1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
# Teon Brooks <teon.brooks@gmail.com>
# Marijn van Vliet <w.m.vanvliet@gmail.com>
# Mainak Jas <mainak.jas@telecom-paristech.fr>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)
import numpy as np
import os
from ..utils import warn, _validate_type
from ..externals.six import b
from .constants import FIFF
from .meas_info import _get_valid_units
def _deprecate_stim_channel(stim_channel):
if stim_channel is None:
warn('stim_channel (default True in 0.17) will change to False in '
'0.18 and be removed in 0.19, set it to False in 0.17 to '
'avoid this warning', DeprecationWarning)
stim_channel = True
_validate_type(stim_channel, bool, 'stim_channel')
return stim_channel
def _check_orig_units(orig_units):
"""Check original units from a raw file.
Units that are close to a valid_unit but not equal can be remapped to fit
into the valid_units. All other units that are not valid will be replaced
with "n/a".
Parameters
----------
orig_units : dict
Dictionary mapping channel names to their units as specified in
the header file. Example: {'FC1': 'nV'}
Returns
-------
orig_units_remapped : dict
Dictionary mapping channel names to their VALID units as specified in
the header file. Invalid units are now labeled "n/a".
Example: {'FC1': 'nV', 'Hfp3erz': 'n/a'}
"""
if orig_units is None:
return
valid_units = _get_valid_units()
valid_units_lowered = [unit.lower() for unit in valid_units]
orig_units_remapped = dict(orig_units)
for ch_name, unit in orig_units.items():
# Be lenient: we ignore case for now.
if unit.lower() in valid_units_lowered:
continue
# Common "invalid units" can be remapped to their valid equivalent
remap_dict = dict()
remap_dict['uv'] = u'µV'
remap_dict[u'μv'] = u'µV' # greek letter mu vs micro sign. use micro
if unit.lower() in remap_dict:
orig_units_remapped[ch_name] = remap_dict[unit.lower()]
continue
# Some units cannot be saved, they are invalid: assign "n/a"
orig_units_remapped[ch_name] = 'n/a'
return orig_units_remapped
def _find_channels(ch_names, ch_type='EOG'):
"""Find EOG channel."""
substrings = (ch_type,)
substrings = [s.upper() for s in substrings]
if ch_type == 'EOG':
substrings = ('EOG', 'EYE')
eog_idx = [idx for idx, ch in enumerate(ch_names) if
any(substring in ch.upper() for substring in substrings)]
return eog_idx
def _mult_cal_one(data_view, one, idx, cals, mult):
"""Take a chunk of raw data, multiply by mult or cals, and store."""
one = np.asarray(one, dtype=data_view.dtype)
assert data_view.shape[1] == one.shape[1]
if mult is not None:
data_view[:] = np.dot(mult, one)
else:
if isinstance(idx, slice):
data_view[:] = one[idx]
else:
# faster than doing one = one[idx]
np.take(one, idx, axis=0, out=data_view)
if cals is not None:
data_view *= cals
def _blk_read_lims(start, stop, buf_len):
"""Deal with indexing in the middle of a data block.
Parameters
----------
start : int
Starting index.
stop : int
Ending index (exclusive).
buf_len : int
Buffer size in samples.
Returns
-------
block_start_idx : int
The first block to start reading from.
r_lims : list
The read limits.
d_lims : list
The write limits.
Notes
-----
Consider this example::
>>> start, stop, buf_len = 2, 27, 10
+---------+---------+---------
File structure: | buf0 | buf1 | buf2 |
+---------+---------+---------
File time: 0 10 20 30
+---------+---------+---------
Requested time: 2 27
| |
blockstart blockstop
| |
start stop
We need 27 - 2 = 25 samples (per channel) to store our data, and
we need to read from 3 buffers (30 samples) to get all of our data.
On all reads but the first, the data we read starts at
the first sample of the buffer. On all reads but the last,
the data we read ends on the last sample of the buffer.
We call ``this_data`` the variable that stores the current buffer's data,
and ``data`` the variable that stores the total output.
On the first read, we need to do this::
>>> data[0:buf_len-2] = this_data[2:buf_len] # doctest: +SKIP
On the second read, we need to do::
>>> data[1*buf_len-2:2*buf_len-2] = this_data[0:buf_len] # doctest: +SKIP
On the final read, we need to do::
>>> data[2*buf_len-2:3*buf_len-2-3] = this_data[0:buf_len-3] # doctest: +SKIP
This function encapsulates this logic to allow a loop over blocks, where
data is stored using the following limits::
>>> data[d_lims[ii, 0]:d_lims[ii, 1]] = this_data[r_lims[ii, 0]:r_lims[ii, 1]] # doctest: +SKIP
""" # noqa: E501
# this is used to deal with indexing in the middle of a sampling period
assert all(isinstance(x, int) for x in (start, stop, buf_len))
block_start_idx = (start // buf_len)
block_start = block_start_idx * buf_len
last_used_samp = stop - 1
block_stop = last_used_samp - last_used_samp % buf_len + buf_len
read_size = block_stop - block_start
n_blk = read_size // buf_len + (read_size % buf_len != 0)
start_offset = start - block_start
end_offset = block_stop - stop
d_lims = np.empty((n_blk, 2), int)
r_lims = np.empty((n_blk, 2), int)
for bi in range(n_blk):
# Triage start (sidx) and end (eidx) indices for
# data (d) and read (r)
if bi == 0:
d_sidx = 0
r_sidx = start_offset
else:
d_sidx = bi * buf_len - start_offset
r_sidx = 0
if bi == n_blk - 1:
d_eidx = stop - start
r_eidx = buf_len - end_offset
else:
d_eidx = (bi + 1) * buf_len - start_offset
r_eidx = buf_len
d_lims[bi] = [d_sidx, d_eidx]
r_lims[bi] = [r_sidx, r_eidx]
return block_start_idx, r_lims, d_lims
def _file_size(fname):
"""Get the file size in bytes."""
