIFF_SUBJ_MIDDLE_NAME, si['middle_name'])
if si.get('birthday') is not None:
write_julian(fid, FIFF.FIFF_SUBJ_BIRTH_DAY, si['birthday'])
if si.get('sex') is not None:
write_int(fid, FIFF.FIFF_SUBJ_SEX, si['sex'])
if si.get('hand') is not None:
write_int(fid, FIFF.FIFF_SUBJ_HAND, si['hand'])
if si.get('weight') is not None:
write_float(fid, FIFF.FIFF_SUBJ_WEIGHT, si['weight'])
if si.get('height') is not None:
write_float(fid, FIFF.FIFF_SUBJ_HEIGHT, si['height'])
end_block(fid, FIFF.FIFFB_SUBJECT)
if info.get('hpi_subsystem') is not None:
hs = info['hpi_subsystem']
start_block(fid, FIFF.FIFFB_HPI_SUBSYSTEM)
if hs.get('ncoil') is not None:
write_int(fid, FIFF.FIFF_HPI_NCOIL, hs['ncoil'])
if hs.get('event_channel') is not None:
write_string(fid, FIFF.FIFF_EVENT_CHANNEL, hs['event_channel'])
if hs.get('hpi_coils') is not None:
for coil in hs['hpi_coils']:
start_block(fid, FIFF.FIFFB_HPI_COIL)
if coil.get('event_bits') is not None:
write_int(fid, FIFF.FIFF_EVENT_BITS,
coil['event_bits'])
end_block(fid, FIFF.FIFFB_HPI_COIL)
end_block(fid, FIFF.FIFFB_HPI_SUBSYSTEM)
# CTF compensation info
write_ctf_comp(fid, info['comps'])
# KIT system ID
if info.get('kit_system_id') is not None:
write_int(fid, FIFF.FIFF_MNE_KIT_SYSTEM_ID, info['kit_system_id'])
end_block(fid, FIFF.FIFFB_MEAS_INFO)
# Processing history
_write_proc_history(fid, info)
def write_info(fname, info, data_type=None, reset_range=True):
"""Write measurement info in fif file.
Parameters
----------
fname : str
The name of the file. Should end by -info.fif.
info : instance of Info
The measurement info structure
data_type : int
The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT),
5 (FIFFT_DOUBLE), or 16 (FIFFT_DAU_PACK16) for
raw data.
reset_range : bool
If True, info['chs'][k]['range'] will be set to unity.
"""
fid = start_file(fname)
start_block(fid, FIFF.FIFFB_MEAS)
write_meas_info(fid, info, data_type, reset_range)
end_block(fid, FIFF.FIFFB_MEAS)
end_file(fid)
@verbose
def _merge_info_values(infos, key, verbose=None):
"""Merge things together.
Fork for {'dict', 'list', 'array', 'other'}
and consider cases where one or all are of the same type.
Does special things for "projs", "bads", and "meas_date".
"""
values = [d[key] for d in infos]
msg = ("Don't know how to merge '%s'. Make sure values are "
"compatible, got types:\n %s"
% (key, [type(v) for v in values]))
def _flatten(lists):
return [item for sublist in lists for item in sublist]
def _check_isinstance(values, kind, func):
return func([isinstance(v, kind) for v in values])
def _where_isinstance(values, kind):
"""Get indices of instances."""
