1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)
from gzip import GzipFile
import os.path as op
import re
import time
import uuid
import numpy as np
from scipy import linalg, sparse
from .constants import FIFF
from ..utils import logger
from ..externals.jdcal import jcal2jd
from ..externals.six import string_types, b
# We choose a "magic" date to store (because meas_date is obligatory)
# to treat as meas_date=None. This one should be impossible for systems
# to write -- the second field is microseconds, so anything >= 1e6
# should be moved into the first field (seconds).
DATE_NONE = (0, 2 ** 31 - 1)
def _write(fid, data, kind, data_size, FIFFT_TYPE, dtype):
"""Write data."""
if isinstance(data, np.ndarray):
data_size *= data.size
# XXX for string types the data size is used as
# computed in ``write_string``.
fid.write(np.array(kind, dtype='>i4').tostring())
fid.write(np.array(FIFFT_TYPE, dtype='>i4').tostring())
fid.write(np.array(data_size, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFV_NEXT_SEQ, dtype='>i4').tostring())
fid.write(np.array(data, dtype=dtype).tostring())
def _get_split_size(split_size):
"""Convert human-readable bytes to machine-readable bytes."""
if isinstance(split_size, string_types):
exp = dict(MB=20, GB=30).get(split_size[-2:], None)
if exp is None:
raise ValueError('split_size has to end with either'
'"MB" or "GB"')
split_size = int(float(split_size[:-2]) * 2 ** exp)
if split_size > 2147483648:
raise ValueError('split_size cannot be larger than 2GB')
return split_size
def write_nop(fid, last=False):
"""Write a FIFF_NOP."""
fid.write(np.array(FIFF.FIFF_NOP, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFT_VOID, dtype='>i4').tostring())
fid.write(np.array(0, dtype='>i4').tostring())
next_ = FIFF.FIFFV_NEXT_NONE if last else FIFF.FIFFV_NEXT_SEQ
fid.write(np.array(next_, dtype='>i4').tostring())
def write_int(fid, kind, data):
"""Write a 32-bit integer tag to a fif file."""
data_size = 4
data = np.array(data, dtype='>i4').T
_write(fid, data, kind, data_size, FIFF.FIFFT_INT, '>i4')
def write_double(fid, kind, data):
"""Write a double-precision floating point tag to a fif file."""
data_size = 8
data = np.array(data, dtype='>f8').T
_write(fid, data, kind, data_size, FIFF.FIFFT_DOUBLE, '>f8')
def write_float(fid, kind, data):
"""Write a single-precision floating point tag to a fif file."""
data_size = 4
data = np.array(data, dtype='>f4').T
_write(fid, data, kind, data_size, FIFF.FIFFT_FLOAT, '>f4')
def write_dau_pack16(fid, kind, data):
"""Write a dau_pack16 tag to a fif file."""
data_size = 2
data = np.array(data, dtype='>i2').T
_write(fid, data, kind, data_size, FIFF.FIFFT_DAU_PACK16, '>i2')
def write_complex64(fid, kind, data):
"""Write a 64 bit complex floating point tag to a fif file."""
data_size = 8
data = np.array(data, dtype='>c8').T
_write(fid, data, kind, data_size, FIFF.FIFFT_COMPLEX_FLOAT, '>c8')
def write_complex128(fid, kind, data):
"""Write a 128 bit complex floating point tag to a fif file."""
data_size = 16
data = np.array(data, dtype='>c16').T
_write(fid, data, kind, data_size, FIFF.FIFFT_COMPLEX_FLOAT, '>c16')
def write_julian(fid, kind, data):
"""Write a Julian-formatted date to a FIF file."""
assert len(data) == 3
data_size = 4
jd = np.sum(jcal2jd(*data))
data = np.array(jd, dtype='>i4')
_write(fid, data, kind, data_size, FIFF.FIFFT_JULIAN, '>i4')
def write_string(fid, kind, data):
"""Write a string tag."""
str_data = data.encode('latin1')
data_size = len(str_data) # therefore compute size here
my_dtype = '>a' # py2/3 compatible on writing -- don't ask me why
if data_size > 0:
_write(fid, str_data, kind, data_size, FIFF.FIFFT_STRING, my_dtype)
def write_name_list(fid, kind, data):
"""Write a colon-separated list of names.
Parameters
----------
data : list of strings
"""
write_string(fid, kind, ':'.join(data))
def write_float_matrix(fid, kind, mat):
"""Write a single-precision floating-point matrix tag."""
