1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
from collections import defaultdict
from colorsys import hsv_to_rgb, rgb_to_hsv
from os import path as op
import os
import copy as cp
import re
import numpy as np
from scipy import linalg, sparse
from .utils import get_subjects_dir, _check_subject, logger, verbose, warn,\
check_random_state
from .source_estimate import (SourceEstimate, _center_of_mass,
spatial_src_connectivity)
from .source_space import add_source_space_distances
from .surface import read_surface, fast_cross_3d, mesh_edges, mesh_dist
from .source_space import SourceSpaces
from .parallel import parallel_func, check_n_jobs
from .stats.cluster_level import _find_clusters, _get_components
from .externals.six import b, string_types
from .externals.six.moves import zip, xrange
def _blend_colors(color_1, color_2):
"""Blend two colors in HSV space.
Parameters
----------
color_1, color_2 : None | tuple
RGBA tuples with values between 0 and 1. None if no color is available.
If both colors are None, the output is None. If only one is None, the
output is the other color.
Returns
-------
color : None | tuple
RGBA tuple of the combined color. Saturation, value and alpha are
averaged, whereas the new hue is determined as angle half way between
the two input colors' hues.
"""
if color_1 is None and color_2 is None:
return None
elif color_1 is None:
return color_2
elif color_2 is None:
return color_1
r_1, g_1, b_1, a_1 = color_1
h_1, s_1, v_1 = rgb_to_hsv(r_1, g_1, b_1)
r_2, g_2, b_2, a_2 = color_2
h_2, s_2, v_2 = rgb_to_hsv(r_2, g_2, b_2)
hue_diff = abs(h_1 - h_2)
if hue_diff < 0.5:
h = min(h_1, h_2) + hue_diff / 2.
else:
h = max(h_1, h_2) + (1. - hue_diff) / 2.
h %= 1.
s = (s_1 + s_2) / 2.
v = (v_1 + v_2) / 2.
r, g, b = hsv_to_rgb(h, s, v)
a = (a_1 + a_2) / 2.
color = (r, g, b, a)
return color
def _split_colors(color, n):
"""Create n colors in HSV space that occupy a gradient in value.
Parameters
----------
color : tuple
RGBA tuple with values between 0 and 1.
n : int >= 2
Number of colors on the gradient.
Returns
-------
colors : tuple of tuples, len = n
N RGBA tuples that occupy a gradient in value (low to high) but share
saturation and hue with the input color.
"""
r, g, b, a = color
h, s, v = rgb_to_hsv(r, g, b)
gradient_range = np.sqrt(n / 10.)
if v > 0.5:
v_max = min(0.95, v + gradient_range / 2)
v_min = max(0.05, v_max - gradient_range)
else:
v_min = max(0.05, v - gradient_range / 2)
v_max = min(0.95, v_min + gradient_range)
hsv_colors = ((h, s, v_) for v_ in np.linspace(v_min, v_max, n))
rgb_colors = (hsv_to_rgb(h_, s_, v_) for h_, s_, v_ in hsv_colors)
rgba_colors = ((r_, g_, b_, a,) for r_, g_, b_ in rgb_colors)
return tuple(rgba_colors)
def _n_colors(n, bytes_=False, cmap='hsv'):
"""Produce a list of n unique RGBA color tuples based on a colormap.
Parameters
----------
n : int
Number of colors.
bytes : bool
Return colors as integers values between 0 and 255 (instead of floats
between 0 and 1).
cmap : str
Which colormap to use.
Returns
-------
colors : array, shape (n, 4)
RGBA color values.
"""
n_max = 2 ** 10
if n > n_max:
raise NotImplementedError("Can't produce more than %i unique "
"colors" % n_max)
from matplotlib.cm import get_cmap
cm = get_cmap(cmap, n_max)
pos = np.linspace(0, 1, n, False)
colors = cm(pos, bytes=bytes_)
if bytes_:
# make sure colors are unique
for ii, c in enumerate(colors):
if np.any(np.all(colors[:ii] == c, 1)):
raise RuntimeError('Could not get %d unique colors from %s '
'colormap. Try using a different colormap.'
% (n, cmap))
return colors
class Label(object):
"""A FreeSurfer/MNE label with vertices restricted to one hemisphere.
Labels can be combined with the ``+`` operator:
* Duplicate vertices are removed.
* If duplicate vertices have conflicting position values, an error
is raised.
* Values of duplicate vertices are summed.
Parameters
----------
vertices : array (length N)
vertex indices (0 based).
pos : array (N by 3) | None
locations in meters. If None, then zeros are used.
values : array (length N) | None
values at the vertices. If None, then ones are used.
hemi : 'lh' | 'rh'
Hemisphere to which the label applies.
comment : str
Kept as information but not used by the object itself.
name : str
Kept as information but not used by the object itself.
filename : str
Kept as information but not used by the object itself.
subject : str | None
Name of the subject the label is from.
color : None | matplotlib color
Default label color and alpha (e.g., ``(1., 0., 0., 1.)`` for red).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Attributes
----------
color : None | tuple
Default label color, represented as RGBA tuple with values between 0
and 1.
comment : str
Comment from the first line of the label file.
hemi : 'lh' | 'rh'
Hemisphere.
name : None | str
A name for the label. It is OK to change that attribute manually.
pos : array, shape = (n_pos, 3)
Locations in meters.
subject : str | None
Subject name. It is best practice to set this to the proper
value on initialization, but it can also be set manually.
values : array, len = n_pos
Values at the vertices.
verbose : bool, str, int, or None
See above.
vertices : array, len = n_pos
Vertex indices (0 based)
"""
@verbose
def __init__(self, vertices, pos=None, values=None, hemi=None, comment="",
name=None, filename=None, subject=None, color=None,
verbose=None): # noqa: D102
# check parameters
if not isinstance(hemi, string_types):
raise ValueError('hemi must be a string, not %s' % type(hemi))
vertices = np.asarray(vertices, int)
if np.any(np.diff(vertices.astype(int)) <= 0):
raise ValueError('Vertices must be ordered in increasing order.')
if color is not None:
from matplotlib.colors import colorConverter
color = colorConverter.to_rgba(color)
if values is None:
values = np.ones(len(vertices))
else:
values = np.asarray(values)
if pos is None:
pos = np.zeros((len(vertices), 3))
else:
pos = np.asarray(pos)
if not (len(vertices) == len(values) == len(pos)):
raise ValueError("vertices, values and pos need to have same "
"length (number of vertices)")
# name
if name is None and filename is not None:
name = op.basename(filename[:-6])
self.vertices = vertices
self.pos = pos
self.values = values
self.hemi = hemi
self.comment = comment
self.verbose = verbose
self.subject = _check_subject(None, subject, False)
self.color = color
self.name = name
self.filename = filename
def __setstate__(self, state): # noqa: D105
self.vertices = state['vertices']
self.pos = state['pos']
self.values = state['values']
self.hemi = state['hemi']
self.comment = state['comment']
self.verbose = state['verbose']
self.subject = state.get('subject', None)
self.color = state.get('color', None)
self.name = state['name']
self.filename = state['filename']
def __getstate__(self): # noqa: D105
out = dict(vertices=self.vertices,
pos=self.pos,
values=self.values,
hemi=self.hemi,
comment=self.comment,
verbose=self.verbose,
subject=self.subject,
color=self.color,
name=self.name,
filename=self.filename)
return out
def __repr__(self): # noqa: D105
name = 'unknown, ' if self.subject is None else self.subject + ', '
name += repr(self.name) if self.name is not None else "unnamed"
n_vert = len(self)
return "<Label | %s, %s : %i vertices>" % (name, self.hemi, n_vert)
def __len__(self):
"""Return the number of vertices."""
return len(self.vertices)
def __add__(self, other):
"""Add BiHemiLabels."""
