1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
# Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD (3-clause)
from copy import deepcopy
from itertools import count
from math import sqrt
import warnings
import numpy as np
from scipy import linalg
from .tree import dir_tree_find
from .tag import find_tag
from .constants import FIFF
from .pick import pick_types
from .write import (write_int, write_float, write_string, write_name_list,
write_float_matrix, end_block, start_block)
from ..utils import logger, verbose, warn
from ..externals.six import string_types
class Projection(dict):
"""Projection vector.
A basic class to proj a meaningful print for projection vectors.
"""
def __repr__(self): # noqa: D105
s = "%s" % self['desc']
s += ", active : %s" % self['active']
s += ", n_channels : %s" % self['data']['ncol']
return "<Projection | %s>" % s
# Can't use copy_ function here b/c of circular import
def plot_topomap(self, layout=None, cmap=None, sensors=True,
colorbar=False, res=64, size=1, show=True,
outlines='head', contours=6, image_interp='bilinear',
axes=None, info=None):
"""Plot topographic maps of SSP projections.
Parameters
----------
layout : None | Layout | list of Layout
Layout instance specifying sensor positions (does not need to be
specified for Neuromag data). Or a list of Layout if projections
are from different sensor types.
cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None
Colormap to use. If tuple, the first value indicates the colormap to
use and the second value is a boolean defining interactivity. In
interactive mode (only works if ``colorbar=True``) the colors are
adjustable by clicking and dragging the colorbar with left and right
mouse button. Left mouse button moves the scale up and down and right
mouse button adjusts the range. Hitting space bar resets the range. Up
and down arrows can be used to change the colormap. If None (default),
'Reds' is used for all positive data, otherwise defaults to 'RdBu_r'.
If 'interactive', translates to (None, True).
sensors : bool | str
Add markers for sensor locations to the plot. Accepts matplotlib plot
format string (e.g., 'r+' for red plusses). If True, a circle will be
used (via .add_artist). Defaults to True.
colorbar : bool
Plot a colorbar.
res : int
The resolution of the topomap image (n pixels along each side).
size : scalar
Side length of the topomaps in inches (only applies when plotting
multiple topomaps at a time).
show : bool
Show figure if True.
outlines : 'head' | 'skirt' | dict | None
The outlines to be drawn. If 'head', the default head scheme will be
drawn. If 'skirt' the head scheme will be drawn, but sensors are
allowed to be plotted outside of the head circle. If dict, each key
refers to a tuple of x and y positions, the values in 'mask_pos' will
serve as image mask, and the 'autoshrink' (bool) field will trigger
automated shrinking of the positions due to points outside the outline.
Alternatively, a matplotlib patch object can be passed for advanced
masking options, either directly or as a function that returns patches
(required for multi-axis plots). If None, nothing will be drawn.
Defaults to 'head'.
contours : int | array of float
The number of contour lines to draw. If 0, no contours will be drawn.
When an integer, matplotlib ticker locator is used to find suitable
values for the contour thresholds (may sometimes be inaccurate, use
array for accuracy). If an array, the values represent the levels for
the contours. Defaults to 6.
image_interp : str
The image interpolation to be used. All matplotlib options are
accepted.
axes : instance of Axes | list | None
The axes to plot to. If list, the list must be a list of Axes of
the same length as the number of projectors. If instance of Axes,
there must be only one projector. Defaults to None.
info : instance of Info | None
The measurement information to use to determine the layout.
If not None, ``layout`` must be None.
Returns
-------
fig : instance of matplotlib figure
Figure distributing one image per channel across sensor topography.
Notes
-----
.. versionadded:: 0.15.0
""" # noqa: E501
from ..viz.topomap import plot_projs_topomap
with warnings.catch_warnings(record=True): # tight_layout fails
return plot_projs_topomap([self], layout, cmap, sensors, colorbar,
res, size, show, outlines,
contours, image_interp, axes, info)
class ProjMixin(object):
"""Mixin class for Raw, Evoked, Epochs.
Notes
-----
This mixin adds a proj attribute as a property to data containers.
It is True if at least one proj is present and all of them are active.
The projs might not be applied yet if data are not preloaded. In
this case it's the _projector attribute that does the job.
If a private _data attribute is present then the projs applied
to it are the ones marked as active.
