1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
# Authors: Marijn van Vliet <w.m.vanvliet@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD (3-clause)
import os.path as op
import numpy as np
from numpy.testing import assert_array_equal, assert_allclose, assert_equal
import pytest
from mne import (pick_channels, pick_types, Epochs, read_events,
set_eeg_reference, set_bipolar_reference,
add_reference_channels)
from mne.epochs import BaseEpochs
from mne.io import read_raw_fif
from mne.io.constants import FIFF
from mne.io.proj import _has_eeg_average_ref_proj, Projection
from mne.io.reference import _apply_reference
from mne.datasets import testing
from mne.utils import run_tests_if_main
data_dir = op.join(testing.data_path(download=False), 'MEG', 'sample')
fif_fname = op.join(data_dir, 'sample_audvis_trunc_raw.fif')
eve_fname = op.join(data_dir, 'sample_audvis_trunc_raw-eve.fif')
ave_fname = op.join(data_dir, 'sample_audvis_trunc-ave.fif')
def _test_reference(raw, reref, ref_data, ref_from):
"""Test whether a reference has been correctly applied."""
# Separate EEG channels from other channel types
picks_eeg = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
picks_other = pick_types(raw.info, meg=True, eeg=False, eog=True,
stim=True, exclude='bads')
# Calculate indices of reference channesl
picks_ref = [raw.ch_names.index(ch) for ch in ref_from]
# Get data
_data = raw._data
_reref = reref._data
# Check that the ref has been properly computed
if ref_data is not None:
assert_array_equal(ref_data, _data[..., picks_ref, :].mean(-2))
# Get the raw EEG data and other channel data
raw_eeg_data = _data[..., picks_eeg, :]
raw_other_data = _data[..., picks_other, :]
# Get the rereferenced EEG data
reref_eeg_data = _reref[..., picks_eeg, :]
reref_other_data = _reref[..., picks_other, :]
# Check that non-EEG channels are untouched
assert_allclose(raw_other_data, reref_other_data, 1e-6, atol=1e-15)
# Undo rereferencing of EEG channels if possible
if ref_data is not None:
if isinstance(raw, BaseEpochs):
unref_eeg_data = reref_eeg_data + ref_data[:, np.newaxis, :]
else:
unref_eeg_data = reref_eeg_data + ref_data
assert_allclose(raw_eeg_data, unref_eeg_data, 1e-6, atol=1e-15)
@testing.requires_testing_data
def test_apply_reference():
"""Test base function for rereferencing."""
raw = read_raw_fif(fif_fname, preload=True)
# Rereference raw data by creating a copy of original data
reref, ref_data = _apply_reference(
raw.copy(), ref_from=['EEG 001', 'EEG 002'])
assert (reref.info['custom_ref_applied'])
_test_reference(raw, reref, ref_data, ['EEG 001', 'EEG 002'])
# The CAR reference projection should have been removed by the function
assert (not _has_eeg_average_ref_proj(reref.info['projs']))
# Test that data is modified in place when copy=False
reref, ref_data = _apply_reference(raw, ['EEG 001', 'EEG 002'])
assert (raw is reref)
# Test that disabling the reference does not change anything
reref, ref_data = _apply_reference(raw.copy(), [])
assert_array_equal(raw._data, reref._data)
# Test re-referencing Epochs object
raw = read_raw_fif(fif_fname, preload=False)
events = read_events(eve_fname)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
picks=picks_eeg, preload=True)
reref, ref_data = _apply_reference(
epochs.copy(), ref_from=['EEG 001', 'EEG 002'])
assert (reref.info['custom_ref_applied'])
_test_reference(epochs, reref, ref_data, ['EEG 001', 'EEG 002'])
# Test re-referencing Evoked object
evoked = epochs.average()
reref, ref_data = _apply_reference(
evoked.copy(), ref_from=['EEG 001', 'EEG 002'])
assert (reref.info['custom_ref_applied'])
_test_reference(evoked, reref, ref_data, ['EEG 001', 'EEG 002'])
# Referencing needs data to be preloaded
raw_np = read_raw_fif(fif_fname, preload=False)
pytest.raises(RuntimeError, _apply_reference, raw_np, ['EEG 001'])
# Test having inactive SSP projections that deal with channels involved
# during re-referencing
raw = read_raw_fif(fif_fname, preload=True)
raw.add_proj(
Projection(
active=False,
data=dict(
col_names=['EEG 001', 'EEG 002'],
row_names=None,
data=np.array([[1, 1]]),
ncol=2,
nrow=1
),
desc='test',
kind=1,
)
)
# Projection concerns channels mentioned in projector
pytest.raises(RuntimeError, _apply_reference, raw, ['EEG 001'])
# Projection does not concern channels mentioned in projector, no error
_apply_reference(raw, ['EEG 003'], ['EEG 004'])
@testing.requires_testing_data
def test_set_eeg_reference():
"""Test rereference eeg data."""