if isinstance(other, BiHemiLabel):
return other + self
elif isinstance(other, Label):
if self.subject != other.subject:
raise ValueError('Label subject parameters must match, got '
'"%s" and "%s". Consider setting the '
'subject parameter on initialization, or '
'setting label.subject manually before '
'combining labels.' % (self.subject,
other.subject))
if self.hemi != other.hemi:
name = '%s + %s' % (self.name, other.name)
if self.hemi == 'lh':
lh, rh = self.copy(), other.copy()
else:
lh, rh = other.copy(), self.copy()
color = _blend_colors(self.color, other.color)
return BiHemiLabel(lh, rh, name, color)
else:
raise TypeError("Need: Label or BiHemiLabel. Got: %r" % other)
# check for overlap
duplicates = np.intersect1d(self.vertices, other.vertices)
n_dup = len(duplicates)
if n_dup:
self_dup = [np.where(self.vertices == d)[0][0]
for d in duplicates]
other_dup = [np.where(other.vertices == d)[0][0]
for d in duplicates]
if not np.all(self.pos[self_dup] == other.pos[other_dup]):
err = ("Labels %r and %r: vertices overlap but differ in "
"position values" % (self.name, other.name))
raise ValueError(err)
isnew = np.array([v not in duplicates for v in other.vertices])
vertices = np.hstack((self.vertices, other.vertices[isnew]))
pos = np.vstack((self.pos, other.pos[isnew]))
# find position of other's vertices in new array
tgt_idx = [np.where(vertices == v)[0][0] for v in other.vertices]
n_self = len(self.values)
n_other = len(other.values)
new_len = n_self + n_other - n_dup
values = np.zeros(new_len, dtype=self.values.dtype)
values[:n_self] += self.values
values[tgt_idx] += other.values
else:
vertices = np.hstack((self.vertices, other.vertices))
pos = np.vstack((self.pos, other.pos))
values = np.hstack((self.values, other.values))
indcs = np.argsort(vertices)
vertices, pos, values = vertices[indcs], pos[indcs, :], values[indcs]
comment = "%s + %s" % (self.comment, other.comment)
name0 = self.name if self.name else 'unnamed'
name1 = other.name if other.name else 'unnamed'
name = "%s + %s" % (name0, name1)
color = _blend_colors(self.color, other.color)
verbose = self.verbose or other.verbose
label = Label(vertices, pos, values, self.hemi, comment, name, None,
self.subject, color, verbose)
return label
def __sub__(self, other):
"""Subtract BiHemiLabels."""
if isinstance(other, BiHemiLabel):
if self.hemi == 'lh':
return self - other.lh
else:
return self - other.rh
elif isinstance(other, Label):
if self.subject != other.subject:
raise ValueError('Label subject parameters must match, got '
'"%s" and "%s". Consider setting the '
'subject parameter on initialization, or '
'setting label.subject manually before '
'combining labels.' % (self.subject,
other.subject))
else:
raise TypeError("Need: Label or BiHemiLabel. Got: %r" % other)
if self.hemi == other.hemi:
keep = np.in1d(self.vertices, other.vertices, True, invert=True)
else:
keep = np.arange(len(self.vertices))
name = "%s - %s" % (self.name or 'unnamed', other.name or 'unnamed')
return Label(self.vertices[keep], self.pos[keep], self.values[keep],
self.hemi, self.comment, name, None, self.subject,
self.color, self.verbose)
def save(self, filename):
r"""Write to disk as FreeSurfer \*.label file.
Parameters
----------
filename : string
Path to label file to produce.
Notes
-----
Note that due to file specification limitations, the Label's subject
and color attributes are not saved to disk.
"""
write_label(filename, self)
def copy(self):
"""Copy the label instance.
Returns
-------
label : instance of Label
The copied label.
"""
return cp.deepcopy(self)
def fill(self, src, name=None):
"""Fill the surface between sources for a source space label.
Parameters
----------
src : SourceSpaces
Source space in which the label was defined. If a source space is
provided, the label is expanded to fill in surface vertices that
lie between the vertices included in the source space. For the
added vertices, ``pos`` is filled in with positions from the
source space, and ``values`` is filled in from the closest source
space vertex.
name : None | str
Name for the new Label (default is self.name).
Returns
-------
label : Label
The label covering the same vertices in source space but also
including intermediate surface vertices.
"""
# find source space patch info
if len(self.vertices) == 0:
return self.copy()
if self.hemi == 'lh':
hemi_src = src[0]
elif self.hemi == 'rh':
hemi_src = src[1]
if not np.all(np.in1d(self.vertices, hemi_src['vertno'])):
msg = "Source space does not contain all of the label's vertices"
raise ValueError(msg)
nearest = hemi_src['nearest']
if nearest is None:
warn("Computing patch info for source space, this can take "
"a while. In order to avoid this in the future, run "
"mne.add_source_space_distances() on the source space "
"and save it.")
add_source_space_distances(src)
nearest = hemi_src['nearest']
# find new vertices
include = np.in1d(nearest, self.vertices, False)
vertices = np.nonzero(include)[0]
# values
nearest_in_label = np.digitize(nearest[vertices], self.vertices, True)
values = self.values[nearest_in_label]
# pos
pos = hemi_src['rr'][vertices]
if name is None:
name = self.name
label = Label(vertices, pos, values, self.hemi, self.comment, name,
None, self.subject, self.color)
return label
@verbose
def smooth(self, subject=None, smooth=2, grade=None,
subjects_dir=None, n_jobs=1, verbose=None):
"""Smooth the label.
Useful for filling in labels made in a
decimated source space for display.
Parameters
----------
subject : str | None
The name of the subject used. If None, the value will be
taken from self.subject.
smooth : int
Number of iterations for the smoothing of the surface data.
Cannot be None here since not all vertices are used. For a
grade of 5 (e.g., fsaverage), a smoothing of 2 will fill a
label.
grade : int, list (of two arrays), array, or None
Resolution of the icosahedral mesh (typically 5). If None, all
vertices will be used (potentially filling the surface). If a list,
values will be morphed to the set of vertices specified in grade[0]
and grade[1], assuming that these are vertices for the left and
right hemispheres. Note that specifying the vertices (e.g.,
grade=[np.arange(10242), np.arange(10242)] for fsaverage on a
standard grade 5 source space) can be substantially faster than
computing vertex locations. If one array is used, it is assumed
that all vertices belong to the hemisphere of the label. To create
a label filling the surface, use None.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
n_jobs : int
Number of jobs to run in parallel
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more). Defaults to self.verbose.
Returns
-------
label : instance of Label
The smoothed label.
Notes
-----
This function will set label.pos to be all zeros. If the positions
on the new surface are required, consider using mne.read_surface
with label.vertices.
"""
subject = _check_subject(self.subject, subject)
return self.morph(subject, subject, smooth, grade, subjects_dir,
n_jobs, verbose)
@verbose
def morph(self, subject_from=None, subject_to=None, smooth=5, grade=None,
subjects_dir=None, n_jobs=1, verbose=None):
"""Morph the label.
Useful for transforming a label from one subject to another.
Parameters
----------
subject_from : str | None
The name of the subject of the current label. If None, the
initial subject will be taken from self.subject.
subject_to : str
The name of the subject to morph the label to. This will
be put in label.subject of the output label file.
smooth : int
Number of iterations for the smoothing of the surface data.
Cannot be None here since not all vertices are used.
grade : int, list (of two arrays), array, or None
Resolution of the icosahedral mesh (typically 5). If None, all
vertices will be used (potentially filling the surface). If a list,
values will be morphed to the set of vertices specified in grade[0]
and grade[1], assuming that these are vertices for the left and
right hemispheres. Note that specifying the vertices (e.g.,
``grade=[np.arange(10242), np.arange(10242)]`` for fsaverage on a
standard grade 5 source space) can be substantially faster than
computing vertex locations. If one array is used, it is assumed
that all vertices belong to the hemisphere of the label. To create
a label filling the surface, use None.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
n_jobs : int
Number of jobs to run in parallel.
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
Returns
-------
label : instance of Label
The morphed label.
Notes
-----
This function will set label.pos to be all zeros. If the positions
on the new surface are required, consider using `mne.read_surface`
with `label.vertices`.
"""
from .morph import compute_source_morph, grade_to_vertices
subject_from = _check_subject(self.subject, subject_from)
if not isinstance(subject_to, string_types):
raise TypeError('"subject_to" must be entered as a string')
if not isinstance(smooth, int):
raise TypeError('smooth must be an integer')
if np.all(self.values == 0):
raise ValueError('Morphing label with all zero values will result '
'in the label having no vertices. Consider using '
'something like label.values.fill(1.0).')
idx = 0 if self.hemi == 'lh' else 1
if isinstance(grade, np.ndarray):
grade_ = [np.array([], int)] * 2
grade_[idx] = grade
grade = grade_
del grade_
grade = grade_to_vertices(subject_to, grade, subjects_dir=subjects_dir)
spacing = [np.array([], int)] * 2
spacing[idx] = grade[idx]
vertices = [np.array([], int)] * 2
vertices[idx] = self.vertices
data = self.values[:, np.newaxis]
assert len(data) == sum(len(v) for v in vertices)
stc = SourceEstimate(data, vertices, tmin=1, tstep=1,
subject=subject_from)
stc = compute_source_morph(
stc, subject_from, subject_to, spacing=spacing, smooth=smooth,
subjects_dir=subjects_dir, warn=False).apply(stc)
inds = np.nonzero(stc.data)[0]
self.values = stc.data[inds, :].ravel()
self.pos = np.zeros((len(inds), 3))
self.vertices = stc.vertices[idx][inds]
self.subject = subject_to
return self
def split(self, parts=2, subject=None, subjects_dir=None,
freesurfer=False):
"""Split the Label into two or more parts.
