1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
|
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD (3-clause)
from copy import deepcopy
from math import sqrt
import numpy as np
from scipy import linalg
from ._eloreta import _compute_eloreta
from ..fixes import _safe_svd
from ..io.compensator import get_current_comp
from ..io.constants import FIFF
from ..io.open import fiff_open
from ..io.tag import find_tag
from ..io.matrix import (_read_named_matrix, _transpose_named_matrix,
write_named_matrix)
from ..io.proj import (_read_proj, make_projector, _write_proj,
_needs_eeg_average_ref_proj)
from ..io.tree import dir_tree_find
from ..io.write import (write_int, write_float_matrix, start_file,
start_block, end_block, end_file, write_float,
write_coord_trans, write_string)
from ..io.pick import channel_type, pick_info, pick_types
from ..cov import _get_whitener, _read_cov, _write_cov, Covariance
from ..forward import (compute_depth_prior, _read_forward_meas_info,
write_forward_meas_info, is_fixed_orient,
compute_orient_prior, convert_forward_solution)
from ..source_space import (_read_source_spaces_from_tree,
find_source_space_hemi, _get_vertno,
_write_source_spaces_to_fid, label_src_vertno_sel)
from ..transforms import _ensure_trans, transform_surface_to
from ..source_estimate import _make_stc, _get_src_type
from ..utils import check_fname, logger, verbose, warn
class InverseOperator(dict):
"""InverseOperator class to represent info from inverse operator."""
def copy(self):
"""Return a copy of the InverseOperator."""
return InverseOperator(deepcopy(self))
def __repr__(self): # noqa: D105
"""Summarize inverse info instead of printing all."""
entr = '<InverseOperator'
nchan = len(pick_types(self['info'], meg=True, eeg=False))
entr += ' | ' + 'MEG channels: %d' % nchan
nchan = len(pick_types(self['info'], meg=False, eeg=True))
entr += ' | ' + 'EEG channels: %d' % nchan
entr += (' | Source space: %s with %d sources'
% (self['src'].kind, self['nsource']))
source_ori = {FIFF.FIFFV_MNE_UNKNOWN_ORI: 'Unknown',
FIFF.FIFFV_MNE_FIXED_ORI: 'Fixed',
FIFF.FIFFV_MNE_FREE_ORI: 'Free'}
entr += ' | Source orientation: %s' % source_ori[self['source_ori']]
entr += '>'
return entr
def _pick_channels_inverse_operator(ch_names, inv):
"""Return data channel indices to be used knowing an inverse operator.
Unlike ``pick_channels``, this respects the order of ch_names.
"""
sel = list()
for name in inv['noise_cov'].ch_names:
try:
sel.append(ch_names.index(name))
except ValueError:
raise ValueError('The inverse operator was computed with '
'channel %s which is not present in '
'the data. You should compute a new inverse '
'operator restricted to the good data '
'channels.' % name)
return sel
@verbose
def read_inverse_operator(fname, verbose=None):
"""Read the inverse operator decomposition from a FIF file.
Parameters
----------
fname : string
The name of the FIF file, which ends with -inv.fif or -inv.fif.gz.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
inv : instance of InverseOperator
The inverse operator.
See Also
--------
write_inverse_operator, make_inverse_operator
"""
check_fname(fname, 'inverse operator', ('-inv.fif', '-inv.fif.gz',
'_inv.fif', '_inv.fif.gz'))
#
# Open the file, create directory
#
logger.info('Reading inverse operator decomposition from %s...'
% fname)
f, tree, _ = fiff_open(fname, preload=True)
with f as fid:
#
# Find all inverse operators
#
invs = dir_tree_find(tree, FIFF.FIFFB_MNE_INVERSE_SOLUTION)
if invs is None or len(invs) < 1:
raise Exception('No inverse solutions in %s' % fname)
invs = invs[0]
#
# Parent MRI data
#
parent_mri = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
if len(parent_mri) == 0:
raise Exception('No parent MRI information in %s' % fname)
parent_mri = parent_mri[0] # take only first one
logger.info(' Reading inverse operator info...')