raw = read_raw_fif(fif_fname, preload=True)
raw.info['projs'] = []
# Test setting an average reference projection
assert (not _has_eeg_average_ref_proj(raw.info['projs']))
reref, ref_data = set_eeg_reference(raw, projection=True)
assert (_has_eeg_average_ref_proj(reref.info['projs']))
assert (not reref.info['projs'][0]['active'])
assert (ref_data is None)
reref.apply_proj()
eeg_chans = [raw.ch_names[ch]
for ch in pick_types(raw.info, meg=False, eeg=True)]
_test_reference(raw, reref, ref_data,
[ch for ch in eeg_chans if ch not in raw.info['bads']])
# Test setting an average reference when one was already present
with pytest.warns(RuntimeWarning, match='untouched'):
reref, ref_data = set_eeg_reference(raw, copy=False, projection=True)
assert ref_data is None
# Test setting an average reference on non-preloaded data
raw_nopreload = read_raw_fif(fif_fname, preload=False)
raw_nopreload.info['projs'] = []
reref, ref_data = set_eeg_reference(raw_nopreload, projection=True)
assert (_has_eeg_average_ref_proj(reref.info['projs']))
assert (not reref.info['projs'][0]['active'])
# Rereference raw data by creating a copy of original data
reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'], copy=True)
assert (reref.info['custom_ref_applied'])
_test_reference(raw, reref, ref_data, ['EEG 001', 'EEG 002'])
# Test that data is modified in place when copy=False
reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'],
copy=False)
assert (raw is reref)
# Test moving from custom to average reference
reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'])
reref, _ = set_eeg_reference(reref, projection=True)
assert (_has_eeg_average_ref_proj(reref.info['projs']))
assert_equal(reref.info['custom_ref_applied'], False)
# When creating an average reference fails, make sure the
# custom_ref_applied flag remains untouched.
reref = raw.copy()
reref.info['custom_ref_applied'] = True
reref.pick_types(eeg=False) # Cause making average ref fail
pytest.raises(ValueError, set_eeg_reference, reref, projection=True)
assert (reref.info['custom_ref_applied'])
# Test moving from average to custom reference
reref, ref_data = set_eeg_reference(raw, projection=True)
reref, _ = set_eeg_reference(reref, ['EEG 001', 'EEG 002'])
assert not _has_eeg_average_ref_proj(reref.info['projs'])
assert len(reref.info['projs']) == 0
assert_equal(reref.info['custom_ref_applied'], True)
# Test that disabling the reference does not change the data
assert _has_eeg_average_ref_proj(raw.info['projs'])
reref, _ = set_eeg_reference(raw, [])
assert_array_equal(raw._data, reref._data)
assert not _has_eeg_average_ref_proj(reref.info['projs'])
# make sure ref_channels=[] removes average reference projectors
assert _has_eeg_average_ref_proj(raw.info['projs'])
reref, _ = set_eeg_reference(raw, [])
assert (not _has_eeg_average_ref_proj(reref.info['projs']))
# Test that average reference gives identical results when calculated
# via SSP projection (projection=True) or directly (projection=False)
raw.info['projs'] = []
reref_1, _ = set_eeg_reference(raw.copy(), projection=True)
reref_1.apply_proj()
reref_2, _ = set_eeg_reference(raw.copy(), projection=False)
assert_allclose(reref_1._data, reref_2._data, rtol=1e-6, atol=1e-15)
# Test average reference without projection
reref, ref_data = set_eeg_reference(raw.copy(), ref_channels="average",
projection=False)
_test_reference(raw, reref, ref_data, eeg_chans)
# projection=True only works for ref_channels='average'
pytest.raises(ValueError, set_eeg_reference, raw, [], True, True)
pytest.raises(ValueError, set_eeg_reference, raw, ['EEG 001'], True, True)
@testing.requires_testing_data
def test_set_bipolar_reference():
"""Test bipolar referencing."""