Parameters
----------
parts : int >= 2 | tuple of str | str
Number of labels to create (default is 2), or tuple of strings
specifying label names for new labels (from posterior to anterior),
or 'contiguous' to split the label into connected components.
If a number or 'contiguous' is specified, names of the new labels
will be the input label's name with div1, div2 etc. appended.
subject : None | str
Subject which this label belongs to (needed to locate surface file;
should only be specified if it is not specified in the label).
subjects_dir : None | str
Path to SUBJECTS_DIR if it is not set in the environment.
freesurfer : bool
By default (``False``) ``split_label`` uses an algorithm that is
slightly optimized for performance and numerical precision. Set
``freesurfer`` to ``True`` in order to replicate label splits from
FreeSurfer's ``mris_divide_parcellation``.
Returns
-------
labels : list of Label (len = n_parts)
The labels, starting from the lowest to the highest end of the
projection axis.
Notes
-----
If using 'contiguous' split, you must ensure that the label being split
uses the same triangular resolution as the surface mesh files in
``subjects_dir`` Also, some small fringe labels may be returned that
are close (but not connected) to the large components.
The spatial split finds the label's principal eigen-axis on the
spherical surface, projects all label vertex coordinates onto this
axis, and divides them at regular spatial intervals.
"""
if isinstance(parts, string_types) and parts == 'contiguous':
return _split_label_contig(self, subject, subjects_dir)
elif isinstance(parts, (tuple, int)):
return split_label(self, parts, subject, subjects_dir, freesurfer)
else:
raise ValueError("Need integer, tuple of strings, or string "
"('contiguous'). Got %s)" % type(parts))
def get_vertices_used(self, vertices=None):
"""Get the source space's vertices inside the label.
Parameters
----------
vertices : ndarray of int, shape (n_vertices,) | None
The set of vertices to compare the label to. If None, equals to
``np.arange(10242)``. Defaults to None.
Returns
-------
label_verts : ndarray of in, shape (n_label_vertices,)
The vertices of the label corresponding used by the data.
"""
if vertices is None:
vertices = np.arange(10242)
label_verts = vertices[np.in1d(vertices, self.vertices)]
return label_verts
def get_tris(self, tris, vertices=None):
"""Get the source space's triangles inside the label.
Parameters
----------
tris : ndarray of int, shape (n_tris, 3)
The set of triangles corresponding to the vertices in a
source space.
vertices : ndarray of int, shape (n_vertices,) | None
The set of vertices to compare the label to. If None, equals to
``np.arange(10242)``. Defaults to None.
Returns
-------
label_tris : ndarray of int, shape (n_tris, 3)
The subset of tris used by the label
"""
vertices_ = self.get_vertices_used(vertices)
selection = np.all(np.in1d(tris, vertices_).reshape(tris.shape),
axis=1)
label_tris = tris[selection]
if len(np.unique(label_tris)) < len(vertices_):
logger.info('Surprising label structure. Trying to repair '
'triangles.')
dropped_vertices = np.setdiff1d(vertices_, label_tris)
n_dropped = len(dropped_vertices)
assert n_dropped == (len(vertices_) - len(np.unique(label_tris)))
# put missing vertices as extra zero-length triangles
add_tris = (dropped_vertices +
np.zeros((len(dropped_vertices), 3), dtype=int).T)
label_tris = np.r_[label_tris, add_tris.T]
assert len(np.unique(label_tris)) == len(vertices_)
return label_tris
def center_of_mass(self, subject=None, restrict_vertices=False,
subjects_dir=None, surf='sphere'):
"""Compute the center of mass of the label.
This function computes the spatial center of mass on the surface
as in [1]_.
Parameters
----------
subject : string | None
The subject the label is defined for.
restrict_vertices : bool | array of int | instance of SourceSpaces
If True, returned vertex will be one from the label. Otherwise,
it could be any vertex from surf. If an array of int, the
returned vertex will come from that array. If instance of
SourceSpaces (as of 0.13), the returned vertex will be from
the given source space. For most accuruate estimates, do not
restrict vertices.
subjects_dir : str, or None
Path to the SUBJECTS_DIR. If None, the path is obtained by using
the environment variable SUBJECTS_DIR.
surf : str
The surface to use for Euclidean distance center of mass
finding. The default here is "sphere", which finds the center
of mass on the spherical surface to help avoid potential issues
with cortical folding.
Returns
-------
vertex : int
Vertex of the spatial center of mass for the inferred hemisphere,
with each vertex weighted by its label value.
See Also
--------
SourceEstimate.center_of_mass
vertex_to_mni
Notes
-----
.. versionadded: 0.13
References
----------
.. [1] Larson and Lee, "The cortical dynamics underlying effective
switching of auditory spatial attention", NeuroImage 2012.
"""
if not isinstance(surf, string_types):
raise TypeError('surf must be a string, got %s' % (type(surf),))
subject = _check_subject(self.subject, subject)
if np.any(self.values < 0):
raise ValueError('Cannot compute COM with negative values')
if np.all(self.values == 0):
raise ValueError('Cannot compute COM with all values == 0. For '
'structural labels, consider setting to ones via '
'label.values[:] = 1.')
vertex = _center_of_mass(self.vertices, self.values, self.hemi, surf,
subject, subjects_dir, restrict_vertices)
return vertex
class BiHemiLabel(object):
"""A freesurfer/MNE label with vertices in both hemispheres.
Parameters
----------
lh : Label
Label for the left hemisphere.
rh : Label
Label for the right hemisphere.
name : None | str
name for the label
color : None | matplotlib color
Label color and alpha (e.g., ``(1., 0., 0., 1.)`` for red).
Note that due to file specification limitations, the color isn't saved
to or loaded from files written to disk.
Attributes
----------
lh : Label
Label for the left hemisphere.
rh : Label
Label for the right hemisphere.
name : None | str
A name for the label. It is OK to change that attribute manually.
subject : str | None
Subject the label is from.
"""
def __init__(self, lh, rh, name=None, color=None): # noqa: D102
if lh.subject != rh.subject:
raise ValueError('lh.subject (%s) and rh.subject (%s) must '
'agree' % (lh.subject, rh.subject))
self.lh = lh
self.rh = rh
self.name = name
self.subject = lh.subject
self.color = color
self.hemi = 'both'
def __repr__(self): # noqa: D105
temp = "<BiHemiLabel | %s, lh : %i vertices, rh : %i vertices>"
name = 'unknown, ' if self.subject is None else self.subject + ', '
name += repr(self.name) if self.name is not None else "unnamed"
return temp % (name, len(self.lh), len(self.rh))
def __len__(self):
"""Return the number of vertices."""
return len(self.lh) + len(self.rh)
def __add__(self, other):
"""Add labels."""
if isinstance(other, Label):
if other.hemi == 'lh':
lh = self.lh + other
rh = self.rh
else:
lh = self.lh
rh = self.rh + other
elif isinstance(other, BiHemiLabel):
lh = self.lh + other.lh
rh = self.rh + other.rh
else:
raise TypeError("Need: Label or BiHemiLabel. Got: %r" % other)
name = '%s + %s' % (self.name, other.name)
color = _blend_colors(self.color, other.color)
return BiHemiLabel(lh, rh, name, color)
def __sub__(self, other):
"""Subtract labels."""
if isinstance(other, Label):
if other.hemi == 'lh':
lh = self.lh - other
rh = self.rh
else:
rh = self.rh - other
lh = self.lh
elif isinstance(other, BiHemiLabel):
lh = self.lh - other.lh
rh = self.rh - other.rh
else:
raise TypeError("Need: Label or BiHemiLabel. Got: %r" % other)
if len(lh.vertices) == 0:
return rh
elif len(rh.vertices) == 0:
return lh
else:
name = '%s - %s' % (self.name, other.name)
return BiHemiLabel(lh, rh, name, self.color)
def read_label(filename, subject=None, color=None):
"""Read FreeSurfer Label file.
Parameters
----------
filename : string
Path to label file.
subject : str | None
Name of the subject the data are defined for.
It is good practice to set this attribute to avoid combining
incompatible labels and SourceEstimates (e.g., ones from other
subjects). Note that due to file specification limitations, the
subject name isn't saved to or loaded from files written to disk.
color : None | matplotlib color
Default label color and alpha (e.g., ``(1., 0., 0., 1.)`` for red).
Note that due to file specification limitations, the color isn't saved
to or loaded from files written to disk.
