1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
import inspect
import os.path as op
from numpy.testing import assert_array_equal, assert_equal
import pytest
import numpy as np
from mne import (pick_channels_regexp, pick_types, Epochs,
read_forward_solution, rename_channels,
pick_info, pick_channels, create_info)
from mne import __file__ as _root_init_fname
from mne.io import (read_raw_fif, RawArray, read_raw_bti, read_raw_kit,
read_info)
from mne.io.pick import (channel_indices_by_type, channel_type,
pick_types_forward, _picks_by_type)
from mne.io.constants import FIFF
from mne.datasets import testing
from mne.utils import run_tests_if_main, catch_logging
io_dir = op.join(op.dirname(inspect.getfile(inspect.currentframe())), '..')
data_path = testing.data_path(download=False)
fname_meeg = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
fname_mc = op.join(data_path, 'SSS', 'test_move_anon_movecomp_raw_sss.fif')
def test_pick_refs():
"""Test picking of reference sensors."""
infos = list()
# KIT
kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
sqd_path = op.join(kit_dir, 'test.sqd')
mrk_path = op.join(kit_dir, 'test_mrk.sqd')
elp_path = op.join(kit_dir, 'test_elp.txt')
hsp_path = op.join(kit_dir, 'test_hsp.txt')
raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
infos.append(raw_kit.info)
# BTi
bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
bti_pdf = op.join(bti_dir, 'test_pdf_linux')
bti_config = op.join(bti_dir, 'test_config_linux')
bti_hs = op.join(bti_dir, 'test_hs_linux')
raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
infos.append(raw_bti.info)
# CTF
fname_ctf_raw = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif')
raw_ctf = read_raw_fif(fname_ctf_raw)
raw_ctf.apply_gradient_compensation(2)
for info in infos:
info['bads'] = []
pytest.raises(ValueError, pick_types, info, meg='foo')
pytest.raises(ValueError, pick_types, info, ref_meg='foo')
picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
picks_meg = pick_types(info, meg=True, ref_meg=False)
picks_ref = pick_types(info, meg=False, ref_meg=True)
assert_array_equal(picks_meg_ref,
np.sort(np.concatenate([picks_meg, picks_ref])))
picks_grad = pick_types(info, meg='grad', ref_meg=False)
picks_ref_grad = pick_types(info, meg=False, ref_meg='grad')
picks_meg_ref_grad = pick_types(info, meg='grad', ref_meg='grad')
assert_array_equal(picks_meg_ref_grad,
np.sort(np.concatenate([picks_grad,
picks_ref_grad])))
picks_mag = pick_types(info, meg='mag', ref_meg=False)
picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
assert_array_equal(picks_meg_ref_mag,
np.sort(np.concatenate([picks_mag,
picks_ref_mag])))
assert_array_equal(picks_meg,
np.sort(np.concatenate([picks_mag, picks_grad])))
assert_array_equal(picks_ref,
np.sort(np.concatenate([picks_ref_mag,
picks_ref_grad])))
assert_array_equal(picks_meg_ref, np.sort(np.concatenate(
[picks_grad, picks_mag, picks_ref_grad, picks_ref_mag])))
for pick in (picks_meg_ref, picks_meg, picks_ref,
picks_grad, picks_ref_grad, picks_meg_ref_grad,
picks_mag, picks_ref_mag, picks_meg_ref_mag):
if len(pick) > 0:
pick_info(info, pick)
# test CTF expected failures directly
info = raw_ctf.info
info['bads'] = []
picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
picks_meg = pick_types(info, meg=True, ref_meg=False)
picks_ref = pick_types(info, meg=False, ref_meg=True)
picks_mag = pick_types(info, meg='mag', ref_meg=False)
picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
for pick in (picks_meg_ref, picks_ref, picks_ref_mag, picks_meg_ref_mag):
if len(pick) > 0:
pick_info(info, pick)
for pick in (picks_meg, picks_mag):
if len(pick) > 0:
with catch_logging() as log:
pick_info(info, pick, verbose=True)
assert ('Removing {} compensators'.format(len(info['comps']))
in log.getvalue())
def test_pick_channels_regexp():
"""Test pick with regular expression."""
ch_names = ['MEG 2331', 'MEG 2332', 'MEG 2333']
assert_array_equal(pick_channels_regexp(ch_names, 'MEG ...1'), [0])
assert_array_equal(pick_channels_regexp(ch_names, 'MEG ...[2-3]'), [1, 2])
assert_array_equal(pick_channels_regexp(ch_names, 'MEG *'), [0, 1, 2])
def test_pick_seeg_ecog():
"""Test picking with sEEG and ECoG."""