#
# Methods and source orientations
#
tag = find_tag(fid, invs, FIFF.FIFF_MNE_INCLUDED_METHODS)
if tag is None:
raise Exception('Modalities not found')
inv = dict()
inv['methods'] = int(tag.data)
tag = find_tag(fid, invs, FIFF.FIFF_MNE_SOURCE_ORIENTATION)
if tag is None:
raise Exception('Source orientation constraints not found')
inv['source_ori'] = int(tag.data)
tag = find_tag(fid, invs, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS)
if tag is None:
raise Exception('Number of sources not found')
inv['nsource'] = int(tag.data)
inv['nchan'] = 0
#
# Coordinate frame
#
tag = find_tag(fid, invs, FIFF.FIFF_MNE_COORD_FRAME)
if tag is None:
raise Exception('Coordinate frame tag not found')
inv['coord_frame'] = tag.data
#
# Units
#
tag = find_tag(fid, invs, FIFF.FIFF_MNE_INVERSE_SOURCE_UNIT)
unit_dict = {FIFF.FIFF_UNIT_AM: 'Am',
FIFF.FIFF_UNIT_AM_M2: 'Am/m^2',
FIFF.FIFF_UNIT_AM_M3: 'Am/m^3'}
inv['units'] = unit_dict.get(int(getattr(tag, 'data', -1)), None)
#
# The actual source orientation vectors
#
tag = find_tag(fid, invs, FIFF.FIFF_MNE_INVERSE_SOURCE_ORIENTATIONS)
if tag is None:
raise Exception('Source orientation information not found')
inv['source_nn'] = tag.data
logger.info(' [done]')
#
# The SVD decomposition...
#
logger.info(' Reading inverse operator decomposition...')
tag = find_tag(fid, invs, FIFF.FIFF_MNE_INVERSE_SING)
if tag is None:
raise Exception('Singular values not found')
inv['sing'] = tag.data
inv['nchan'] = len(inv['sing'])
#
# The eigenleads and eigenfields
#
inv['eigen_leads_weighted'] = False
inv['eigen_leads'] = _read_named_matrix(
fid, invs, FIFF.FIFF_MNE_INVERSE_LEADS, transpose=True)
if inv['eigen_leads'] is None:
inv['eigen_leads_weighted'] = True
inv['eigen_leads'] = _read_named_matrix(
fid, invs, FIFF.FIFF_MNE_INVERSE_LEADS_WEIGHTED,
transpose=True)
if inv['eigen_leads'] is None:
raise ValueError('Eigen leads not found in inverse operator.')
#
# Having the eigenleads as cols is better for the inverse calcs
#
inv['eigen_fields'] = _read_named_matrix(fid, invs,
FIFF.FIFF_MNE_INVERSE_FIELDS)
logger.info(' [done]')
#
# Read the covariance matrices
#
inv['noise_cov'] = Covariance(
**_read_cov(fid, invs, FIFF.FIFFV_MNE_NOISE_COV, limited=True))
logger.info(' Noise covariance matrix read.')
inv['source_cov'] = _read_cov(fid, invs, FIFF.FIFFV_MNE_SOURCE_COV)
logger.info(' Source covariance matrix read.')
#
# Read the various priors
#
inv['orient_prior'] = _read_cov(fid, invs,
FIFF.FIFFV_MNE_ORIENT_PRIOR_COV)
if inv['orient_prior'] is not None:
logger.info(' Orientation priors read.')
inv['depth_prior'] = _read_cov(fid, invs,
FIFF.FIFFV_MNE_DEPTH_PRIOR_COV)
if inv['depth_prior'] is not None:
logger.info(' Depth priors read.')
inv['fmri_prior'] = _read_cov(fid, invs, FIFF.FIFFV_MNE_FMRI_PRIOR_COV)
if inv['fmri_prior'] is not None:
logger.info(' fMRI priors read.')
#
# Read the source spaces
#
inv['src'] = _read_source_spaces_from_tree(fid, tree,
patch_stats=False)
for s in inv['src']:
s['id'] = find_source_space_hemi(s)
#
# Get the MRI <-> head coordinate transformation
#
tag = find_tag(fid, parent_mri, FIFF.FIFF_COORD_TRANS)
if tag is None:
raise Exception('MRI/head coordinate transformation not found')
mri_head_t = _ensure_trans(tag.data, 'mri', 'head')
inv['mri_head_t'] = mri_head_t
#
# get parent MEG info
#
inv['info'] = _read_forward_meas_info(tree, fid)
#
# Transform the source spaces to the correct coordinate frame
# if necessary
#
if inv['coord_frame'] not in (FIFF.FIFFV_COORD_MRI,
FIFF.FIFFV_COORD_HEAD):
raise Exception('Only inverse solutions computed in MRI or '
'head coordinates are acceptable')
#
# Number of averages is initially one
#
inv['nave'] = 1
#
# We also need the SSP operator
#
inv['projs'] = _read_proj(fid, tree)
#
# Some empty fields to be filled in later
#
inv['proj'] = [] # This is the projector to apply to the data
inv['whitener'] = [] # This whitens the data
# This the diagonal matrix implementing regularization and the inverse
inv['reginv'] = []
inv['noisenorm'] = [] # These are the noise-normalization factors
#
nuse = 0
for k in range(len(inv['src'])):
try:
inv['src'][k] = transform_surface_to(inv['src'][k],
inv['coord_frame'],
mri_head_t)
except Exception as inst:
raise Exception('Could not transform source space (%s)' % inst)
nuse += inv['src'][k]['nuse']
logger.info(' Source spaces transformed to the inverse solution '
'coordinate frame')