return np.where([isinstance(v, type) for v in values])[0]
# list
if _check_isinstance(values, list, all):
lists = (d[key] for d in infos)
if key == 'projs':
return _uniquify_projs(_flatten(lists))
elif key == 'bads':
return sorted(set(_flatten(lists)))
else:
return _flatten(lists)
elif _check_isinstance(values, list, any):
idx = _where_isinstance(values, list)
if len(idx) == 1:
return values[int(idx)]
elif len(idx) > 1:
lists = (d[key] for d in infos if isinstance(d[key], list))
return _flatten(lists)
# dict
elif _check_isinstance(values, dict, all):
is_qual = all(object_diff(values[0], v) == '' for v in values[1:])
if is_qual:
return values[0]
else:
RuntimeError(msg)
elif _check_isinstance(values, dict, any):
idx = _where_isinstance(values, dict)
if len(idx) == 1:
return values[int(idx)]
elif len(idx) > 1:
raise RuntimeError(msg)
# ndarray
elif _check_isinstance(values, np.ndarray, all) or \
_check_isinstance(values, tuple, all):
is_qual = all(np.array_equal(values[0], x) for x in values[1:])
if is_qual:
return values[0]
elif key == 'meas_date':
logger.info('Found multiple entries for %s. '
'Setting value to `None`' % key)
return None
else:
raise RuntimeError(msg)
elif _check_isinstance(values, (np.ndarray, tuple), any):
idx = _where_isinstance(values, np.ndarray)
if len(idx) == 1:
return values[int(idx)]
elif len(idx) > 1:
raise RuntimeError(msg)
# other
else:
unique_values = set(values)
if len(unique_values) == 1:
return list(values)[0]
elif isinstance(list(unique_values)[0], BytesIO):
logger.info('Found multiple StringIO instances. '
'Setting value to `None`')
return None
elif isinstance(list(unique_values)[0], string_types):
logger.info('Found multiple filenames. '
'Setting value to `None`')
return None
else:
raise RuntimeError(msg)
@verbose
def _merge_info(infos, force_update_to_first=False, verbose=None):
"""Merge multiple measurement info dictionaries.
- Fields that are present in only one info object will be used in the
merged info.
- Fields that are present in multiple info objects and are the same
will be used in the merged info.
- Fields that are present in multiple info objects and are different
will result in a None value in the merged info.
- Channels will be concatenated. If multiple info objects contain
channels with the same name, an exception is raised.
Parameters
----------
infos | list of instance of Info
Info objects to merge into one info object.
force_update_to_first : bool
If True, force the fields for objects in `info` will be updated
to match those in the first item. Use at your own risk, as this
may overwrite important metadata.
verbose : bool, str, int, or NonIe
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
info : instance of Info
The merged info object.
"""
for info in infos:
info._check_consistency()
if force_update_to_first is True:
infos = deepcopy(infos)
_force_update_info(infos[0], infos[1:])
info = Info()
info['chs'] = []
for this_info in infos:
info['chs'].extend(this_info['chs'])
info._update_redundant()
duplicates = set([ch for ch in info['ch_names']
if info['ch_names'].count(ch) > 1])
if len(duplicates) > 0:
msg = ("The following channels are present in more than one input "
"measurement info objects: %s" % list(duplicates))
raise ValueError(msg)
transforms = ['ctf_head_t', 'dev_head_t', 'dev_ctf_t']
for trans_name in transforms:
trans = [i[trans_name] for i in infos if i[trans_name]]
if len(trans) == 0:
info[trans_name] = None
elif len(trans) == 1:
info[trans_name] = trans[0]
elif all(np.all(trans[0]['trans'] == x['trans']) and
trans[0]['from'] == x['from'] and
trans[0]['to'] == x['to']
for x in trans[1:]):
info[trans_name] = trans[0]
else:
msg = ("Measurement infos provide mutually inconsistent %s" %
trans_name)
raise ValueError(msg)
# KIT system-IDs
kit_sys_ids = [i['kit_system_id'] for i in infos if i['kit_system_id']]
if len(kit_sys_ids) == 0:
info['kit_system_id'] = None
elif len(set(kit_sys_ids)) == 1:
info['kit_system_id'] = kit_sys_ids[0]
else:
raise ValueError("Trying to merge channels from different KIT systems")
# hpi infos and digitization data:
fields = ['hpi_results', 'hpi_meas', 'dig']
for k in fields:
values = [i[k] for i in infos if i[k]]
if len(values) == 0:
info[k] = []
elif len(values) == 1:
info[k] = values[0]
elif all(object_diff(values[0], v) == '' for v in values[1:]):
info[k] = values[0]
else:
msg = ("Measurement infos are inconsistent for %s" % k)
raise ValueError(msg)
# other fields
other_fields = ['acq_pars', 'acq_stim', 'bads',
'comps', 'custom_ref_applied', 'description',
'experimenter', 'file_id', 'highpass',
'hpi_subsystem', 'events',
'line_freq', 'lowpass', 'meas_id',
'proj_id', 'proj_name', 'projs', 'sfreq', 'gantry_angle',
'subject_info', 'sfreq', 'xplotter_layout', 'proc_history']
for k in other_fields:
info[k] = _merge_info_values(infos, k)
info['meas_date'] = infos[0]['meas_date']
info._check_consistency()
return info
@verbose
def create_info(ch_names, sfreq, ch_types=None, montage=None, verbose=None):
"""Create a basic Info instance suitable for use with create_raw.