with open(fname, 'rb') as f:
f.seek(0, os.SEEK_END)
return f.tell()
def _read_segments_file(raw, data, idx, fi, start, stop, cals, mult,
dtype='<i2', n_channels=None, offset=0,
trigger_ch=None):
"""Read a chunk of raw data."""
n_channels = raw.info['nchan'] if n_channels is None else n_channels
n_bytes = np.dtype(dtype).itemsize
# data_offset and data_left count data samples (channels x time points),
# not bytes.
data_offset = n_channels * start * n_bytes + offset
data_left = (stop - start) * n_channels
# Read up to 100 MB of data at a time, block_size is in data samples
block_size = ((int(100e6) // n_bytes) // n_channels) * n_channels
block_size = min(data_left, block_size)
with open(raw._filenames[fi], 'rb', buffering=0) as fid:
fid.seek(data_offset)
# extract data in chunks
for sample_start in np.arange(0, data_left, block_size) // n_channels:
count = min(block_size, data_left - sample_start * n_channels)
block = np.fromfile(fid, dtype, count)
if block.size != count:
raise RuntimeError('Incorrect number of samples (%s != %s), '
'please report this error to MNE-Python '
'developers' % (block.size, count))
block = block.reshape(n_channels, -1, order='F')
n_samples = block.shape[1] # = count // n_channels
sample_stop = sample_start + n_samples
if trigger_ch is not None:
stim_ch = trigger_ch[start:stop][sample_start:sample_stop]
block = np.vstack((block, stim_ch))
data_view = data[:, sample_start:sample_stop]
_mult_cal_one(data_view, block, idx, cals, mult)
def read_str(fid, count=1):
"""Read string from a binary file in a python version compatible way."""
dtype = np.dtype('>S%i' % count)
string = fid.read(dtype.itemsize)
data = np.frombuffer(string, dtype=dtype)[0]
bytestr = b('').join([data[0:data.index(b('\x00')) if
b('\x00') in data else count]])
return str(bytestr.decode('ascii')) # Return native str type for Py2/3
def _create_chs(ch_names, cals, ch_coil, ch_kind, eog, ecg, emg, misc):
"""Initialize info['chs'] for eeg channels."""
chs = list()
for idx, ch_name in enumerate(ch_names):
if ch_name in eog or idx in eog:
coil_type = FIFF.FIFFV_COIL_NONE
kind = FIFF.FIFFV_EOG_CH
elif ch_name in ecg or idx in ecg:
coil_type = FIFF.FIFFV_COIL_NONE
kind = FIFF.FIFFV_ECG_CH
elif ch_name in emg or idx in emg:
coil_type = FIFF.FIFFV_COIL_NONE
kind = FIFF.FIFFV_EMG_CH
elif ch_name in misc or idx in misc:
coil_type = FIFF.FIFFV_COIL_NONE
kind = FIFF.FIFFV_MISC_CH
else:
coil_type = ch_coil
kind = ch_kind
chan_info = {'cal': cals[idx], 'logno': idx + 1, 'scanno': idx + 1,
'range': 1.0, 'unit_mul': 0., 'ch_name': ch_name,
'unit': FIFF.FIFF_UNIT_V,
'coord_frame': FIFF.FIFFV_COORD_HEAD,
'coil_type': coil_type, 'kind': kind, 'loc': np.zeros(12)}
chs.append(chan_info)
return chs
def _synthesize_stim_channel(events, n_samples):
"""Synthesize a stim channel from events read from an event file.
Parameters
----------
events : array, shape (n_events, 3)
Each row representing an event.
n_samples : int
The number of samples.
Returns
-------
stim_channel : array, shape (n_samples,)
An array containing the whole recording's event marking.
"""
# select events overlapping buffer
onset = events[:, 0]
events = events.copy()
events[events[:, 1] < 1, 1] = 1
# create output buffer
stim_channel = np.zeros(n_samples, int)
for onset, duration, trigger in events:
stim_channel[onset:onset + duration] = trigger
return stim_channel
def _construct_bids_filename(base, ext, part_idx):
"""Construct a BIDS compatible filename for split files."""
# insert index in filename
deconstructed_base = base.split('_')
bids_supported = ['meg', 'eeg', 'ieeg']
for mod in bids_supported:
if mod in deconstructed_base:
idx = deconstructed_base.index(mod)
modality = deconstructed_base.pop(idx)
base = '_'.join(deconstructed_base)
use_fname = '%s_part-%02d_%s%s' % (base, part_idx, modality, ext)
return use_fname
|