Returns
-------
label : Label
Instance of Label object with attributes:
- ``comment``: comment from the first line of the label file
- ``vertices``: vertex indices (0 based, column 1)
- ``pos``: locations in meters (columns 2 - 4 divided by 1000)
- ``values``: values at the vertices (column 5)
See Also
--------
read_labels_from_annot
"""
if subject is not None and not isinstance(subject, string_types):
raise TypeError('subject must be a string')
# find hemi
basename = op.basename(filename)
if basename.endswith('lh.label') or basename.startswith('lh.'):
hemi = 'lh'
elif basename.endswith('rh.label') or basename.startswith('rh.'):
hemi = 'rh'
else:
raise ValueError('Cannot find which hemisphere it is. File should end'
' with lh.label or rh.label')
# find name
if basename.startswith(('lh.', 'rh.')):
basename_ = basename[3:]
if basename.endswith('.label'):
basename_ = basename[:-6]
else:
basename_ = basename[:-9]
name = "%s-%s" % (basename_, hemi)
# read the file
with open(filename, 'r') as fid:
comment = fid.readline().replace('\n', '')[1:]
nv = int(fid.readline())
data = np.empty((5, nv))
for i, line in enumerate(fid):
data[:, i] = line.split()
# let's make sure everything is ordered correctly
vertices = np.array(data[0], dtype=np.int32)
pos = 1e-3 * data[1:4].T
values = data[4]
order = np.argsort(vertices)
vertices = vertices[order]
pos = pos[order]
values = values[order]
label = Label(vertices, pos, values, hemi, comment, name, filename,
subject, color)
return label
@verbose
def write_label(filename, label, verbose=None):
"""Write a FreeSurfer label.
Parameters
----------
filename : string
Path to label file to produce.
label : Label
The label object to save.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Notes
-----
Note that due to file specification limitations, the Label's subject and
color attributes are not saved to disk.
See Also
--------
write_labels_to_annot
"""
hemi = label.hemi
path_head, name = op.split(filename)
if name.endswith('.label'):
name = name[:-6]
if not (name.startswith(hemi) or name.endswith(hemi)):
name += '-' + hemi
filename = op.join(path_head, name) + '.label'
logger.info('Saving label to : %s' % filename)
with open(filename, 'wb') as fid:
n_vertices = len(label.vertices)
data = np.zeros((n_vertices, 5), dtype=np.float)
data[:, 0] = label.vertices
data[:, 1:4] = 1e3 * label.pos
data[:, 4] = label.values
fid.write(b("#%s\n" % label.comment))
fid.write(b("%d\n" % n_vertices))
for d in data:
fid.write(b("%d %f %f %f %f\n" % tuple(d)))
return label
def _prep_label_split(label, subject=None, subjects_dir=None):
"""Get label and subject information prior to label splitting."""
# If necessary, find the label
if isinstance(label, BiHemiLabel):
raise TypeError("Can only split labels restricted to one hemisphere.")
elif isinstance(label, string_types):
label = read_label(label)
# Find the subject
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if label.subject is None and subject is None:
raise ValueError("The subject needs to be specified.")
elif subject is None:
subject = label.subject
elif label.subject is None:
pass
elif subject != label.subject:
raise ValueError("The label specifies a different subject (%r) from "
"the subject parameter (%r)."
% label.subject, subject)
return label, subject, subjects_dir
def _split_label_contig(label_to_split, subject=None, subjects_dir=None):
"""Split label into contiguous regions (i.e., connected components).
Parameters
----------
label_to_split : Label | str
Label which is to be split (Label object or path to a label file).
subject : None | str
Subject which this label belongs to (needed to locate surface file;
should only be specified if it is not specified in the label).
subjects_dir : None | str
Path to SUBJECTS_DIR if it is not set in the environment.
Returns
-------
labels : list of Label
The contiguous labels, in order of decending size.
"""
# Convert to correct input if necessary
label_to_split, subject, subjects_dir = _prep_label_split(label_to_split,
subject,
subjects_dir)
# Find the spherical surface to get vertices and tris
surf_fname = '.'.join((label_to_split.hemi, 'sphere'))
surf_path = op.join(subjects_dir, subject, 'surf', surf_fname)
surface_points, surface_tris = read_surface(surf_path)
# Get vertices we want to keep and compute mesh edges
verts_arr = label_to_split.vertices
edges_all = mesh_edges(surface_tris)
# Subselect rows and cols of vertices that belong to the label
select_edges = edges_all[verts_arr][:, verts_arr].tocoo()
# Compute connected components and store as lists of vertex numbers
comp_labels = _get_components(verts_arr, select_edges)
# Convert to indices in the original surface space
label_divs = []
for comp in comp_labels:
label_divs.append(verts_arr[comp])
# Construct label division names
n_parts = len(label_divs)
if label_to_split.name.endswith(('lh', 'rh')):
basename = label_to_split.name[:-3]
name_ext = label_to_split.name[-3:]
else:
basename = label_to_split.name
name_ext = ''
name_pattern = "%s_div%%i%s" % (basename, name_ext)
names = tuple(name_pattern % i for i in range(1, n_parts + 1))
# Colors
if label_to_split.color is None:
colors = (None,) * n_parts
else:
colors = _split_colors(label_to_split.color, n_parts)
# Sort label divisions by their size (in vertices)
label_divs.sort(key=lambda x: len(x), reverse=True)
labels = []
for div, name, color in zip(label_divs, names, colors):
# Get indices of dipoles within this division of the label
verts = np.array(sorted(list(div)), int)
vert_indices = np.in1d(verts_arr, verts, assume_unique=True)
# Set label attributes
pos = label_to_split.pos[vert_indices]
values = label_to_split.values[vert_indices]
hemi = label_to_split.hemi
comment = label_to_split.comment
lbl = Label(verts, pos, values, hemi, comment, name, None, subject,
color)
labels.append(lbl)
return labels
def split_label(label, parts=2, subject=None, subjects_dir=None,
freesurfer=False):
"""Split a Label into two or more parts.
Parameters
----------
label : Label | str
Label which is to be split (Label object or path to a label file).
parts : int >= 2 | tuple of str
A sequence of strings specifying label names for the new labels (from
posterior to anterior), or the number of new labels to create (default
is 2). If a number is specified, names of the new labels will be the
input label's name with div1, div2 etc. appended.
subject : None | str
Subject which this label belongs to (needed to locate surface file;
should only be specified if it is not specified in the label).
subjects_dir : None | str
Path to SUBJECTS_DIR if it is not set in the environment.
freesurfer : bool
By default (``False``) ``split_label`` uses an algorithm that is
slightly optimized for performance and numerical precision. Set
``freesurfer`` to ``True`` in order to replicate label splits from
FreeSurfer's ``mris_divide_parcellation``.
Returns
-------
labels : list of Label (len = n_parts)
The labels, starting from the lowest to the highest end of the
projection axis.
Notes
-----
Works by finding the label's principal eigen-axis on the spherical surface,
projecting all label vertex coordinates onto this axis and dividing them at
regular spatial intervals.
"""
label, subject, subjects_dir = _prep_label_split(label, subject,
subjects_dir)
# find the parts
if np.isscalar(parts):
n_parts = int(parts)
if label.name.endswith(('lh', 'rh')):
basename = label.name[:-3]
name_ext = label.name[-3:]
else:
basename = label.name
name_ext = ''
name_pattern = "%s_div%%i%s" % (basename, name_ext)
names = tuple(name_pattern % i for i in range(1, n_parts + 1))
else:
names = parts
n_parts = len(names)
if n_parts < 2:
raise ValueError("Can't split label into %i parts" % n_parts)
# find the spherical surface
surf_fname = '.'.join((label.hemi, 'sphere'))
surf_path = op.join(subjects_dir, subject, "surf", surf_fname)
surface_points, surface_tris = read_surface(surf_path)
# find the label coordinates on the surface
points = surface_points[label.vertices]
center = np.mean(points, axis=0)
centered_points = points - center
# find the label's normal
if freesurfer:
# find the Freesurfer vertex closest to the center
distance = np.sqrt(np.sum(centered_points ** 2, axis=1))
i_closest = np.argmin(distance)
closest_vertex = label.vertices[i_closest]
# find the normal according to freesurfer convention
idx = np.any(surface_tris == closest_vertex, axis=1)
tris_for_normal = surface_tris[idx]
r1 = surface_points[tris_for_normal[:, 0], :]
r2 = surface_points[tris_for_normal[:, 1], :]
r3 = surface_points[tris_for_normal[:, 2], :]
tri_normals = fast_cross_3d((r2 - r1), (r3 - r1))
normal = np.mean(tri_normals, axis=0)
normal /= linalg.norm(normal)
else:
# Normal of the center
normal = center / linalg.norm(center)
# project all vertex coordinates on the tangential plane for this point
q, _ = linalg.qr(normal[:, np.newaxis])
tangent_u = q[:, 1:]
m_obs = np.dot(centered_points, tangent_u)
# find principal eigendirection
m_cov = np.dot(m_obs.T, m_obs)
w, vr = linalg.eig(m_cov)
i = np.argmax(w)
eigendir = vr[:, i]
# project back into 3d space
axis = np.dot(tangent_u, eigendir)
# orient them from posterior to anterior
if axis[1] < 0:
axis *= -1
# project the label on the axis
proj = np.dot(points, axis)
# assign mark (new label index)
proj -= proj.min()
proj /= (proj.max() / n_parts)
mark = proj // 1
mark[mark == n_parts] = n_parts - 1
# colors
if label.color is None:
colors = (None,) * n_parts
else:
colors = _split_colors(label.color, n_parts)
# construct new labels
labels = []
for i, name, color in zip(range(n_parts), names, colors):
idx = (mark == i)
vert = label.vertices[idx]
pos = label.pos[idx]
values = label.values[idx]
hemi = label.hemi
comment = label.comment
lbl = Label(vert, pos, values, hemi, comment, name, None, subject,
color)
labels.append(lbl)
return labels
def label_sign_flip(label, src):
"""Compute sign for label averaging.