Parameters
----------
ch_names : list of str | int
Channel names. If an int, a list of channel names will be created
from ``range(ch_names)``.
sfreq : float
Sample rate of the data.
ch_types : list of str | str
Channel types. If None, data are assumed to be misc.
Currently supported fields are 'ecg', 'bio', 'stim', 'eog', 'misc',
'seeg', 'ecog', 'mag', 'eeg', 'ref_meg', 'grad', 'emg', 'hbr' or 'hbo'.
If str, then all channels are assumed to be of the same type.
montage : None | str | Montage | DigMontage | list
A montage containing channel positions. If str or Montage is
specified, the channel info will be updated with the channel
positions. Default is None. If DigMontage is specified, the
digitizer information will be updated. A list of unique montages,
can be specified and applied to the info. See also the documentation of
:func:`mne.channels.read_montage` for more information.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
info : instance of Info
The measurement info.
Notes
-----
The info dictionary will be sparsely populated to enable functionality
within the rest of the package. Advanced functionality such as source
localization can only be obtained through substantial, proper
modifications of the info structure (not recommended).
Note that the MEG device-to-head transform ``info['dev_head_t']`` will
be initialized to the identity transform.
Proper units of measure:
* V: eeg, eog, seeg, emg, ecg, bio, ecog
* T: mag
* T/m: grad
* M: hbo, hbr
* Am: dipole
* AU: misc
"""
try:
ch_names = operator.index(ch_names) # int-like
except TypeError:
pass
else:
ch_names = list(np.arange(ch_names).astype(str))
_validate_type(ch_names, (list, tuple), "ch_names",
("list, tuple, or int"))
sfreq = float(sfreq)
if sfreq <= 0:
raise ValueError('sfreq must be positive')
nchan = len(ch_names)
if ch_types is None:
ch_types = ['misc'] * nchan
if isinstance(ch_types, string_types):
ch_types = [ch_types] * nchan
if len(ch_types) != nchan:
raise ValueError('ch_types and ch_names must be the same length '
'(%s != %s)' % (len(ch_types), nchan))
info = _empty_info(sfreq)
for ci, (name, kind) in enumerate(zip(ch_names, ch_types)):
_validate_type(name, 'str', "each entry in ch_names")
_validate_type(kind, 'str', "each entry in ch_types")
if kind not in _kind_dict:
raise KeyError('kind must be one of %s, not %s'
% (list(_kind_dict.keys()), kind))
kind = _kind_dict[kind]
chan_info = dict(loc=np.full(12, np.nan), unit_mul=0, range=1., cal=1.,
kind=kind[0], coil_type=kind[1],
unit=kind[2], coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
ch_name=name, scanno=ci + 1, logno=ci + 1)
info['chs'].append(chan_info)
info._update_redundant()
if montage is not None:
from ..channels.montage import (Montage, DigMontage, _set_montage,
read_montage)
if not isinstance(montage, list):
montage = [montage]
for montage_ in montage:
if isinstance(montage_, (Montage, DigMontage)):
_set_montage(info, montage_)
elif isinstance(montage_, string_types):
montage_ = read_montage(montage_)
_set_montage(info, montage_)
else:
raise TypeError('Montage must be an instance of Montage, '
'DigMontage, a list of montages, or filepath, '
'not %s.' % type(montage))
info._check_consistency()
return info
RAW_INFO_FIELDS = (
'acq_pars', 'acq_stim', 'bads', 'ch_names', 'chs',
'comps', 'ctf_head_t', 'custom_ref_applied', 'description', 'dev_ctf_t',
'dev_head_t', 'dig', 'experimenter', 'events',
'file_id', 'highpass', 'hpi_meas', 'hpi_results',
'hpi_subsystem', 'kit_system_id', 'line_freq', 'lowpass', 'meas_date',
'meas_id', 'nchan', 'proj_id', 'proj_name', 'projs', 'sfreq',
'subject_info', 'xplotter_layout', 'proc_history', 'gantry_angle',
)
def _empty_info(sfreq):
"""Create an empty info dictionary."""