raw = read_raw_fif(fif_fname, preload=True)
raw.apply_proj()
reref = set_bipolar_reference(raw, 'EEG 001', 'EEG 002', 'bipolar',
{'kind': FIFF.FIFFV_EOG_CH,
'extra': 'some extra value'})
assert (reref.info['custom_ref_applied'])
# Compare result to a manual calculation
a = raw.copy().pick_channels(['EEG 001', 'EEG 002'])
a = a._data[0, :] - a._data[1, :]
b = reref.copy().pick_channels(['bipolar'])._data[0, :]
assert_allclose(a, b)
# Original channels should be replaced by a virtual one
assert ('EEG 001' not in reref.ch_names)
assert ('EEG 002' not in reref.ch_names)
assert ('bipolar' in reref.ch_names)
# Check channel information
bp_info = reref.info['chs'][reref.ch_names.index('bipolar')]
an_info = reref.info['chs'][raw.ch_names.index('EEG 001')]
for key in bp_info:
if key == 'loc':
assert_array_equal(bp_info[key], 0)
elif key == 'coil_type':
assert_equal(bp_info[key], FIFF.FIFFV_COIL_EEG_BIPOLAR)
elif key == 'kind':
assert_equal(bp_info[key], FIFF.FIFFV_EOG_CH)
else:
assert_equal(bp_info[key], an_info[key])
assert_equal(bp_info['extra'], 'some extra value')
# Minimalist call
reref = set_bipolar_reference(raw, 'EEG 001', 'EEG 002')
assert ('EEG 001-EEG 002' in reref.ch_names)
# Minimalist call with twice the same anode
reref = set_bipolar_reference(raw,
['EEG 001', 'EEG 001', 'EEG 002'],
['EEG 002', 'EEG 003', 'EEG 003'])
assert ('EEG 001-EEG 002' in reref.ch_names)
assert ('EEG 001-EEG 003' in reref.ch_names)
# Set multiple references at once
reref = set_bipolar_reference(
raw,
['EEG 001', 'EEG 003'],
['EEG 002', 'EEG 004'],
['bipolar1', 'bipolar2'],
[{'kind': FIFF.FIFFV_EOG_CH, 'extra': 'some extra value'},
{'kind': FIFF.FIFFV_EOG_CH, 'extra': 'some extra value'}],
)
a = raw.copy().pick_channels(['EEG 001', 'EEG 002', 'EEG 003', 'EEG 004'])
a = np.array([a._data[0, :] - a._data[1, :],
a._data[2, :] - a._data[3, :]])
b = reref.copy().pick_channels(['bipolar1', 'bipolar2'])._data
assert_allclose(a, b)
# Test creating a bipolar reference that doesn't involve EEG channels:
# it should not set the custom_ref_applied flag
reref = set_bipolar_reference(raw, 'MEG 0111', 'MEG 0112',
ch_info={'kind': FIFF.FIFFV_MEG_CH},
verbose='error')
assert (not reref.info['custom_ref_applied'])
assert ('MEG 0111-MEG 0112'[:15] in reref.ch_names)
# Test a battery of invalid inputs
pytest.raises(ValueError, set_bipolar_reference, raw,
'EEG 001', ['EEG 002', 'EEG 003'], 'bipolar')
pytest.raises(ValueError, set_bipolar_reference, raw,
['EEG 001', 'EEG 002'], 'EEG 003', 'bipolar')
pytest.raises(ValueError, set_bipolar_reference, raw,
'EEG 001', 'EEG 002', ['bipolar1', 'bipolar2'])
pytest.raises(ValueError, set_bipolar_reference, raw,
'EEG 001', 'EEG 002', 'bipolar',
ch_info=[{'foo': 'bar'}, {'foo': 'bar'}])
pytest.raises(ValueError, set_bipolar_reference, raw,
'EEG 001', 'EEG 002', ch_name='EEG 003')
def _check_channel_names(inst, ref_names):
"""Check channel names."""
