File: test_pick.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (319 lines) | stat: -rw-r--r-- 13,232 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import inspect
import os.path as op

from numpy.testing import assert_array_equal, assert_equal
import pytest
import numpy as np

from mne import (pick_channels_regexp, pick_types, Epochs,
                 read_forward_solution, rename_channels,
                 pick_info, pick_channels, create_info)
from mne import __file__ as _root_init_fname
from mne.io import (read_raw_fif, RawArray, read_raw_bti, read_raw_kit,
                    read_info)
from mne.io.pick import (channel_indices_by_type, channel_type,
                         pick_types_forward, _picks_by_type)
from mne.io.constants import FIFF
from mne.datasets import testing
from mne.utils import run_tests_if_main, catch_logging

io_dir = op.join(op.dirname(inspect.getfile(inspect.currentframe())), '..')
data_path = testing.data_path(download=False)
fname_meeg = op.join(data_path, 'MEG', 'sample',
                     'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
fname_mc = op.join(data_path, 'SSS', 'test_move_anon_movecomp_raw_sss.fif')


def test_pick_refs():
    """Test picking of reference sensors."""
    infos = list()
    # KIT
    kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    infos.append(raw_kit.info)
    # BTi
    bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    infos.append(raw_bti.info)
    # CTF
    fname_ctf_raw = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif')
    raw_ctf = read_raw_fif(fname_ctf_raw)
    raw_ctf.apply_gradient_compensation(2)
    for info in infos:
        info['bads'] = []
        pytest.raises(ValueError, pick_types, info, meg='foo')
        pytest.raises(ValueError, pick_types, info, ref_meg='foo')
        picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
        picks_meg = pick_types(info, meg=True, ref_meg=False)
        picks_ref = pick_types(info, meg=False, ref_meg=True)
        assert_array_equal(picks_meg_ref,
                           np.sort(np.concatenate([picks_meg, picks_ref])))
        picks_grad = pick_types(info, meg='grad', ref_meg=False)
        picks_ref_grad = pick_types(info, meg=False, ref_meg='grad')
        picks_meg_ref_grad = pick_types(info, meg='grad', ref_meg='grad')
        assert_array_equal(picks_meg_ref_grad,
                           np.sort(np.concatenate([picks_grad,
                                                   picks_ref_grad])))
        picks_mag = pick_types(info, meg='mag', ref_meg=False)
        picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
        picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
        assert_array_equal(picks_meg_ref_mag,
                           np.sort(np.concatenate([picks_mag,
                                                   picks_ref_mag])))
        assert_array_equal(picks_meg,
                           np.sort(np.concatenate([picks_mag, picks_grad])))
        assert_array_equal(picks_ref,
                           np.sort(np.concatenate([picks_ref_mag,
                                                   picks_ref_grad])))
        assert_array_equal(picks_meg_ref, np.sort(np.concatenate(
            [picks_grad, picks_mag, picks_ref_grad, picks_ref_mag])))

        for pick in (picks_meg_ref, picks_meg, picks_ref,
                     picks_grad, picks_ref_grad, picks_meg_ref_grad,
                     picks_mag, picks_ref_mag, picks_meg_ref_mag):
            if len(pick) > 0:
                pick_info(info, pick)

    # test CTF expected failures directly
    info = raw_ctf.info
    info['bads'] = []
    picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
    picks_meg = pick_types(info, meg=True, ref_meg=False)
    picks_ref = pick_types(info, meg=False, ref_meg=True)
    picks_mag = pick_types(info, meg='mag', ref_meg=False)
    picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
    picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
    for pick in (picks_meg_ref, picks_ref, picks_ref_mag, picks_meg_ref_mag):
        if len(pick) > 0:
            pick_info(info, pick)

    for pick in (picks_meg, picks_mag):
        if len(pick) > 0:
            with catch_logging() as log:
                pick_info(info, pick, verbose=True)
            assert ('Removing {} compensators'.format(len(info['comps']))
                    in log.getvalue())


def test_pick_channels_regexp():
    """Test pick with regular expression."""
    ch_names = ['MEG 2331', 'MEG 2332', 'MEG 2333']
    assert_array_equal(pick_channels_regexp(ch_names, 'MEG ...1'), [0])
    assert_array_equal(pick_channels_regexp(ch_names, 'MEG ...[2-3]'), [1, 2])
    assert_array_equal(pick_channels_regexp(ch_names, 'MEG *'), [0, 1, 2])