FIFFT_MATRIX = 1 << 30
FIFFT_MATRIX_FLOAT = FIFF.FIFFT_FLOAT | FIFFT_MATRIX
data_size = 4 * mat.size + 4 * (mat.ndim + 1)
fid.write(np.array(kind, dtype='>i4').tostring())
fid.write(np.array(FIFFT_MATRIX_FLOAT, dtype='>i4').tostring())
fid.write(np.array(data_size, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFV_NEXT_SEQ, dtype='>i4').tostring())
fid.write(np.array(mat, dtype='>f4').tostring())
dims = np.empty(mat.ndim + 1, dtype=np.int32)
dims[:mat.ndim] = mat.shape[::-1]
dims[-1] = mat.ndim
fid.write(np.array(dims, dtype='>i4').tostring())
check_fiff_length(fid)
def write_double_matrix(fid, kind, mat):
"""Write a double-precision floating-point matrix tag."""
FIFFT_MATRIX = 1 << 30
FIFFT_MATRIX_DOUBLE = FIFF.FIFFT_DOUBLE | FIFFT_MATRIX
data_size = 8 * mat.size + 4 * (mat.ndim + 1)
fid.write(np.array(kind, dtype='>i4').tostring())
fid.write(np.array(FIFFT_MATRIX_DOUBLE, dtype='>i4').tostring())
fid.write(np.array(data_size, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFV_NEXT_SEQ, dtype='>i4').tostring())
fid.write(np.array(mat, dtype='>f8').tostring())
dims = np.empty(mat.ndim + 1, dtype=np.int32)
dims[:mat.ndim] = mat.shape[::-1]
dims[-1] = mat.ndim
fid.write(np.array(dims, dtype='>i4').tostring())
check_fiff_length(fid)
def write_int_matrix(fid, kind, mat):
"""Write integer 32 matrix tag."""
FIFFT_MATRIX = 1 << 30
FIFFT_MATRIX_INT = FIFF.FIFFT_INT | FIFFT_MATRIX
data_size = 4 * mat.size + 4 * 3
fid.write(np.array(kind, dtype='>i4').tostring())
fid.write(np.array(FIFFT_MATRIX_INT, dtype='>i4').tostring())
fid.write(np.array(data_size, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFV_NEXT_SEQ, dtype='>i4').tostring())
fid.write(np.array(mat, dtype='>i4').tostring())
dims = np.empty(3, dtype=np.int32)
dims[0] = mat.shape[1]
dims[1] = mat.shape[0]
dims[2] = 2
fid.write(np.array(dims, dtype='>i4').tostring())
check_fiff_length(fid)
def write_complex_float_matrix(fid, kind, mat):
"""Write complex 64 matrix tag."""
FIFFT_MATRIX = 1 << 30
FIFFT_MATRIX_COMPLEX_FLOAT = FIFF.FIFFT_COMPLEX_FLOAT | FIFFT_MATRIX
data_size = 4 * 2 * mat.size + 4 * (mat.ndim + 1)
fid.write(np.array(kind, dtype='>i4').tostring())
fid.write(np.array(FIFFT_MATRIX_COMPLEX_FLOAT, dtype='>i4').tostring())
fid.write(np.array(data_size, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFV_NEXT_SEQ, dtype='>i4').tostring())
fid.write(np.array(mat, dtype='>c8').tostring())
dims = np.empty(mat.ndim + 1, dtype=np.int32)
dims[:mat.ndim] = mat.shape[::-1]
dims[-1] = mat.ndim
fid.write(np.array(dims, dtype='>i4').tostring())
check_fiff_length(fid)
def write_complex_double_matrix(fid, kind, mat):
"""Write complex 128 matrix tag."""
FIFFT_MATRIX = 1 << 30
FIFFT_MATRIX_COMPLEX_DOUBLE = FIFF.FIFFT_COMPLEX_DOUBLE | FIFFT_MATRIX
data_size = 8 * 2 * mat.size + 4 * (mat.ndim + 1)
fid.write(np.array(kind, dtype='>i4').tostring())
fid.write(np.array(FIFFT_MATRIX_COMPLEX_DOUBLE, dtype='>i4').tostring())
fid.write(np.array(data_size, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFV_NEXT_SEQ, dtype='>i4').tostring())
fid.write(np.array(mat, dtype='>c16').tostring())
dims = np.empty(mat.ndim + 1, dtype=np.int32)
dims[:mat.ndim] = mat.shape[::-1]
dims[-1] = mat.ndim
fid.write(np.array(dims, dtype='>i4').tostring())
check_fiff_length(fid)
def get_machid():
"""Get (mostly) unique machine ID.