Parameters
----------
label : Label | BiHemiLabel
A label.
src : SourceSpaces
The source space over which the label is defined.
Returns
-------
flip : array
Sign flip vector (contains 1 or -1)
"""
if len(src) != 2:
raise ValueError('Only source spaces with 2 hemisphers are accepted')
lh_vertno = src[0]['vertno']
rh_vertno = src[1]['vertno']
# get source orientations
ori = list()
if label.hemi in ('lh', 'both'):
vertices = label.vertices if label.hemi == 'lh' else label.lh.vertices
vertno_sel = np.intersect1d(lh_vertno, vertices)
ori.append(src[0]['nn'][vertno_sel])
if label.hemi in ('rh', 'both'):
vertices = label.vertices if label.hemi == 'rh' else label.rh.vertices
vertno_sel = np.intersect1d(rh_vertno, vertices)
ori.append(src[1]['nn'][vertno_sel])
if len(ori) == 0:
raise Exception('Unknown hemisphere type "%s"' % (label.hemi,))
ori = np.concatenate(ori, axis=0)
if len(ori) == 0:
return np.array([], int)
_, _, Vh = linalg.svd(ori, full_matrices=False)
# The sign of Vh is ambiguous, so we should align to the max-positive
# (outward) direction
dots = np.dot(ori, Vh[0])
if np.mean(dots) < 0:
dots *= -1
# Comparing to the direction of the first right singular vector
flip = np.sign(dots)
return flip
@verbose
def stc_to_label(stc, src=None, smooth=True, connected=False,
subjects_dir=None, verbose=None):
"""Compute a label from the non-zero sources in an stc object.
Parameters
----------
stc : SourceEstimate
The source estimates.
src : SourceSpaces | str | None
The source space over which the source estimates are defined.
If it's a string it should the subject name (e.g. fsaverage).
Can be None if stc.subject is not None.
smooth : bool
Fill in vertices on the cortical surface that are not in the source
space based on the closest source space vertex (requires
src to be a SourceSpace).
connected : bool
If True a list of connected labels will be returned in each
hemisphere. The labels are ordered in decreasing order depending
of the maximum value in the stc.
subjects_dir : str | None
Path to SUBJECTS_DIR if it is not set in the environment.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
labels : list of Labels | list of list of Labels
The generated labels. If connected is False, it returns
a list of Labels (one per hemisphere). If no Label is available
in a hemisphere, None is returned. If connected is True,
it returns for each hemisphere a list of connected labels
ordered in decreasing order depending of the maximum value in the stc.
If no Label is available in an hemisphere, an empty list is returned.
"""
if not isinstance(smooth, bool):
raise ValueError('smooth should be True or False. Got %s.' % smooth)
src = stc.subject if src is None else src
if src is None:
raise ValueError('src cannot be None if stc.subject is None')
if isinstance(src, string_types):
subject = src
else:
subject = stc.subject
if not isinstance(stc, SourceEstimate):
raise ValueError('SourceEstimate should be surface source estimates')
if isinstance(src, string_types):
if connected:
raise ValueError('The option to return only connected labels is '
'only available if source spaces are provided.')
if smooth:
msg = ("stc_to_label with smooth=True requires src to be an "
"instance of SourceSpace")
raise ValueError(msg)
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
surf_path_from = op.join(subjects_dir, src, 'surf')
rr_lh, tris_lh = read_surface(op.join(surf_path_from, 'lh.white'))
rr_rh, tris_rh = read_surface(op.join(surf_path_from, 'rh.white'))
rr = [rr_lh, rr_rh]
tris = [tris_lh, tris_rh]
else:
if not isinstance(src, SourceSpaces):
raise TypeError('src must be a string or a set of source spaces')
if len(src) != 2:
raise ValueError('source space should contain the 2 hemispheres')
rr = [1e3 * src[0]['rr'], 1e3 * src[1]['rr']]
tris = [src[0]['tris'], src[1]['tris']]
src_conn = spatial_src_connectivity(src).tocsr()
labels = []
cnt = 0
cnt_full = 0
for hemi_idx, (hemi, this_vertno, this_tris, this_rr) in enumerate(
zip(['lh', 'rh'], stc.vertices, tris, rr)):
this_data = stc.data[cnt:cnt + len(this_vertno)]
e = mesh_edges(this_tris)
e.data[e.data == 2] = 1
n_vertices = e.shape[0]
e = e + sparse.eye(n_vertices, n_vertices)
if connected: # we know src *must* be a SourceSpaces now
vertno = np.where(src[hemi_idx]['inuse'])[0]
if not len(np.setdiff1d(this_vertno, vertno)) == 0:
raise RuntimeError('stc contains vertices not present '
'in source space, did you morph?')
tmp = np.zeros((len(vertno), this_data.shape[1]))
this_vertno_idx = np.searchsorted(vertno, this_vertno)
tmp[this_vertno_idx] = this_data
this_data = tmp
offset = cnt_full + len(this_data)
this_src_conn = src_conn[cnt_full:offset, cnt_full:offset].tocoo()
this_data_abs_max = np.abs(this_data).max(axis=1)
clusters, _ = _find_clusters(this_data_abs_max, 0.,
connectivity=this_src_conn)
cnt_full += len(this_data)
# Then order clusters in descending order based on maximum value
clusters_max = np.argsort([np.max(this_data_abs_max[c])
for c in clusters])[::-1]
clusters = [clusters[k] for k in clusters_max]
clusters = [vertno[c] for c in clusters]
else:
clusters = [this_vertno[np.any(this_data, axis=1)]]
cnt += len(this_vertno)
clusters = [c for c in clusters if len(c) > 0]
if len(clusters) == 0:
if not connected:
this_labels = None
else:
this_labels = []
else:
this_labels = []
colors = _n_colors(len(clusters))
for c, color in zip(clusters, colors):
idx_use = c
label = Label(idx_use, this_rr[idx_use], None, hemi,
'Label from stc', subject=subject,
color=color)
if smooth:
label = label.fill(src)
this_labels.append(label)
if not connected:
this_labels = this_labels[0]
labels.append(this_labels)
return labels
def _verts_within_dist(graph, sources, max_dist):
"""Find all vertices wihin a maximum geodesic distance from source.
Parameters
----------
graph : scipy.sparse.csr_matrix
Sparse matrix with distances between adjacent vertices.
sources : list of int
Source vertices.
max_dist : float
Maximum geodesic distance.
Returns
-------
verts : array
Vertices within max_dist.
dist : array
Distances from source vertex.
"""
dist_map = {}
verts_added_last = []
for source in sources:
dist_map[source] = 0
verts_added_last.append(source)
# add neighbors until no more neighbors within max_dist can be found
while len(verts_added_last) > 0:
verts_added = []
for i in verts_added_last:
v_dist = dist_map[i]
row = graph[i, :]
neighbor_vert = row.indices
neighbor_dist = row.data
for j, d in zip(neighbor_vert, neighbor_dist):
n_dist = v_dist + d
if j in dist_map:
if n_dist < dist_map[j]:
dist_map[j] = n_dist
else:
if n_dist <= max_dist:
dist_map[j] = n_dist
# we found a new vertex within max_dist
verts_added.append(j)
verts_added_last = verts_added
verts = np.sort(np.array(list(dist_map.keys()), int))
dist = np.array([dist_map[v] for v in verts], int)
return verts, dist
def _grow_labels(seeds, extents, hemis, names, dist, vert, subject):
"""Parallelize grow_labels."""
labels = []
for seed, extent, hemi, name in zip(seeds, extents, hemis, names):
label_verts, label_dist = _verts_within_dist(dist[hemi], seed, extent)
# create a label
if len(seed) == 1:
seed_repr = str(seed)
else:
seed_repr = ','.join(map(str, seed))
comment = 'Circular label: seed=%s, extent=%0.1fmm' % (seed_repr,
extent)
label = Label(vertices=label_verts,
pos=vert[hemi][label_verts],
values=label_dist,
hemi=hemi,
comment=comment,
name=str(name),
subject=subject)
labels.append(label)
return labels
def grow_labels(subject, seeds, extents, hemis, subjects_dir=None, n_jobs=1,
overlap=True, names=None, surface='white'):
"""Generate circular labels in source space with region growing.