from ..transforms import Transform
_none_keys = (
'acq_pars', 'acq_stim', 'ctf_head_t', 'description',
'dev_ctf_t', 'dig', 'experimenter',
'file_id', 'highpass', 'hpi_subsystem', 'kit_system_id',
'line_freq', 'lowpass', 'meas_date', 'meas_id', 'proj_id', 'proj_name',
'subject_info', 'xplotter_layout', 'gantry_angle',
)
_list_keys = ('bads', 'chs', 'comps', 'events', 'hpi_meas', 'hpi_results',
'projs', 'proc_history')
info = Info()
for k in _none_keys:
info[k] = None
for k in _list_keys:
info[k] = list()
info['custom_ref_applied'] = False
info['dev_head_t'] = Transform('meg', 'head')
info['highpass'] = 0.
info['sfreq'] = float(sfreq)
info['lowpass'] = info['sfreq'] / 2.
info._update_redundant()
info._check_consistency()
return info
def _force_update_info(info_base, info_target):
"""Update target info objects with values from info base.
Note that values in info_target will be overwritten by those in info_base.
This will overwrite all fields except for: 'chs', 'ch_names', 'nchan'.
Parameters
----------
info_base : mne.Info
The Info object you want to use for overwriting values
in target Info objects.
info_target : mne.Info | list of mne.Info
The Info object(s) you wish to overwrite using info_base. These objects
will be modified in-place.
"""
exclude_keys = ['chs', 'ch_names', 'nchan']
info_target = np.atleast_1d(info_target).ravel()
all_infos = np.hstack([info_base, info_target])
for ii in all_infos:
if not isinstance(ii, Info):
raise ValueError('Inputs must be of type Info. '
'Found type %s' % type(ii))
for key, val in info_base.items():
if key in exclude_keys:
continue
for i_targ in info_target:
i_targ[key] = val
def anonymize_info(info):
"""Anonymize measurement information in place.
Reset 'subject_info', 'meas_date', 'file_id', and 'meas_id' keys if they
exist in ``info``.
Parameters
----------
info : dict, instance of Info
Measurement information for the dataset.
Returns
-------
info : instance of Info
Measurement information for the dataset.
Notes
-----
Operates in place.
"""
_validate_type(info, 'info', "self")
if info.get('subject_info') is not None:
del info['subject_info']
info['meas_date'] = None
for key in ('file_id', 'meas_id'):
value = info.get(key)
if value is not None:
assert 'msecs' not in value
value['secs'] = DATE_NONE[0]
value['usecs'] = DATE_NONE[1]
return info
def _bad_chans_comp(info, ch_names):
"""Check if channel names are consistent with current compensation status.
Parameters
----------
info : dict, instance of Info
Measurement information for the dataset.
ch_names : list of str
The channel names to check.
Returns
-------
status : bool
True if compensation is *currently* in use but some compensation
channels are not included in picks
False if compensation is *currently* not being used
or if compensation is being used and all compensation channels
in info and included in picks.
missing_ch_names: array-like of str, shape (n_missing,)
The names of compensation channels not included in picks.
Returns [] if no channels are missing.
"""
if 'comps' not in info:
# should this be thought of as a bug?
return False, []
# only include compensation channels that would affect selected channels
ch_names_s = set(ch_names)
comp_names = []
for comp in info['comps']:
if len(ch_names_s.intersection(comp['data']['row_names'])) > 0:
comp_names.extend(comp['data']['col_names'])
comp_names = sorted(set(comp_names))
missing_ch_names = sorted(set(comp_names).difference(ch_names))
if get_current_comp(info) != 0 and len(missing_ch_names) > 0:
return True, missing_ch_names
return False, missing_ch_names
|