A proj parameter passed in constructor of raw or epochs calls
apply_proj and hence after the .proj attribute is True.
As soon as you've applied the projs it will stay active in the
remaining pipeline.
The suggested pipeline is proj=True in epochs (it's cheaper than for raw).
When you use delayed SSP in Epochs, projs are applied when you call
get_data() method. They are not applied to the evoked._data unless you call
apply_proj(). The reason is that you want to reject with projs although
it's not stored in proj mode.
"""
@property
def proj(self):
"""Whether or not projections are active."""
return (len(self.info['projs']) > 0 and
all(p['active'] for p in self.info['projs']))
@verbose
def add_proj(self, projs, remove_existing=False, verbose=None):
"""Add SSP projection vectors.
Parameters
----------
projs : list
List with projection vectors.
remove_existing : bool
Remove the projection vectors currently in the file.
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
Returns
-------
self : instance of Raw | Epochs | Evoked
The data container.
"""
if isinstance(projs, Projection):
projs = [projs]
if (not isinstance(projs, list) and
not all(isinstance(p, Projection) for p in projs)):
raise ValueError('Only projs can be added. You supplied '
'something else.')
# mark proj as inactive, as they have not been applied
projs = deactivate_proj(projs, copy=True, verbose=self.verbose)
if remove_existing:
# we cannot remove the proj if they are active
if any(p['active'] for p in self.info['projs']):
raise ValueError('Cannot remove projectors that have '
'already been applied')
self.info['projs'] = projs
else:
self.info['projs'].extend(projs)
# We don't want to add projectors that are activated again.
self.info['projs'] = _uniquify_projs(self.info['projs'],
check_active=False, sort=False)
return self
def apply_proj(self):
"""Apply the signal space projection (SSP) operators to the data.
Notes
-----
Once the projectors have been applied, they can no longer be
removed. It is usually not recommended to apply the projectors at
too early stages, as they are applied automatically later on
(e.g. when computing inverse solutions).
Hint: using the copy method individual projection vectors
can be tested without affecting the original data.
With evoked data, consider the following example::
projs_a = mne.read_proj('proj_a.fif')
projs_b = mne.read_proj('proj_b.fif')
# add the first, copy, apply and see ...
evoked.add_proj(a).copy().apply_proj().plot()
# add the second, copy, apply and see ...
evoked.add_proj(b).copy().apply_proj().plot()
# drop the first and see again
evoked.copy().del_proj(0).apply_proj().plot()
evoked.apply_proj() # finally keep both
Returns
-------
self : instance of Raw | Epochs | Evoked
The instance.
"""
from ..epochs import BaseEpochs
from ..evoked import Evoked
from .base import BaseRaw
if self.info['projs'] is None or len(self.info['projs']) == 0:
logger.info('No projector specified for this dataset. '
'Please consider the method self.add_proj.')
return self
# Exit delayed mode if you apply proj
if isinstance(self, BaseEpochs) and self._do_delayed_proj:
logger.info('Leaving delayed SSP mode.')
self._do_delayed_proj = False
if all(p['active'] for p in self.info['projs']):
logger.info('Projections have already been applied. '
'Setting proj attribute to True.')
return self
_projector, info = setup_proj(deepcopy(self.info), add_eeg_ref=False,
activate=True, verbose=self.verbose)
# let's not raise a RuntimeError here, otherwise interactive plotting
if _projector is None: # won't be fun.
logger.info('The projections don\'t apply to these data.'
' Doing nothing.')
return self
self._projector, self.info = _projector, info
if isinstance(self, (BaseRaw, Evoked)):
if self.preload:
self._data = np.dot(self._projector, self._data)
else: # BaseEpochs
if self.preload:
for ii, e in enumerate(self._data):
self._data[ii] = self._project_epoch(e)
else:
self.load_data() # will automatically apply
logger.info('SSP projectors applied...')
return self
def del_proj(self, idx='all'):
"""Remove SSP projection vector.
Note: The projection vector can only be removed if it is inactive
(has not been applied to the data).
Parameters
----------
idx : int | list of int | str
Index of the projector to remove. Can also be "all" (default)
to remove all projectors.