This function generates a number of labels in source space by growing
regions starting from the vertices defined in "seeds". For each seed, a
label is generated containing all vertices within a maximum geodesic
distance on the white matter surface from the seed.
Note: "extents" and "hemis" can either be arrays with the same length as
seeds, which allows using a different extent and hemisphere for each
label, or integers, in which case the same extent and hemisphere is
used for each label.
Parameters
----------
subject : string
Name of the subject as in SUBJECTS_DIR.
seeds : int | list
Seed, or list of seeds. Each seed can be either a vertex number or
a list of vertex numbers.
extents : array | float
Extents (radius in mm) of the labels.
hemis : array | int
Hemispheres to use for the labels (0: left, 1: right).
subjects_dir : string
Path to SUBJECTS_DIR if not set in the environment.
n_jobs : int
Number of jobs to run in parallel. Likely only useful if tens
or hundreds of labels are being expanded simultaneously. Does not
apply with ``overlap=False``.
overlap : bool
Produce overlapping labels. If True (default), the resulting labels
can be overlapping. If False, each label will be grown one step at a
time, and occupied territory will not be invaded.
names : None | list of str
Assign names to the new labels (list needs to have the same length as
seeds).
surface : string
The surface used to grow the labels, defaults to the white surface.
Returns
-------
labels : list of Label
The labels' ``comment`` attribute contains information on the seed
vertex and extent; the ``values`` attribute contains distance from the
seed in millimeters
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
n_jobs = check_n_jobs(n_jobs)
# make sure the inputs are arrays
if np.isscalar(seeds):
seeds = [seeds]
seeds = np.atleast_1d([np.atleast_1d(seed) for seed in seeds])
extents = np.atleast_1d(extents)
hemis = np.atleast_1d(hemis)
n_seeds = len(seeds)
if len(extents) != 1 and len(extents) != n_seeds:
raise ValueError('The extents parameter has to be of length 1 or '
'len(seeds)')
if len(hemis) != 1 and len(hemis) != n_seeds:
raise ValueError('The hemis parameter has to be of length 1 or '
'len(seeds)')
# make the arrays the same length as seeds
if len(extents) == 1:
extents = np.tile(extents, n_seeds)
if len(hemis) == 1:
hemis = np.tile(hemis, n_seeds)
hemis = np.array(['lh' if h == 0 else 'rh' for h in hemis])
# names
if names is None:
names = ["Label_%i-%s" % items for items in enumerate(hemis)]
else:
if np.isscalar(names):
names = [names]
if len(names) != n_seeds:
raise ValueError('The names parameter has to be None or have '
'length len(seeds)')
for i, hemi in enumerate(hemis):
if not names[i].endswith(hemi):
names[i] = '-'.join((names[i], hemi))
names = np.array(names)
# load the surfaces and create the distance graphs
tris, vert, dist = {}, {}, {}
for hemi in set(hemis):
surf_fname = op.join(subjects_dir, subject, 'surf', hemi + '.' +
surface)
vert[hemi], tris[hemi] = read_surface(surf_fname)
dist[hemi] = mesh_dist(tris[hemi], vert[hemi])
if overlap:
# create the patches
parallel, my_grow_labels, _ = parallel_func(_grow_labels, n_jobs)
seeds = np.array_split(seeds, n_jobs)
extents = np.array_split(extents, n_jobs)
hemis = np.array_split(hemis, n_jobs)
names = np.array_split(names, n_jobs)
labels = sum(parallel(my_grow_labels(s, e, h, n, dist, vert, subject)
for s, e, h, n
in zip(seeds, extents, hemis, names)), [])
else:
# special procedure for non-overlapping labels
labels = _grow_nonoverlapping_labels(subject, seeds, extents, hemis,
vert, dist, names)
# add a unique color to each label
colors = _n_colors(len(labels))
for label, color in zip(labels, colors):
label.color = color
return labels
def _grow_nonoverlapping_labels(subject, seeds_, extents_, hemis, vertices_,
graphs, names_):
"""Grow labels while ensuring that they don't overlap."""
labels = []
for hemi in set(hemis):
hemi_index = (hemis == hemi)
seeds = seeds_[hemi_index]
extents = extents_[hemi_index]
names = names_[hemi_index]
graph = graphs[hemi] # distance graph
n_vertices = len(vertices_[hemi])
n_labels = len(seeds)
# prepare parcellation
parc = np.empty(n_vertices, dtype='int32')
parc[:] = -1
# initialize active sources
sources = {} # vert -> (label, dist_from_seed)
edge = [] # queue of vertices to process
for label, seed in enumerate(seeds):
if np.any(parc[seed] >= 0):
raise ValueError("Overlapping seeds")
parc[seed] = label
for s in np.atleast_1d(seed):
sources[s] = (label, 0.)
edge.append(s)
# grow from sources
while edge:
vert_from = edge.pop(0)
label, old_dist = sources[vert_from]
# add neighbors within allowable distance
row = graph[vert_from, :]
for vert_to, dist in zip(row.indices, row.data):
new_dist = old_dist + dist
# abort if outside of extent
if new_dist > extents[label]:
continue
vert_to_label = parc[vert_to]
if vert_to_label >= 0:
_, vert_to_dist = sources[vert_to]
# abort if the vertex is occupied by a closer seed
if new_dist > vert_to_dist:
continue
elif vert_to in edge:
edge.remove(vert_to)
# assign label value
parc[vert_to] = label
sources[vert_to] = (label, new_dist)
edge.append(vert_to)
# convert parc to labels
for i in xrange(n_labels):
vertices = np.nonzero(parc == i)[0]
name = str(names[i])
label_ = Label(vertices, hemi=hemi, name=name, subject=subject)
labels.append(label_)
return labels
def random_parcellation(subject, n_parcel, hemi, subjects_dir=None,
surface='white', random_state=None):
"""Generate random cortex parcellation by growing labels.
This function generates a number of labels which don't intersect and
cover the whole surface. Regions are growing around randomly chosen
seeds.
Parameters
----------
subject : string
Name of the subject as in SUBJECTS_DIR.
n_parcel : int
Total number of cortical parcels.
hemi : str
hemisphere id (ie 'lh', 'rh', 'both'). In the case
of 'both', both hemispheres are processed with (n_parcel // 2)
parcels per hemisphere.
subjects_dir : string
Path to SUBJECTS_DIR if not set in the environment.
surface : string
The surface used to grow the labels, defaults to the white surface.
random_state : None | int | np.random.RandomState
To specify the random generator state.
Returns
-------
labels : list of Label
Random cortex parcellation
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if hemi == 'both':
hemi = ['lh', 'rh']
hemis = np.atleast_1d(hemi)
# load the surfaces and create the distance graphs
tris, vert, dist = {}, {}, {}
for hemi in set(hemis):
surf_fname = op.join(subjects_dir, subject, 'surf', hemi + '.' +
surface)
vert[hemi], tris[hemi] = read_surface(surf_fname)
dist[hemi] = mesh_dist(tris[hemi], vert[hemi])
# create the patches
labels = _cortex_parcellation(subject, n_parcel, hemis, vert, dist,
random_state)
# add a unique color to each label
colors = _n_colors(len(labels))
for label, color in zip(labels, colors):
label.color = color
return labels
def _cortex_parcellation(subject, n_parcel, hemis, vertices_, graphs,
random_state=None):
"""Random cortex parcellation."""