def test_pick_seeg_ecog():
    """Test picking with sEEG and ECoG."""
    names = 'A1 A2 Fz O OTp1 OTp2 E1 OTp3 E2 E3'.split()
    types = 'mag mag eeg eeg seeg seeg ecog seeg ecog ecog'.split()
    info = create_info(names, 1024., types)
    idx = channel_indices_by_type(info)
    assert_array_equal(idx['mag'], [0, 1])
    assert_array_equal(idx['eeg'], [2, 3])
    assert_array_equal(idx['seeg'], [4, 5, 7])
    assert_array_equal(idx['ecog'], [6, 8, 9])
    assert_array_equal(pick_types(info, meg=False, seeg=True), [4, 5, 7])
    for i, t in enumerate(types):
        assert_equal(channel_type(info, i), types[i])
    raw = RawArray(np.zeros((len(names), 10)), info)
    events = np.array([[1, 0, 0], [2, 0, 0]])
    epochs = Epochs(raw, events, {'event': 0}, -1e-5, 1e-5)
    evoked = epochs.average(pick_types(epochs.info, meg=True, seeg=True))
    e_seeg = evoked.copy().pick_types(meg=False, seeg=True)
    for l, r in zip(e_seeg.ch_names, [names[4], names[5], names[7]]):
        assert_equal(l, r)
    # Deal with constant debacle
    raw = read_raw_fif(op.join(io_dir, 'tests', 'data',
                               'test_chpi_raw_sss.fif'))
    assert_equal(len(pick_types(raw.info, meg=False, seeg=True, ecog=True)), 0)


def test_pick_chpi():
    """Test picking cHPI."""
    # Make sure we don't mis-classify cHPI channels
    info = read_info(op.join(io_dir, 'tests', 'data', 'test_chpi_raw_sss.fif'))
    channel_types = set([channel_type(info, idx)
                         for idx in range(info['nchan'])])
    assert 'chpi' in channel_types
    assert 'seeg' not in channel_types
    assert 'ecog' not in channel_types


def test_pick_bio():
    """Test picking BIO channels."""
    names = 'A1 A2 Fz O BIO1 BIO2 BIO3'.split()
    types = 'mag mag eeg eeg bio bio bio'.split()
    info = create_info(names, 1024., types)
    idx = channel_indices_by_type(info)
    assert_array_equal(idx['mag'], [0, 1])
    assert_array_equal(idx['eeg'], [2, 3])
    assert_array_equal(idx['bio'], [4, 5, 6])


def test_pick_fnirs():
    """Test picking fNIRS channels."""
    names = 'A1 A2 Fz O hbo1 hbo2 hbr1'.split()
    types = 'mag mag eeg eeg hbo hbo hbr'.split()
    info = create_info(names, 1024., types)
    idx = channel_indices_by_type(info)
    assert_array_equal(idx['mag'], [0, 1])
    assert_array_equal(idx['eeg'], [2, 3])
    assert_array_equal(idx['hbo'], [4, 5])
    assert_array_equal(idx['hbr'], [6])


def _check_fwd_n_chan_consistent(fwd, n_expected):
    n_ok = len(fwd['info']['ch_names'])
    n_sol = fwd['sol']['data'].shape[0]
    assert_equal(n_expected, n_sol)
    assert_equal(n_expected, n_ok)