Returns
-------
self : instance of Raw | Epochs | Evoked
"""
if isinstance(idx, string_types) and idx == 'all':
idx = list(range(len(self.info['projs'])))
idx = np.atleast_1d(np.array(idx, int)).ravel()
if any(self.info['projs'][ii]['active'] for ii in idx):
raise ValueError('Cannot remove projectors that have already '
'been applied')
keep = np.ones(len(self.info['projs']))
keep[idx] = False # works with negative indexing and does checks
self.info['projs'] = [p for p, k in zip(self.info['projs'], keep) if k]
return self
def plot_projs_topomap(self, ch_type=None, layout=None, axes=None):
"""Plot SSP vector.
Parameters
----------
ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None | List
The channel type to plot. For 'grad', the gradiometers are collec-
ted in pairs and the RMS for each pair is plotted. If None
(default), it will return all channel types present. If a list of
ch_types is provided, it will return multiple figures.
layout : None | Layout | List of Layouts
Layout instance specifying sensor positions (does not need to
be specified for Neuromag data). If possible, the correct
layout file is inferred from the data; if no appropriate layout
file was found, the layout is automatically generated from the
sensor locations. Or a list of Layout if projections
are from different sensor types.
axes : instance of Axes | list | None
The axes to plot to. If list, the list must be a list of Axes of
the same length as the number of projectors. If instance of Axes,
there must be only one projector. Defaults to None.
Returns
-------
fig : instance of matplotlib figure
Figure distributing one image per channel across sensor topography.
"""
if self.info['projs'] is not None or len(self.info['projs']) != 0:
from ..viz.topomap import plot_projs_topomap
from ..channels.layout import find_layout
if layout is None:
layout = []
if ch_type is None:
ch_type = [ch for ch in ['meg', 'eeg'] if ch in self]
elif isinstance(ch_type, string_types):
ch_type = [ch_type]
for ch in ch_type:
if ch in self:
layout.append(find_layout(self.info, ch, exclude=[]))
else:
warn('Channel type %s is not found in info.' % ch)
fig = plot_projs_topomap(self.info['projs'], layout, axes=axes)
else:
raise ValueError("Info is missing projs. Nothing to plot.")
return fig
def _proj_equal(a, b, check_active=True):
"""Test if two projectors are equal."""
equal = ((a['active'] == b['active'] or not check_active) and
a['kind'] == b['kind'] and
a['desc'] == b['desc'] and
a['data']['col_names'] == b['data']['col_names'] and
a['data']['row_names'] == b['data']['row_names'] and
a['data']['ncol'] == b['data']['ncol'] and
a['data']['nrow'] == b['data']['nrow'] and
np.all(a['data']['data'] == b['data']['data']))
return equal
@verbose
def _read_proj(fid, node, verbose=None):
"""Read spatial projections from a FIF file.
Parameters
----------
fid : file
The file descriptor of the open file.
node : tree node
The node of the tree where to look.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
projs : list of Projection
The list of projections.
"""
projs = list()
# Locate the projection data
nodes = dir_tree_find(node, FIFF.FIFFB_PROJ)
if len(nodes) == 0:
return projs
tag = find_tag(fid, nodes[0], FIFF.FIFF_NCHAN)
if tag is not None:
global_nchan = int(tag.data)
items = dir_tree_find(nodes[0], FIFF.FIFFB_PROJ_ITEM)
for item in items:
# Find all desired tags in one item
tag = find_tag(fid, item, FIFF.FIFF_NCHAN)
if tag is not None:
nchan = int(tag.data)
else:
nchan = global_nchan
tag = find_tag(fid, item, FIFF.FIFF_DESCRIPTION)
if tag is not None:
desc = tag.data
else:
tag = find_tag(fid, item, FIFF.FIFF_NAME)
if tag is not None:
desc = tag.data
else:
raise ValueError('Projection item description missing')