labels = []
rng = check_random_state(random_state)
for hemi in set(hemis):
parcel_size = len(hemis) * len(vertices_[hemi]) // n_parcel
graph = graphs[hemi] # distance graph
n_vertices = len(vertices_[hemi])
# prepare parcellation
parc = np.full(n_vertices, -1, dtype='int32')
# initialize active sources
s = rng.choice(range(n_vertices))
label_idx = 0
edge = [s] # queue of vertices to process
parc[s] = label_idx
label_size = 1
rest = len(parc) - 1
# grow from sources
while rest:
# if there are not free neighbors, start new parcel
if not edge:
rest_idx = np.where(parc < 0)[0]
s = rng.choice(rest_idx)
edge = [s]
label_idx += 1
label_size = 1
parc[s] = label_idx
rest -= 1
vert_from = edge.pop(0)
# add neighbors within allowable distance
# row = graph[vert_from, :]
# row_indices, row_data = row.indices, row.data
sl = slice(graph.indptr[vert_from], graph.indptr[vert_from + 1])
row_indices, row_data = graph.indices[sl], graph.data[sl]
for vert_to, dist in zip(row_indices, row_data):
vert_to_label = parc[vert_to]
# abort if the vertex is already occupied
if vert_to_label >= 0:
continue
# abort if outside of extent
if label_size > parcel_size:
label_idx += 1
label_size = 1
edge = [vert_to]
parc[vert_to] = label_idx
rest -= 1
break
# assign label value
parc[vert_to] = label_idx
label_size += 1
edge.append(vert_to)
rest -= 1
# merging small labels
# label connectivity matrix
n_labels = label_idx + 1
label_sizes = np.empty(n_labels, dtype=int)
label_conn = np.zeros([n_labels, n_labels], dtype='bool')
for i in range(n_labels):
vertices = np.nonzero(parc == i)[0]
label_sizes[i] = len(vertices)
neighbor_vertices = graph[vertices, :].indices
neighbor_labels = np.unique(np.array(parc[neighbor_vertices]))
label_conn[i, neighbor_labels] = 1
np.fill_diagonal(label_conn, 0)
# merging
label_id = range(n_labels)
while n_labels > n_parcel // len(hemis):
# smallest label and its smallest neighbor
i = np.argmin(label_sizes)
neighbors = np.nonzero(label_conn[i, :])[0]
j = neighbors[np.argmin(label_sizes[neighbors])]
# merging two labels
label_conn[j, :] += label_conn[i, :]
label_conn[:, j] += label_conn[:, i]
label_conn = np.delete(label_conn, i, 0)
label_conn = np.delete(label_conn, i, 1)
label_conn[j, j] = 0
label_sizes[j] += label_sizes[i]
label_sizes = np.delete(label_sizes, i, 0)
n_labels -= 1
vertices = np.nonzero(parc == label_id[i])[0]
parc[vertices] = label_id[j]
label_id = np.delete(label_id, i, 0)
# convert parc to labels
for i in xrange(n_labels):
vertices = np.nonzero(parc == label_id[i])[0]
name = 'label_' + str(i)
label_ = Label(vertices, hemi=hemi, name=name, subject=subject)
labels.append(label_)
return labels
def _read_annot(fname):
"""Read a Freesurfer annotation from a .annot file.
Note : Copied from PySurfer
Parameters
----------
fname : str
Path to annotation file
Returns
-------
annot : numpy array, shape=(n_verts)
Annotation id at each vertex
ctab : numpy array, shape=(n_entries, 5)
RGBA + label id colortable array
names : list of str
List of region names as stored in the annot file
"""
if not op.isfile(fname):
dir_name = op.split(fname)[0]
if not op.isdir(dir_name):
raise IOError('Directory for annotation does not exist: %s',
fname)
cands = os.listdir(dir_name)
cands = [c for c in cands if '.annot' in c]
if len(cands) == 0:
raise IOError('No such file %s, no candidate parcellations '
'found in directory' % fname)
else:
raise IOError('No such file %s, candidate parcellations in '
'that directory: %s' % (fname, ', '.join(cands)))
with open(fname, "rb") as fid:
n_verts = np.fromfile(fid, '>i4', 1)[0]
data = np.fromfile(fid, '>i4', n_verts * 2).reshape(n_verts, 2)
annot = data[data[:, 0], 1]
ctab_exists = np.fromfile(fid, '>i4', 1)[0]
if not ctab_exists:
raise Exception('Color table not found in annotation file')
n_entries = np.fromfile(fid, '>i4', 1)[0]
if n_entries > 0:
length = np.fromfile(fid, '>i4', 1)[0]
orig_tab = np.fromfile(fid, '>c', length)
orig_tab = orig_tab[:-1]
names = list()
ctab = np.zeros((n_entries, 5), np.int)
for i in range(n_entries):
name_length = np.fromfile(fid, '>i4', 1)[0]
name = np.fromfile(fid, "|S%d" % name_length, 1)[0]
names.append(name)
ctab[i, :4] = np.fromfile(fid, '>i4', 4)
ctab[i, 4] = (ctab[i, 0] + ctab[i, 1] * (2 ** 8) +
ctab[i, 2] * (2 ** 16) +
ctab[i, 3] * (2 ** 24))
else:
ctab_version = -n_entries
if ctab_version != 2:
raise Exception('Color table version not supported')
n_entries = np.fromfile(fid, '>i4', 1)[0]
ctab = np.zeros((n_entries, 5), np.int)
length = np.fromfile(fid, '>i4', 1)[0]
np.fromfile(fid, "|S%d" % length, 1) # Orig table path
entries_to_read = np.fromfile(fid, '>i4', 1)[0]
names = list()
for i in range(entries_to_read):
np.fromfile(fid, '>i4', 1) # Structure
name_length = np.fromfile(fid, '>i4', 1)[0]
name = np.fromfile(fid, "|S%d" % name_length, 1)[0]
names.append(name)
ctab[i, :4] = np.fromfile(fid, '>i4', 4)
ctab[i, 4] = (ctab[i, 0] + ctab[i, 1] * (2 ** 8) +
ctab[i, 2] * (2 ** 16))
# convert to more common alpha value
ctab[:, 3] = 255 - ctab[:, 3]
return annot, ctab, names
def _get_annot_fname(annot_fname, subject, hemi, parc, subjects_dir):
"""Get the .annot filenames and hemispheres."""
if annot_fname is not None:
# we use use the .annot file specified by the user
hemis = [op.basename(annot_fname)[:2]]
if hemis[0] not in ['lh', 'rh']:
raise ValueError('Could not determine hemisphere from filename, '
'filename has to start with "lh" or "rh".')
annot_fname = [annot_fname]
else:
# construct .annot file names for requested subject, parc, hemi
if hemi not in ['lh', 'rh', 'both']:
raise ValueError('hemi has to be "lh", "rh", or "both"')
if hemi == 'both':
hemis = ['lh', 'rh']
else:
hemis = [hemi]
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
dst = op.join(subjects_dir, subject, 'label', '%%s.%s.annot' % parc)
annot_fname = [dst % hemi_ for hemi_ in hemis]
return annot_fname, hemis
@verbose
def read_labels_from_annot(subject, parc='aparc', hemi='both',
surf_name='white', annot_fname=None, regexp=None,
subjects_dir=None, verbose=None):
"""Read labels from a FreeSurfer annotation file.
Note: Only cortical labels will be returned.
Parameters
----------
subject : str
The subject for which to read the parcellation for.
parc : str
The parcellation to use, e.g., 'aparc' or 'aparc.a2009s'.
hemi : str
The hemisphere to read the parcellation for, can be 'lh', 'rh',
or 'both'.
surf_name : str
Surface used to obtain vertex locations, e.g., 'white', 'pial'
annot_fname : str or None
Filename of the .annot file. If not None, only this file is read
and 'parc' and 'hemi' are ignored.
regexp : str
Regular expression or substring to select particular labels from the
parcellation. E.g. 'superior' will return all labels in which this
substring is contained.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
labels : list of Label
The labels, sorted by label name (ascending).
"""
logger.info('Reading labels from parcellation...')
subjects_dir = get_subjects_dir(subjects_dir)
# get the .annot filenames and hemispheres
annot_fname, hemis = _get_annot_fname(annot_fname, subject, hemi, parc,
subjects_dir)
if regexp is not None:
# allow for convenient substring match
r_ = (re.compile('.*%s.*' % regexp if regexp.replace('_', '').isalnum()
else regexp))
# now we are ready to create the labels
n_read = 0
labels = list()
for fname, hemi in zip(annot_fname, hemis):
# read annotation
annot, ctab, label_names = _read_annot(fname)
label_rgbas = ctab[:, :4]
label_ids = ctab[:, -1]
# load the vertex positions from surface
fname_surf = op.join(subjects_dir, subject, 'surf',
'%s.%s' % (hemi, surf_name))
vert_pos, _ = read_surface(fname_surf)
vert_pos /= 1e3 # the positions in labels are in meters
for label_id, label_name, label_rgba in\
zip(label_ids, label_names, label_rgbas):
vertices = np.where(annot == label_id)[0]
if len(vertices) == 0:
# label is not part of cortical surface
continue
name = label_name.decode() + '-' + hemi
if (regexp is not None) and not r_.match(name):
continue
pos = vert_pos[vertices, :]
values = np.ones(len(vertices))
label_rgba = tuple(label_rgba / 255.)
label = Label(vertices, pos, values, hemi, name=name,
subject=subject, color=label_rgba)
labels.append(label)
n_read = len(labels) - n_read
logger.info(' read %d labels from %s' % (n_read, fname))
# sort the labels by label name
labels = sorted(labels, key=lambda l: l.name)
if len(labels) == 0:
msg = 'No labels found.'
if regexp is not None:
msg += ' Maybe the regular expression %r did not match?' % regexp
raise RuntimeError(msg)
return labels
def _write_annot(fname, annot, ctab, names):
"""Write a Freesurfer annotation to a .annot file.