if isinstance(ref_names, str):
ref_names = [ref_names]
# Test that the names of the reference channels are present in `ch_names`
ref_idx = pick_channels(inst.info['ch_names'], ref_names)
assert len(ref_idx) == len(ref_names)
# Test that the names of the reference channels are present in the `chs`
# list
inst.info._check_consistency() # Should raise no exceptions
@testing.requires_testing_data
def test_add_reference():
"""Test adding a reference."""
raw = read_raw_fif(fif_fname, preload=True)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
# check if channel already exists
pytest.raises(ValueError, add_reference_channels,
raw, raw.info['ch_names'][0])
# add reference channel to Raw
raw_ref = add_reference_channels(raw, 'Ref', copy=True)
assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 1)
assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
_check_channel_names(raw_ref, 'Ref')
orig_nchan = raw.info['nchan']
raw = add_reference_channels(raw, 'Ref', copy=False)
assert_array_equal(raw._data, raw_ref._data)
assert_equal(raw.info['nchan'], orig_nchan + 1)
_check_channel_names(raw, 'Ref')
# for Neuromag fif's, the reference electrode location is placed in
# elements [3:6] of each "data" electrode location
assert_allclose(raw.info['chs'][-1]['loc'][:3],
raw.info['chs'][picks_eeg[0]]['loc'][3:6], 1e-6)
ref_idx = raw.ch_names.index('Ref')
ref_data, _ = raw[ref_idx]
assert_array_equal(ref_data, 0)
# add reference channel to Raw when no digitization points exist
raw = read_raw_fif(fif_fname).crop(0, 1).load_data()
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
del raw.info['dig']
raw_ref = add_reference_channels(raw, 'Ref', copy=True)
assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 1)
assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
_check_channel_names(raw_ref, 'Ref')
orig_nchan = raw.info['nchan']
raw = add_reference_channels(raw, 'Ref', copy=False)
assert_array_equal(raw._data, raw_ref._data)
assert_equal(raw.info['nchan'], orig_nchan + 1)
_check_channel_names(raw, 'Ref')
# Test adding an existing channel as reference channel
pytest.raises(ValueError, add_reference_channels, raw,
raw.info['ch_names'][0])
# add two reference channels to Raw
raw_ref = add_reference_channels(raw, ['M1', 'M2'], copy=True)
_check_channel_names(raw_ref, ['M1', 'M2'])
assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 2)
assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
assert_array_equal(raw_ref._data[-2:, :], 0)
raw = add_reference_channels(raw, ['M1', 'M2'], copy=False)
_check_channel_names(raw, ['M1', 'M2'])
ref_idx = raw.ch_names.index('M1')
ref_idy = raw.ch_names.index('M2')
ref_data, _ = raw[[ref_idx, ref_idy]]
assert_array_equal(ref_data, 0)
# add reference channel to epochs
raw = read_raw_fif(fif_fname, preload=True)
events = read_events(eve_fname)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
picks=picks_eeg, preload=True)
# default: proj=True, after which adding a Ref channel is prohibited
pytest.raises(RuntimeError, add_reference_channels, epochs, 'Ref')
# create epochs in delayed mode, allowing removal of CAR when re-reffing
epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
picks=picks_eeg, preload=True, proj='delayed')
epochs_ref = add_reference_channels(epochs, 'Ref', copy=True)