# XXX : is this useful ?
# tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST)
# if tag is not None:
# namelist = tag.data
# else:
# raise ValueError('Projection item channel list missing')
tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_KIND)
if tag is not None:
kind = int(tag.data)
else:
raise ValueError('Projection item kind missing')
tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_NVEC)
if tag is not None:
nvec = int(tag.data)
else:
raise ValueError('Number of projection vectors not specified')
tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST)
if tag is not None:
names = tag.data.split(':')
else:
raise ValueError('Projection item channel list missing')
tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_VECTORS)
if tag is not None:
data = tag.data
else:
raise ValueError('Projection item data missing')
tag = find_tag(fid, item, FIFF.FIFF_MNE_PROJ_ITEM_ACTIVE)
if tag is not None:
active = bool(tag.data)
else:
active = False
tag = find_tag(fid, item, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR)
if tag is not None:
explained_var = tag.data
else:
explained_var = None
# handle the case when data is transposed for some reason
if data.shape[0] == len(names) and data.shape[1] == nvec:
data = data.T
if data.shape[1] != len(names):
raise ValueError('Number of channel names does not match the '
'size of data matrix')
# Use exactly the same fields in data as in a named matrix
one = Projection(kind=kind, active=active, desc=desc,
data=dict(nrow=nvec, ncol=nchan, row_names=None,
col_names=names, data=data),
explained_var=explained_var)
projs.append(one)
if len(projs) > 0:
logger.info(' Read a total of %d projection items:' % len(projs))
for k in range(len(projs)):
if projs[k]['active']:
misc = 'active'
else:
misc = ' idle'
logger.info(' %s (%d x %d) %s'
% (projs[k]['desc'], projs[k]['data']['nrow'],
projs[k]['data']['ncol'], misc))
return projs
###############################################################################
# Write
def _write_proj(fid, projs):
"""Write a projection operator to a file.
Parameters
----------
fid : file
The file descriptor of the open file.
projs : dict
The projection operator.
"""
if len(projs) == 0:
return
start_block(fid, FIFF.FIFFB_PROJ)
for proj in projs:
start_block(fid, FIFF.FIFFB_PROJ_ITEM)
write_int(fid, FIFF.FIFF_NCHAN, proj['data']['ncol'])
write_name_list(fid, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST,
proj['data']['col_names'])
write_string(fid, FIFF.FIFF_NAME, proj['desc'])
write_int(fid, FIFF.FIFF_PROJ_ITEM_KIND, proj['kind'])
if proj['kind'] == FIFF.FIFFV_PROJ_ITEM_FIELD:
write_float(fid, FIFF.FIFF_PROJ_ITEM_TIME, 0.0)
write_int(fid, FIFF.FIFF_PROJ_ITEM_NVEC, proj['data']['nrow'])
write_int(fid, FIFF.FIFF_MNE_PROJ_ITEM_ACTIVE, proj['active'])
write_float_matrix(fid, FIFF.FIFF_PROJ_ITEM_VECTORS,
proj['data']['data'])
if proj['explained_var'] is not None:
write_float(fid, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR,
proj['explained_var'])
end_block(fid, FIFF.FIFFB_PROJ_ITEM)
end_block(fid, FIFF.FIFFB_PROJ)
###############################################################################
# Utils
def _check_projs(projs, copy=True):
"""Check that projs is a list of Projection."""
if not isinstance(projs, (list, tuple)):
raise TypeError('projs must be a list or tuple, got %s'
% (type(projs),))
for pi, p in enumerate(projs):
if not isinstance(p, Projection):
raise TypeError('All entries in projs list must be Projection '
'instances, but projs[%d] is type %s'
% (pi, type(p)))
return deepcopy(projs) if copy else projs
def make_projector(projs, ch_names, bads=(), include_active=True):
"""Create an SSP operator from SSP projection vectors.
Parameters
----------
projs : list
List of projection vectors.
ch_names : list of str
List of channels to include in the projection matrix.
bads : list of str
Some bad channels to exclude. If bad channels were marked
in the raw file when projs were calculated using mne-python,
they should not need to be included here as they will
have been automatically omitted from the projectors.
include_active : bool
Also include projectors that are already active.
Returns
-------
proj : array of shape [n_channels, n_channels]
The projection operator to apply to the data.
nproj : int
How many items in the projector.
U : array
The orthogonal basis of the projection vectors (optional).
"""
return _make_projector(projs, ch_names, bads, include_active)
def _make_projector(projs, ch_names, bads=(), include_active=True,
inplace=False):
"""Subselect projs based on ch_names and bads.
Use inplace=True mode to modify ``projs`` inplace so that no
warning will be raised next time projectors are constructed with
the given inputs. If inplace=True, no meaningful data are returned.