names = 'A1 A2 Fz O OTp1 OTp2 E1 OTp3 E2 E3'.split()
types = 'mag mag eeg eeg seeg seeg ecog seeg ecog ecog'.split()
info = create_info(names, 1024., types)
idx = channel_indices_by_type(info)
assert_array_equal(idx['mag'], [0, 1])
assert_array_equal(idx['eeg'], [2, 3])
assert_array_equal(idx['seeg'], [4, 5, 7])
assert_array_equal(idx['ecog'], [6, 8, 9])
assert_array_equal(pick_types(info, meg=False, seeg=True), [4, 5, 7])
for i, t in enumerate(types):
assert_equal(channel_type(info, i), types[i])
raw = RawArray(np.zeros((len(names), 10)), info)
events = np.array([[1, 0, 0], [2, 0, 0]])
epochs = Epochs(raw, events, {'event': 0}, -1e-5, 1e-5)
evoked = epochs.average(pick_types(epochs.info, meg=True, seeg=True))
e_seeg = evoked.copy().pick_types(meg=False, seeg=True)
for l, r in zip(e_seeg.ch_names, [names[4], names[5], names[7]]):
assert_equal(l, r)
# Deal with constant debacle
raw = read_raw_fif(op.join(io_dir, 'tests', 'data',
'test_chpi_raw_sss.fif'))
assert_equal(len(pick_types(raw.info, meg=False, seeg=True, ecog=True)), 0)
def test_pick_chpi():
"""Test picking cHPI."""
# Make sure we don't mis-classify cHPI channels
info = read_info(op.join(io_dir, 'tests', 'data', 'test_chpi_raw_sss.fif'))
channel_types = set([channel_type(info, idx)
for idx in range(info['nchan'])])
assert 'chpi' in channel_types
assert 'seeg' not in channel_types
assert 'ecog' not in channel_types
def test_pick_bio():
"""Test picking BIO channels."""
names = 'A1 A2 Fz O BIO1 BIO2 BIO3'.split()
types = 'mag mag eeg eeg bio bio bio'.split()
info = create_info(names, 1024., types)
idx = channel_indices_by_type(info)
assert_array_equal(idx['mag'], [0, 1])
assert_array_equal(idx['eeg'], [2, 3])
assert_array_equal(idx['bio'], [4, 5, 6])
def test_pick_fnirs():
"""Test picking fNIRS channels."""
names = 'A1 A2 Fz O hbo1 hbo2 hbr1'.split()
types = 'mag mag eeg eeg hbo hbo hbr'.split()
info = create_info(names, 1024., types)
idx = channel_indices_by_type(info)
assert_array_equal(idx['mag'], [0, 1])
assert_array_equal(idx['eeg'], [2, 3])
assert_array_equal(idx['hbo'], [4, 5])
assert_array_equal(idx['hbr'], [6])
def _check_fwd_n_chan_consistent(fwd, n_expected):
n_ok = len(fwd['info']['ch_names'])
n_sol = fwd['sol']['data'].shape[0]
assert_equal(n_expected, n_sol)
assert_equal(n_expected, n_ok)
@testing.requires_testing_data
def test_pick_forward_seeg_ecog():
"""Test picking forward with SEEG and ECoG."""