@testing.requires_testing_data
def test_pick_forward_seeg_ecog():
    """Test picking forward with SEEG and ECoG."""
    fwd = read_forward_solution(fname_meeg)
    counts = channel_indices_by_type(fwd['info'])
    for key in counts.keys():
        counts[key] = len(counts[key])
    counts['meg'] = counts['mag'] + counts['grad']
    fwd_ = pick_types_forward(fwd, meg=True)
    _check_fwd_n_chan_consistent(fwd_, counts['meg'])
    fwd_ = pick_types_forward(fwd, meg=False, eeg=True)
    _check_fwd_n_chan_consistent(fwd_, counts['eeg'])
    # should raise exception related to emptiness
    pytest.raises(ValueError, pick_types_forward, fwd, meg=False, seeg=True)
    pytest.raises(ValueError, pick_types_forward, fwd, meg=False, ecog=True)
    # change last chan from EEG to sEEG, second-to-last to ECoG
    ecog_name = 'E1'
    seeg_name = 'OTp1'
    rename_channels(fwd['info'], {'EEG 059': ecog_name})
    rename_channels(fwd['info'], {'EEG 060': seeg_name})
    for ch in fwd['info']['chs']:
        if ch['ch_name'] == seeg_name:
            ch['kind'] = FIFF.FIFFV_SEEG_CH
            ch['coil_type'] = FIFF.FIFFV_COIL_EEG
        elif ch['ch_name'] == ecog_name:
            ch['kind'] = FIFF.FIFFV_ECOG_CH
            ch['coil_type'] = FIFF.FIFFV_COIL_EEG
    fwd['sol']['row_names'][-1] = fwd['info']['chs'][-1]['ch_name']
    fwd['sol']['row_names'][-2] = fwd['info']['chs'][-2]['ch_name']
    counts['eeg'] -= 2
    counts['seeg'] += 1
    counts['ecog'] += 1
    # repick & check
    fwd_seeg = pick_types_forward(fwd, meg=False, seeg=True)
    assert_equal(fwd_seeg['sol']['row_names'], [seeg_name])
    assert_equal(fwd_seeg['info']['ch_names'], [seeg_name])
    # should work fine
    fwd_ = pick_types_forward(fwd, meg=True)
    _check_fwd_n_chan_consistent(fwd_, counts['meg'])
    fwd_ = pick_types_forward(fwd, meg=False, eeg=True)
    _check_fwd_n_chan_consistent(fwd_, counts['eeg'])
    fwd_ = pick_types_forward(fwd, meg=False, seeg=True)
    _check_fwd_n_chan_consistent(fwd_, counts['seeg'])
    fwd_ = pick_types_forward(fwd, meg=False, ecog=True)
    _check_fwd_n_chan_consistent(fwd_, counts['ecog'])


def test_picks_by_channels():
    """Test creating pick_lists."""
    rng = np.random.RandomState(909)

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['grad', 'mag', 'mag', 'eeg']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    raw = RawArray(test_data, info)

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 3)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=False)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')

    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2) + 1)
    assert_equal(pick_list2[0][0], 'meg')

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['mag', 'mag', 'mag', 'mag']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    raw = RawArray(test_data, info)
    # This acts as a set, not an order
    assert_array_equal(pick_channels(info['ch_names'], ['MEG 002', 'MEG 001']),
                       [0, 1])

    # Make sure checks for list input work.
    pytest.raises(ValueError, pick_channels, ch_names, 'MEG 001')
    pytest.raises(ValueError, pick_channels, ch_names, ['MEG 001'], 'hi')

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 1)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')

    # pick_types type check
    pytest.raises(ValueError, raw.pick_types, eeg='string')

    # duplicate check
    names = ['MEG 002', 'MEG 002']
    assert len(pick_channels(raw.info['ch_names'], names)) == 1
    assert len(raw.copy().pick_channels(names)[0][0]) == 1


def test_clean_info_bads():
    """Test cleaning info['bads'] when bad_channels are excluded."""
    raw_file = op.join(op.dirname(_root_init_fname), 'io', 'tests', 'data',
                       'test_raw.fif')
    raw = read_raw_fif(raw_file)

    # select eeg channels
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)

    # select 3 eeg channels as bads
    idx_eeg_bad_ch = picks_eeg[[1, 5, 14]]
    eeg_bad_ch = [raw.info['ch_names'][k] for k in idx_eeg_bad_ch]

    # select meg channels
    picks_meg = pick_types(raw.info, meg=True, eeg=False)

    # select randomly 3 meg channels as bads
    idx_meg_bad_ch = picks_meg[[0, 15, 34]]
    meg_bad_ch = [raw.info['ch_names'][k] for k in idx_meg_bad_ch]

    # simulate the bad channels
    raw.info['bads'] = eeg_bad_ch + meg_bad_ch

    # simulate the call to pick_info excluding the bad eeg channels
    info_eeg = pick_info(raw.info, picks_eeg)

    # simulate the call to pick_info excluding the bad meg channels
    info_meg = pick_info(raw.info, picks_meg)

    assert_equal(info_eeg['bads'], eeg_bad_ch)
    assert_equal(info_meg['bads'], meg_bad_ch)

    info = pick_info(raw.info, picks_meg)
    info._check_consistency()
    info['bads'] += ['EEG 053']
    pytest.raises(RuntimeError, info._check_consistency)
    with pytest.raises(ValueError, match='unique'):
        pick_info(raw.info, [0, 0])


run_tests_if_main()