"""
nchan = len(ch_names)
if nchan == 0:
raise ValueError('No channel names specified')
default_return = (np.eye(nchan, nchan), 0, [])
# Check trivial cases first
if projs is None:
return default_return
nvec = 0
nproj = 0
for p in projs:
if not p['active'] or include_active:
nproj += 1
nvec += p['data']['nrow']
if nproj == 0:
return default_return
# Pick the appropriate entries
vecs = np.zeros((nchan, nvec))
nvec = 0
nonzero = 0
bads = set(bads)
for k, p in enumerate(projs):
if not p['active'] or include_active:
if (len(p['data']['col_names']) !=
len(np.unique(p['data']['col_names']))):
raise ValueError('Channel name list in projection item %d'
' contains duplicate items' % k)
# Get the two selection vectors to pick correct elements from
# the projection vectors omitting bad channels
sel = []
vecsel = []
p_set = set(p['data']['col_names']) # faster membership access
for c, name in enumerate(ch_names):
if name not in bads and name in p_set:
sel.append(c)
vecsel.append(p['data']['col_names'].index(name))
# If there is something to pick, pickit
nrow = p['data']['nrow']
this_vecs = vecs[:, nvec:nvec + nrow]
if len(sel) > 0:
this_vecs[sel] = p['data']['data'][:, vecsel].T
# Rescale for better detection of small singular values
for v in range(p['data']['nrow']):
psize = sqrt(np.sum(this_vecs[:, v] * this_vecs[:, v]))
if psize > 0:
orig_n = p['data']['data'].any(axis=0).sum()
# Average ref still works if channels are removed
if len(vecsel) < 0.9 * orig_n and not inplace and \
(p['kind'] != FIFF.FIFFV_PROJ_ITEM_EEG_AVREF or
len(vecsel) == 1):
warn('Projection vector "%s" has magnitude %0.2f '
'(should be unity), applying projector with '
'%s/%s of the original channels available may '
'be dangerous, consider recomputing and adding '
'projection vectors for channels that are '
'eventually used. If this is intentional, '
'consider using info.normalize_proj()'
% (p['desc'], psize, len(vecsel), orig_n))
this_vecs[:, v] /= psize
nonzero += 1
# If doing "inplace" mode, "fix" the projectors to only operate
# on this subset of channels.
if inplace:
p['data']['data'] = this_vecs[sel].T
p['data']['col_names'] = [p['data']['col_names'][ii]
for ii in vecsel]
nvec += p['data']['nrow']
# Check whether all of the vectors are exactly zero
if nonzero == 0 or inplace:
return default_return
# Reorthogonalize the vectors
U, S, V = linalg.svd(vecs[:, :nvec], full_matrices=False)
# Throw away the linearly dependent guys
nproj = np.sum((S / S[0]) > 1e-2)
U = U[:, :nproj]
# Here is the celebrated result
proj = np.eye(nchan, nchan) - np.dot(U, U.T)
if nproj >= nchan: # e.g., 3 channels and 3 projectors
raise RuntimeError('Application of %d projectors for %d channels '
'will yield no components.' % (nproj, nchan))
return proj, nproj, U
def _normalize_proj(info):
"""Normalize proj after subselection to avoid warnings.
This is really only useful for tests, and might not be needed
eventually if we change or improve our handling of projectors
with picks.
"""
# Here we do info.get b/c info can actually be a noise cov
_make_projector(info['projs'], info.get('ch_names', info.get('names')),
info['bads'], include_active=True, inplace=True)
def make_projector_info(info, include_active=True):
"""Make an SSP operator using the measurement info.
Calls make_projector on good channels.
Parameters
----------
info : dict
Measurement info.
include_active : bool
Also include projectors that are already active.
Returns
-------
proj : array of shape [n_channels, n_channels]
The projection operator to apply to the data.
nproj : int
How many items in the projector.
"""
proj, nproj, _ = make_projector(info['projs'], info['ch_names'],
info['bads'], include_active)
return proj, nproj
@verbose
def activate_proj(projs, copy=True, verbose=None):
"""Set all projections to active.
Useful before passing them to make_projector.
Parameters
----------
projs : list
The projectors.
copy : bool
Modify projs in place or operate on a copy.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
projs : list
The projectors.