fwd = read_forward_solution(fname_meeg)
counts = channel_indices_by_type(fwd['info'])
for key in counts.keys():
counts[key] = len(counts[key])
counts['meg'] = counts['mag'] + counts['grad']
fwd_ = pick_types_forward(fwd, meg=True)
_check_fwd_n_chan_consistent(fwd_, counts['meg'])
fwd_ = pick_types_forward(fwd, meg=False, eeg=True)
_check_fwd_n_chan_consistent(fwd_, counts['eeg'])
# should raise exception related to emptiness
pytest.raises(ValueError, pick_types_forward, fwd, meg=False, seeg=True)
pytest.raises(ValueError, pick_types_forward, fwd, meg=False, ecog=True)
# change last chan from EEG to sEEG, second-to-last to ECoG
ecog_name = 'E1'
seeg_name = 'OTp1'
rename_channels(fwd['info'], {'EEG 059': ecog_name})
rename_channels(fwd['info'], {'EEG 060': seeg_name})
for ch in fwd['info']['chs']:
if ch['ch_name'] == seeg_name:
ch['kind'] = FIFF.FIFFV_SEEG_CH
ch['coil_type'] = FIFF.FIFFV_COIL_EEG
elif ch['ch_name'] == ecog_name:
ch['kind'] = FIFF.FIFFV_ECOG_CH
ch['coil_type'] = FIFF.FIFFV_COIL_EEG
fwd['sol']['row_names'][-1] = fwd['info']['chs'][-1]['ch_name']
fwd['sol']['row_names'][-2] = fwd['info']['chs'][-2]['ch_name']
counts['eeg'] -= 2
counts['seeg'] += 1
counts['ecog'] += 1
# repick & check
fwd_seeg = pick_types_forward(fwd, meg=False, seeg=True)
assert_equal(fwd_seeg['sol']['row_names'], [seeg_name])
assert_equal(fwd_seeg['info']['ch_names'], [seeg_name])
# should work fine
fwd_ = pick_types_forward(fwd, meg=True)
_check_fwd_n_chan_consistent(fwd_, counts['meg'])
fwd_ = pick_types_forward(fwd, meg=False, eeg=True)
_check_fwd_n_chan_consistent(fwd_, counts['eeg'])
fwd_ = pick_types_forward(fwd, meg=False, seeg=True)
_check_fwd_n_chan_consistent(fwd_, counts['seeg'])
fwd_ = pick_types_forward(fwd, meg=False, ecog=True)
_check_fwd_n_chan_consistent(fwd_, counts['ecog'])
def test_picks_by_channels():
"""Test creating pick_lists."""
rng = np.random.RandomState(909)
test_data = rng.random_sample((4, 2000))
ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
ch_types = ['grad', 'mag', 'mag', 'eeg']
sfreq = 250.0
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
raw = RawArray(test_data, info)
pick_list = _picks_by_type(raw.info)
assert_equal(len(pick_list), 3)
assert_equal(pick_list[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=False)
assert_equal(len(pick_list), len(pick_list2))
assert_equal(pick_list2[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=True)
assert_equal(len(pick_list), len(pick_list2) + 1)
assert_equal(pick_list2[0][0], 'meg')
test_data = rng.random_sample((4, 2000))
ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
ch_types = ['mag', 'mag', 'mag', 'mag']
sfreq = 250.0
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
raw = RawArray(test_data, info)
# This acts as a set, not an order
assert_array_equal(pick_channels(info['ch_names'], ['MEG 002', 'MEG 001']),
[0, 1])
# Make sure checks for list input work.
pytest.raises(ValueError, pick_channels, ch_names, 'MEG 001')
pytest.raises(ValueError, pick_channels, ch_names, ['MEG 001'], 'hi')
pick_list = _picks_by_type(raw.info)
assert_equal(len(pick_list), 1)
assert_equal(pick_list[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=True)
assert_equal(len(pick_list), len(pick_list2))
assert_equal(pick_list2[0][0], 'mag')
# pick_types type check
pytest.raises(ValueError, raw.pick_types, eeg='string')
# duplicate check
names = ['MEG 002', 'MEG 002']
assert len(pick_channels(raw.info['ch_names'], names)) == 1
assert len(raw.copy().pick_channels(names)[0][0]) == 1
def test_clean_info_bads():
"""Test cleaning info['bads'] when bad_channels are excluded."""
raw_file = op.join(op.dirname(_root_init_fname), 'io', 'tests', 'data',
'test_raw.fif')
raw = read_raw_fif(raw_file)
# select eeg channels
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
# select 3 eeg channels as bads
idx_eeg_bad_ch = picks_eeg[[1, 5, 14]]
eeg_bad_ch = [raw.info['ch_names'][k] for k in idx_eeg_bad_ch]
# select meg channels
picks_meg = pick_types(raw.info, meg=True, eeg=False)
# select randomly 3 meg channels as bads
idx_meg_bad_ch = picks_meg[[0, 15, 34]]
meg_bad_ch = [raw.info['ch_names'][k] for k in idx_meg_bad_ch]
# simulate the bad channels
raw.info['bads'] = eeg_bad_ch + meg_bad_ch
# simulate the call to pick_info excluding the bad eeg channels
info_eeg = pick_info(raw.info, picks_eeg)
# simulate the call to pick_info excluding the bad meg channels
info_meg = pick_info(raw.info, picks_meg)
assert_equal(info_eeg['bads'], eeg_bad_ch)
assert_equal(info_meg['bads'], meg_bad_ch)
info = pick_info(raw.info, picks_meg)
info._check_consistency()
info['bads'] += ['EEG 053']
pytest.raises(RuntimeError, info._check_consistency)
with pytest.raises(ValueError, match='unique'):
pick_info(raw.info, [0, 0])
run_tests_if_main()
|