assert_equal(epochs_ref._data.shape[1], epochs._data.shape[1] + 1)
_check_channel_names(epochs_ref, 'Ref')
ref_idx = epochs_ref.ch_names.index('Ref')
ref_data = epochs_ref.get_data()[:, ref_idx, :]
assert_array_equal(ref_data, 0)
picks_eeg = pick_types(epochs.info, meg=False, eeg=True)
assert_array_equal(epochs.get_data()[:, picks_eeg, :],
epochs_ref.get_data()[:, picks_eeg, :])
# add two reference channels to epochs
raw = read_raw_fif(fif_fname, preload=True)
events = read_events(eve_fname)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
# create epochs in delayed mode, allowing removal of CAR when re-reffing
epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
picks=picks_eeg, preload=True, proj='delayed')
with pytest.warns(RuntimeWarning, match='ignored .set to zero.'):
epochs_ref = add_reference_channels(epochs, ['M1', 'M2'], copy=True)
assert_equal(epochs_ref._data.shape[1], epochs._data.shape[1] + 2)
_check_channel_names(epochs_ref, ['M1', 'M2'])
ref_idx = epochs_ref.ch_names.index('M1')
ref_idy = epochs_ref.ch_names.index('M2')
assert_equal(epochs_ref.info['chs'][ref_idx]['ch_name'], 'M1')
assert_equal(epochs_ref.info['chs'][ref_idy]['ch_name'], 'M2')
ref_data = epochs_ref.get_data()[:, [ref_idx, ref_idy], :]
assert_array_equal(ref_data, 0)
picks_eeg = pick_types(epochs.info, meg=False, eeg=True)
assert_array_equal(epochs.get_data()[:, picks_eeg, :],
epochs_ref.get_data()[:, picks_eeg, :])
# add reference channel to evoked
raw = read_raw_fif(fif_fname, preload=True)
events = read_events(eve_fname)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
# create epochs in delayed mode, allowing removal of CAR when re-reffing
epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
picks=picks_eeg, preload=True, proj='delayed')
evoked = epochs.average()
evoked_ref = add_reference_channels(evoked, 'Ref', copy=True)
assert_equal(evoked_ref.data.shape[0], evoked.data.shape[0] + 1)
_check_channel_names(evoked_ref, 'Ref')
ref_idx = evoked_ref.ch_names.index('Ref')
ref_data = evoked_ref.data[ref_idx, :]
assert_array_equal(ref_data, 0)
picks_eeg = pick_types(evoked.info, meg=False, eeg=True)
assert_array_equal(evoked.data[picks_eeg, :],
evoked_ref.data[picks_eeg, :])
# add two reference channels to evoked
raw = read_raw_fif(fif_fname, preload=True)
events = read_events(eve_fname)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
# create epochs in delayed mode, allowing removal of CAR when re-reffing
epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
picks=picks_eeg, preload=True, proj='delayed')
evoked = epochs.average()
with pytest.warns(RuntimeWarning, match='ignored .set to zero.'):
evoked_ref = add_reference_channels(evoked, ['M1', 'M2'], copy=True)
assert_equal(evoked_ref.data.shape[0], evoked.data.shape[0] + 2)
_check_channel_names(evoked_ref, ['M1', 'M2'])
ref_idx = evoked_ref.ch_names.index('M1')
ref_idy = evoked_ref.ch_names.index('M2')
ref_data = evoked_ref.data[[ref_idx, ref_idy], :]
assert_array_equal(ref_data, 0)
picks_eeg = pick_types(evoked.info, meg=False, eeg=True)
assert_array_equal(evoked.data[picks_eeg, :],
evoked_ref.data[picks_eeg, :])
# Test invalid inputs
raw_np = read_raw_fif(fif_fname, preload=False)
pytest.raises(RuntimeError, add_reference_channels, raw_np, ['Ref'])
pytest.raises(ValueError, add_reference_channels, raw, 1)
run_tests_if_main()
|