"""
if copy:
projs = deepcopy(projs)
# Activate the projection items
for proj in projs:
proj['active'] = True
logger.info('%d projection items activated' % len(projs))
return projs
@verbose
def deactivate_proj(projs, copy=True, verbose=None):
"""Set all projections to inactive.
Useful before saving raw data without projectors applied.
Parameters
----------
projs : list
The projectors.
copy : bool
Modify projs in place or operate on a copy.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
projs : list
The projectors.
"""
if copy:
projs = deepcopy(projs)
# Deactivate the projection items
for proj in projs:
proj['active'] = False
logger.info('%d projection items deactivated' % len(projs))
return projs
@verbose
def make_eeg_average_ref_proj(info, activate=True, verbose=None):
"""Create an EEG average reference SSP projection vector.
Parameters
----------
info : dict
Measurement info.
activate : bool
If True projections are activated.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
eeg_proj: instance of Projection
The SSP/PCA projector.
"""
if info.get('custom_ref_applied', False):
raise RuntimeError('A custom reference has been applied to the '
'data earlier. Please use the '
'mne.io.set_eeg_reference function to move from '
'one EEG reference to another.')
logger.info("Adding average EEG reference projection.")
eeg_sel = pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude='bads')
ch_names = info['ch_names']
eeg_names = [ch_names[k] for k in eeg_sel]
n_eeg = len(eeg_sel)
if n_eeg == 0:
raise ValueError('Cannot create EEG average reference projector '
'(no EEG data found)')
vec = np.ones((1, n_eeg))
vec /= n_eeg
explained_var = None
eeg_proj_data = dict(col_names=eeg_names, row_names=None,
data=vec, nrow=1, ncol=n_eeg)
eeg_proj = Projection(active=activate, data=eeg_proj_data,
desc='Average EEG reference',
kind=FIFF.FIFFV_PROJ_ITEM_EEG_AVREF,
explained_var=explained_var)
return eeg_proj
def _has_eeg_average_ref_proj(projs, check_active=False):
"""Determine if a list of projectors has an average EEG ref.
Optionally, set check_active=True to additionally check if the CAR
has already been applied.
"""
for proj in projs:
if (proj['desc'] == 'Average EEG reference' or
proj['kind'] == FIFF.FIFFV_PROJ_ITEM_EEG_AVREF):
if not check_active or proj['active']:
return True
return False
def _needs_eeg_average_ref_proj(info):
"""Determine if the EEG needs an averge EEG reference.
This returns True if no custom reference has been applied and no average
reference projection is present in the list of projections.
"""
eeg_sel = pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude='bads')
return (len(eeg_sel) > 0 and
not info['custom_ref_applied'] and
not _has_eeg_average_ref_proj(info['projs']))
@verbose
def setup_proj(info, add_eeg_ref=True, activate=True, verbose=None):
"""Set up projection for Raw and Epochs.
Parameters
----------
info : dict
The measurement info.
add_eeg_ref : bool
If True, an EEG average reference will be added (unless one
already exists).
activate : bool
If True projections are activated.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
projector : array of shape [n_channels, n_channels]
The projection operator to apply to the data.
info : dict
The modified measurement info (Warning: info is modified inplace).
"""
# Add EEG ref reference proj if necessary
if add_eeg_ref and _needs_eeg_average_ref_proj(info):
eeg_proj = make_eeg_average_ref_proj(info, activate=activate)
info['projs'].append(eeg_proj)
# Create the projector
projector, nproj = make_projector_info(info)
if nproj == 0:
if verbose:
logger.info('The projection vectors do not apply to these '
'channels')
projector = None
else:
logger.info('Created an SSP operator (subspace dimension = %d)'
% nproj)
# The projection items have been activated
if activate:
info['projs'] = activate_proj(info['projs'], copy=False)
return projector, info
def _uniquify_projs(projs, check_active=True, sort=True):
"""Make unique projs."""
final_projs = []
for proj in projs: # flatten
if not any(_proj_equal(p, proj, check_active) for p in final_projs):
final_projs.append(proj)
my_count = count(len(final_projs))
def sorter(x):
"""Sort in a nice way."""
digits = [s for s in x['desc'] if s.isdigit()]
if digits:
sort_idx = int(digits[-1])
else:
sort_idx = next(my_count)
return (sort_idx, x['desc'])
return sorted(final_projs, key=sorter) if sort else final_projs
|