Returns
-------
ids : array (length 2, int32)
The machine identifier used in MNE.
"""
mac = b('%012x' % uuid.getnode()) # byte conversion for Py3
mac = re.findall(b'..', mac) # split string
mac += [b'00', b'00'] # add two more fields
# Convert to integer in reverse-order (for some reason)
from codecs import encode
mac = b''.join([encode(h, 'hex_codec') for h in mac[::-1]])
ids = np.flipud(np.frombuffer(mac, np.int32, count=2))
return ids
def get_new_file_id():
"""Create a new file ID tag."""
secs, usecs = divmod(time.time(), 1.)
secs, usecs = int(secs), int(usecs * 1e6)
return {'machid': get_machid(), 'version': FIFF.FIFFC_VERSION,
'secs': secs, 'usecs': usecs}
def write_id(fid, kind, id_=None):
"""Write fiff id."""
id_ = _generate_meas_id() if id_ is None else id_
data_size = 5 * 4 # The id comprises five integers
fid.write(np.array(kind, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFT_ID_STRUCT, dtype='>i4').tostring())
fid.write(np.array(data_size, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFV_NEXT_SEQ, dtype='>i4').tostring())
# Collect the bits together for one write
arr = np.array([id_['version'],
id_['machid'][0], id_['machid'][1],
id_['secs'], id_['usecs']], dtype='>i4')
fid.write(arr.tostring())
def start_block(fid, kind):
"""Write a FIFF_BLOCK_START tag."""
write_int(fid, FIFF.FIFF_BLOCK_START, kind)
def end_block(fid, kind):
"""Write a FIFF_BLOCK_END tag."""
write_int(fid, FIFF.FIFF_BLOCK_END, kind)
def start_file(fname, id_=None):
"""Open a fif file for writing and writes the compulsory header tags.
Parameters
----------
fname : string | fid
The name of the file to open. It is recommended
that the name ends with .fif or .fif.gz. Can also be an
already opened file.
id_ : dict | None
ID to use for the FIFF_FILE_ID.
"""
if isinstance(fname, string_types):
if op.splitext(fname)[1].lower() == '.gz':
logger.debug('Writing using gzip')
# defaults to compression level 9, which is barely smaller but much
# slower. 2 offers a good compromise.
fid = GzipFile(fname, "wb", compresslevel=2)
else:
logger.debug('Writing using normal I/O')
fid = open(fname, "wb")
else:
logger.debug('Writing using %s I/O' % type(fname))
fid = fname
fid.seek(0)
# Write the compulsory items
write_id(fid, FIFF.FIFF_FILE_ID, id_)
write_int(fid, FIFF.FIFF_DIR_POINTER, -1)
write_int(fid, FIFF.FIFF_FREE_LIST, -1)
return fid
def check_fiff_length(fid, close=True):
"""Ensure our file hasn't grown too large to work properly."""
if fid.tell() > 2147483648: # 2 ** 31, FIFF uses signed 32-bit locations
if close:
fid.close()
raise IOError('FIFF file exceeded 2GB limit, please split file or '
'save to a different format')
def end_file(fid):
"""Write the closing tags to a fif file and closes the file."""
write_nop(fid, last=True)
check_fiff_length(fid)
fid.close()
def write_coord_trans(fid, trans):
"""Write a coordinate transformation structure."""
data_size = 4 * 2 * 12 + 4 * 2
fid.write(np.array(FIFF.FIFF_COORD_TRANS, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFT_COORD_TRANS_STRUCT, dtype='>i4').tostring())
fid.write(np.array(data_size, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFV_NEXT_SEQ, dtype='>i4').tostring())
fid.write(np.array(trans['from'], dtype='>i4').tostring())
fid.write(np.array(trans['to'], dtype='>i4').tostring())
# The transform...
rot = trans['trans'][:3, :3]
move = trans['trans'][:3, 3]
fid.write(np.array(rot, dtype='>f4').tostring())
fid.write(np.array(move, dtype='>f4').tostring())
# ...and its inverse
trans_inv = linalg.inv(trans['trans'])
rot = trans_inv[:3, :3]
move = trans_inv[:3, 3]
fid.write(np.array(rot, dtype='>f4').tostring())
fid.write(np.array(move, dtype='>f4').tostring())
def write_ch_info(fid, ch):
"""Write a channel information record to a fif file."""