#
# Done!
#
return InverseOperator(inv)
@verbose
def write_inverse_operator(fname, inv, verbose=None):
"""Write an inverse operator to a FIF file.
Parameters
----------
fname : string
The name of the FIF file, which ends with -inv.fif or -inv.fif.gz.
inv : dict
The inverse operator.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
See Also
--------
read_inverse_operator
"""
check_fname(fname, 'inverse operator', ('-inv.fif', '-inv.fif.gz',
'_inv.fif', '_inv.fif.gz'))
#
# Open the file, create directory
#
logger.info('Write inverse operator decomposition in %s...' % fname)
# Create the file and save the essentials
fid = start_file(fname)
start_block(fid, FIFF.FIFFB_MNE)
#
# Parent MEG measurement info
#
write_forward_meas_info(fid, inv['info'])
#
# Parent MRI data
#
start_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
write_string(fid, FIFF.FIFF_MNE_FILE_NAME, inv['info']['mri_file'])
write_coord_trans(fid, inv['mri_head_t'])
end_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
#
# Write SSP operator
#
_write_proj(fid, inv['projs'])
#
# Write the source spaces
#
if 'src' in inv:
_write_source_spaces_to_fid(fid, inv['src'])
start_block(fid, FIFF.FIFFB_MNE_INVERSE_SOLUTION)
logger.info(' Writing inverse operator info...')
write_int(fid, FIFF.FIFF_MNE_INCLUDED_METHODS, inv['methods'])
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, inv['coord_frame'])
udict = {'Am': FIFF.FIFF_UNIT_AM,
'Am/m^2': FIFF.FIFF_UNIT_AM_M2,
'Am/m^3': FIFF.FIFF_UNIT_AM_M3}
if 'units' in inv and inv['units'] is not None:
write_int(fid, FIFF.FIFF_MNE_INVERSE_SOURCE_UNIT, udict[inv['units']])
write_int(fid, FIFF.FIFF_MNE_SOURCE_ORIENTATION, inv['source_ori'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, inv['nsource'])
if 'nchan' in inv:
write_int(fid, FIFF.FIFF_NCHAN, inv['nchan'])
elif 'nchan' in inv['info']:
write_int(fid, FIFF.FIFF_NCHAN, inv['info']['nchan'])
write_float_matrix(fid, FIFF.FIFF_MNE_INVERSE_SOURCE_ORIENTATIONS,
inv['source_nn'])
write_float(fid, FIFF.FIFF_MNE_INVERSE_SING, inv['sing'])
#
# write the covariance matrices
#
logger.info(' Writing noise covariance matrix.')
_write_cov(fid, inv['noise_cov'])
logger.info(' Writing source covariance matrix.')
_write_cov(fid, inv['source_cov'])
#
# write the various priors
#
logger.info(' Writing orientation priors.')
if inv['depth_prior'] is not None:
_write_cov(fid, inv['depth_prior'])
if inv['orient_prior'] is not None:
_write_cov(fid, inv['orient_prior'])
if inv['fmri_prior'] is not None:
_write_cov(fid, inv['fmri_prior'])
write_named_matrix(fid, FIFF.FIFF_MNE_INVERSE_FIELDS, inv['eigen_fields'])
#
# The eigenleads and eigenfields
#
if inv['eigen_leads_weighted']:
kind = FIFF.FIFF_MNE_INVERSE_LEADS_WEIGHTED
else:
kind = FIFF.FIFF_MNE_INVERSE_LEADS
_transpose_named_matrix(inv['eigen_leads'])
write_named_matrix(fid, kind, inv['eigen_leads'])
_transpose_named_matrix(inv['eigen_leads'])
#
# Done!
#
logger.info(' [done]')
end_block(fid, FIFF.FIFFB_MNE_INVERSE_SOLUTION)
end_block(fid, FIFF.FIFFB_MNE)
end_file(fid)
fid.close()
###############################################################################
# Compute inverse solution
def combine_xyz(vec, square=False):
"""Compute the three Cartesian components of a vector or matrix together.