Parameters
----------
fname : str
Path to annotation file
annot : numpy array, shape=(n_verts)
Annotation id at each vertex. Note: IDs must be computed from
RGBA colors, otherwise the mapping will be invalid.
ctab : numpy array, shape=(n_entries, 4)
RGBA colortable array.
names : list of str
List of region names to be stored in the annot file
"""
with open(fname, 'wb') as fid:
n_verts = len(annot)
np.array(n_verts, dtype='>i4').tofile(fid)
data = np.zeros((n_verts, 2), dtype='>i4')
data[:, 0] = np.arange(n_verts)
data[:, 1] = annot
data.ravel().tofile(fid)
# indicate that color table exists
np.array(1, dtype='>i4').tofile(fid)
# color table version 2
np.array(-2, dtype='>i4').tofile(fid)
# write color table
n_entries = len(ctab)
np.array(n_entries, dtype='>i4').tofile(fid)
# write dummy color table name
table_name = 'MNE-Python Colortable'
np.array(len(table_name), dtype='>i4').tofile(fid)
np.frombuffer(table_name.encode('ascii'), dtype=np.uint8).tofile(fid)
# number of entries to write
np.array(n_entries, dtype='>i4').tofile(fid)
# write entries
for ii, (name, color) in enumerate(zip(names, ctab)):
np.array(ii, dtype='>i4').tofile(fid)
np.array(len(name), dtype='>i4').tofile(fid)
np.frombuffer(name.encode('ascii'), dtype=np.uint8).tofile(fid)
np.array(color[:4], dtype='>i4').tofile(fid)
@verbose
def write_labels_to_annot(labels, subject=None, parc=None, overwrite=False,
subjects_dir=None, annot_fname=None,
colormap='hsv', hemi='both', verbose=None):
r"""Create a FreeSurfer annotation from a list of labels.
Parameters
----------
labels : list with instances of mne.Label
The labels to create a parcellation from.
subject : str | None
The subject for which to write the parcellation for.
parc : str | None
The parcellation name to use.
overwrite : bool
Overwrite files if they already exist.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
annot_fname : str | None
Filename of the .annot file. If not None, only this file is written
and 'parc' and 'subject' are ignored.
colormap : str
Colormap to use to generate label colors for labels that do not
have a color specified.
hemi : 'both' | 'lh' | 'rh'
The hemisphere(s) for which to write \*.annot files (only applies if
annot_fname is not specified; default is 'both').
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Notes
-----
Vertices that are not covered by any of the labels are assigned to a label
named "unknown".
"""
logger.info('Writing labels to parcellation...')
subjects_dir = get_subjects_dir(subjects_dir)
# get the .annot filenames and hemispheres
annot_fname, hemis = _get_annot_fname(annot_fname, subject, hemi, parc,
subjects_dir)
if not overwrite:
for fname in annot_fname:
if op.exists(fname):
raise ValueError('File %s exists. Use "overwrite=True" to '
'overwrite it' % fname)
# prepare container for data to save:
to_save = []
# keep track of issues found in the labels
duplicate_colors = []
invalid_colors = []
overlap = []
no_color = (-1, -1, -1, -1)
no_color_rgb = (-1, -1, -1)
for hemi, fname in zip(hemis, annot_fname):
hemi_labels = [label for label in labels if label.hemi == hemi]
n_hemi_labels = len(hemi_labels)
if n_hemi_labels == 0:
ctab = np.empty((0, 4), dtype=np.int32)
ctab_rgb = ctab[:, :3]
else:
hemi_labels.sort(key=lambda label: label.name)
# convert colors to 0-255 RGBA tuples
hemi_colors = [no_color if label.color is None else
tuple(int(round(255 * i)) for i in label.color)
for label in hemi_labels]
ctab = np.array(hemi_colors, dtype=np.int32)
ctab_rgb = ctab[:, :3]
# make color dict (for annot ID, only R, G and B count)
labels_by_color = defaultdict(list)
for label, color in zip(hemi_labels, ctab_rgb):
labels_by_color[tuple(color)].append(label.name)
# check label colors
for color, names in labels_by_color.items():
if color == no_color_rgb:
continue
if color == (0, 0, 0):
# we cannot have an all-zero color, otherw. e.g. tksurfer
# refuses to read the parcellation
warn('At least one label contains a color with, "r=0, '
'g=0, b=0" value. Some FreeSurfer tools may fail '
'to read the parcellation')
if any(i > 255 for i in color):
msg = ("%s: %s (%s)" % (color, ', '.join(names), hemi))
invalid_colors.append(msg)
if len(names) > 1:
msg = "%s: %s (%s)" % (color, ', '.join(names), hemi)
duplicate_colors.append(msg)
# replace None values (labels with unspecified color)
if labels_by_color[no_color_rgb]:
default_colors = _n_colors(n_hemi_labels, bytes_=True,
cmap=colormap)
# keep track of colors known to be in hemi_colors :
safe_color_i = 0
for i in xrange(n_hemi_labels):
if ctab[i, 0] == -1:
color = default_colors[i]
# make sure to add no duplicate color
while np.any(np.all(color[:3] == ctab_rgb, 1)):
color = default_colors[safe_color_i]
safe_color_i += 1
# assign the color
ctab[i] = color
# find number of vertices in surface
if subject is not None and subjects_dir is not None:
fpath = op.join(subjects_dir, subject, 'surf', '%s.white' % hemi)
points, _ = read_surface(fpath)
n_vertices = len(points)
else:
if len(hemi_labels) > 0:
max_vert = max(np.max(label.vertices) for label in hemi_labels)
n_vertices = max_vert + 1
else:
n_vertices = 1
warn('Number of vertices in the surface could not be '
'verified because the surface file could not be found; '
'specify subject and subjects_dir parameters.')
# Create annot and color table array to write
annot = np.empty(n_vertices, dtype=np.int)
annot[:] = -1
# create the annotation ids from the colors
annot_id_coding = np.array((1, 2 ** 8, 2 ** 16))
annot_ids = list(np.sum(ctab_rgb * annot_id_coding, axis=1))
for label, annot_id in zip(hemi_labels, annot_ids):
# make sure the label is not overwriting another label
if np.any(annot[label.vertices] != -1):
other_ids = set(annot[label.vertices])
other_ids.discard(-1)
other_indices = (annot_ids.index(i) for i in other_ids)
other_names = (hemi_labels[i].name for i in other_indices)
other_repr = ', '.join(other_names)
msg = "%s: %s overlaps %s" % (hemi, label.name, other_repr)
overlap.append(msg)
annot[label.vertices] = annot_id
hemi_names = [label.name for label in hemi_labels]
if None in hemi_names:
msg = ("Found %i labels with no name. Writing annotation file"
"requires all labels named" % (hemi_names.count(None)))
# raise the error immediately rather than crash with an
# uninformative error later (e.g. cannot join NoneType)
raise ValueError(msg)
# Assign unlabeled vertices to an "unknown" label
unlabeled = (annot == -1)
if np.any(unlabeled):
msg = ("Assigning %i unlabeled vertices to "
"'unknown-%s'" % (unlabeled.sum(), hemi))
logger.info(msg)
# find an unused color (try shades of gray first)
for i in range(1, 257):
if not np.any(np.all((i, i, i) == ctab_rgb, 1)):
break
if i < 256:
color = (i, i, i, 0)
else:
err = ("Need one free shade of gray for 'unknown' label. "
"Please modify your label colors, or assign the "
"unlabeled vertices to another label.")
raise ValueError(err)
# find the id
annot_id = np.sum(annot_id_coding * color[:3])
# update data to write
annot[unlabeled] = annot_id
ctab = np.vstack((ctab, color))
hemi_names.append("unknown")
# convert to FreeSurfer alpha values
ctab[:, 3] = 255 - ctab[:, 3]
# remove hemi ending in names
hemi_names = [name[:-3] if name.endswith(hemi) else name
for name in hemi_names]
to_save.append((fname, annot, ctab, hemi_names))
issues = []
if duplicate_colors:
msg = ("Some labels have the same color values (all labels in one "
"hemisphere must have a unique color):")
duplicate_colors.insert(0, msg)
issues.append(os.linesep.join(duplicate_colors))
if invalid_colors:
msg = ("Some labels have invalid color values (all colors should be "
"RGBA tuples with values between 0 and 1)")
invalid_colors.insert(0, msg)
issues.append(os.linesep.join(invalid_colors))
if overlap:
msg = ("Some labels occupy vertices that are also occupied by one or "
"more other labels. Each vertex can only be occupied by a "
"single label in *.annot files.")
overlap.insert(0, msg)
issues.append(os.linesep.join(overlap))
if issues:
raise ValueError('\n\n'.join(issues))
# write it
for fname, annot, ctab, hemi_names in to_save:
logger.info(' writing %d labels to %s' % (len(hemi_names), fname))
_write_annot(fname, annot, ctab, hemi_names)
|