data_size = 4 * 13 + 4 * 7 + 16
fid.write(np.array(FIFF.FIFF_CH_INFO, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFT_CH_INFO_STRUCT, dtype='>i4').tostring())
fid.write(np.array(data_size, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFV_NEXT_SEQ, dtype='>i4').tostring())
# Start writing fiffChInfoRec
fid.write(np.array(ch['scanno'], dtype='>i4').tostring())
fid.write(np.array(ch['logno'], dtype='>i4').tostring())
fid.write(np.array(ch['kind'], dtype='>i4').tostring())
fid.write(np.array(ch['range'], dtype='>f4').tostring())
fid.write(np.array(ch['cal'], dtype='>f4').tostring())
fid.write(np.array(ch['coil_type'], dtype='>i4').tostring())
fid.write(np.array(ch['loc'], dtype='>f4').tostring()) # writing 12 values
# unit and unit multiplier
fid.write(np.array(ch['unit'], dtype='>i4').tostring())
fid.write(np.array(ch['unit_mul'], dtype='>i4').tostring())
# Finally channel name
ch_name = ch['ch_name'][:15]
fid.write(np.array(ch_name, dtype='>c').tostring())
fid.write(b('\0') * (16 - len(ch_name)))
def write_dig_points(fid, dig, block=False, coord_frame=None):
"""Write a set of digitizer data points into a fif file."""
if dig is not None:
data_size = 5 * 4
if block:
start_block(fid, FIFF.FIFFB_ISOTRAK)
if coord_frame is not None:
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, coord_frame)
for d in dig:
fid.write(np.array(FIFF.FIFF_DIG_POINT, '>i4').tostring())
fid.write(np.array(FIFF.FIFFT_DIG_POINT_STRUCT, '>i4').tostring())
fid.write(np.array(data_size, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFV_NEXT_SEQ, '>i4').tostring())
# Start writing fiffDigPointRec
fid.write(np.array(d['kind'], '>i4').tostring())
fid.write(np.array(d['ident'], '>i4').tostring())
fid.write(np.array(d['r'][:3], '>f4').tostring())
if block:
end_block(fid, FIFF.FIFFB_ISOTRAK)
def write_float_sparse_rcs(fid, kind, mat):
"""Write a single-precision sparse compressed row matrix tag."""
return write_float_sparse(fid, kind, mat, fmt='csr')
def write_float_sparse_ccs(fid, kind, mat):
"""Write a single-precision sparse compressed column matrix tag."""
return write_float_sparse(fid, kind, mat, fmt='csc')
def write_float_sparse(fid, kind, mat, fmt='auto'):
"""Write a single-precision floating-point sparse matrix tag."""
from .tag import _matrix_coding_CCS, _matrix_coding_RCS
if fmt == 'auto':
fmt = 'csr' if isinstance(mat, sparse.csr_matrix) else 'csc'
if fmt == 'csr':
need = sparse.csr_matrix
bits = _matrix_coding_RCS
else:
need = sparse.csc_matrix
bits = _matrix_coding_CCS
if not isinstance(mat, need):
raise TypeError('Must write %s, got %s' % (fmt.upper(), type(mat),))
FIFFT_MATRIX = bits << 16
FIFFT_MATRIX_FLOAT_RCS = FIFF.FIFFT_FLOAT | FIFFT_MATRIX
nnzm = mat.nnz
nrow = mat.shape[0]
data_size = 4 * nnzm + 4 * nnzm + 4 * (nrow + 1) + 4 * 4
fid.write(np.array(kind, dtype='>i4').tostring())
fid.write(np.array(FIFFT_MATRIX_FLOAT_RCS, dtype='>i4').tostring())
fid.write(np.array(data_size, dtype='>i4').tostring())
fid.write(np.array(FIFF.FIFFV_NEXT_SEQ, dtype='>i4').tostring())
fid.write(np.array(mat.data, dtype='>f4').tostring())
fid.write(np.array(mat.indices, dtype='>i4').tostring())
fid.write(np.array(mat.indptr, dtype='>i4').tostring())
dims = [nnzm, mat.shape[0], mat.shape[1], 2]
fid.write(np.array(dims, dtype='>i4').tostring())
check_fiff_length(fid)
def _generate_meas_id():
"""Generate a new meas_id dict."""
id_ = dict()
id_['version'] = FIFF.FIFFC_VERSION
id_['machid'] = get_machid()
id_['secs'], id_['usecs'] = DATE_NONE
return id_
|