Parameters
----------
vec : 2d array of shape [3 n x p]
Input [ x1 y1 z1 ... x_n y_n z_n ] where x1 ... z_n
can be vectors
Returns
-------
comb : array
Output vector [sqrt(x1^2+y1^2+z1^2), ..., sqrt(x_n^2+y_n^2+z_n^2)]
"""
if vec.ndim != 2:
raise ValueError('Input must be 2D')
if (vec.shape[0] % 3) != 0:
raise ValueError('Input must have 3N rows')
n, p = vec.shape
if np.iscomplexobj(vec):
vec = np.abs(vec)
comb = vec[0::3] ** 2
comb += vec[1::3] ** 2
comb += vec[2::3] ** 2
if not square:
comb = np.sqrt(comb)
return comb
def _check_ch_names(inv, info):
"""Check that channels in inverse operator are measurements."""
inv_ch_names = inv['eigen_fields']['col_names']
if inv['noise_cov'].ch_names != inv_ch_names:
raise ValueError('Channels in inverse operator eigen fields do not '
'match noise covariance channels.')
data_ch_names = info['ch_names']
missing_ch_names = sorted(set(inv_ch_names) - set(data_ch_names))
n_missing = len(missing_ch_names)
if n_missing > 0:
raise ValueError('%d channels in inverse operator ' % n_missing +
'are not present in the data (%s)' % missing_ch_names)
_check_comps(inv['info'], info, 'inverse')
def _check_or_prepare(inv, nave, lambda2, method, method_params, prepared):
"""Check if inverse was prepared, or prepare it."""
if not prepared:
inv = prepare_inverse_operator(
inv, nave, lambda2, method, method_params)
elif 'colorer' not in inv:
raise ValueError('inverse operator has not been prepared, but got '
'argument prepared=True. Either pass prepared=False '
'or use prepare_inverse_operator.')
return inv
@verbose
def prepare_inverse_operator(orig, nave, lambda2, method='dSPM',
method_params=None, verbose=None):
"""Prepare an inverse operator for actually computing the inverse.
Parameters
----------
orig : dict
The inverse operator structure read from a file.
nave : int
Number of averages (scales the noise covariance).
lambda2 : float
The regularization factor. Recommended to be 1 / SNR**2.
method : "MNE" | "dSPM" | "sLORETA" | "eLORETA"
Use minimum norm, dSPM (default), sLORETA, or eLORETA.
method_params : dict | None
Additional options for eLORETA. See Notes of :func:`apply_inverse`.
.. versionadded:: 0.16
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
inv : instance of InverseOperator
Prepared inverse operator.
"""
if nave <= 0:
raise ValueError('The number of averages should be positive')
logger.info('Preparing the inverse operator for use...')
inv = orig.copy()
#
# Scale some of the stuff
#
scale = float(inv['nave']) / nave
inv['noise_cov']['data'] = scale * inv['noise_cov']['data']
# deal with diagonal case
if inv['noise_cov']['data'].ndim == 1:
logger.info(' Diagonal noise covariance found')
inv['noise_cov']['eig'] = inv['noise_cov']['data']
inv['noise_cov']['eigvec'] = np.eye(len(inv['noise_cov']['data']))
inv['noise_cov']['eig'] = scale * inv['noise_cov']['eig']
inv['source_cov']['data'] = scale * inv['source_cov']['data']
#
if inv['eigen_leads_weighted']:
inv['eigen_leads']['data'] = sqrt(scale) * inv['eigen_leads']['data']
logger.info(' Scaled noise and source covariance from nave = %d to'
' nave = %d' % (inv['nave'], nave))
inv['nave'] = nave
#
# Create the diagonal matrix for computing the regularized inverse
#
sing = np.array(inv['sing'], dtype=np.float64)
with np.errstate(invalid='ignore'): # if lambda2==0
inv['reginv'] = np.where(sing > 0, sing / (sing ** 2 + lambda2), 0)
logger.info(' Created the regularized inverter')
#
# Create the projection operator
#
inv['proj'], ncomp, _ = make_projector(inv['projs'],
inv['noise_cov']['names'])
if ncomp > 0:
logger.info(' Created an SSP operator (subspace dimension = %d)'
% ncomp)
else:
logger.info(' The projection vectors do not apply to these '
'channels.')
#
# Create the whitener
#
inv['whitener'], inv['colorer'], _, _ = _get_whitener(
inv['noise_cov'], pca=False, prepared=True)
#
# Finally, compute the noise-normalization factors
#
inv['noisenorm'] = []
if method != 'MNE':
logger.info(' Computing noise-normalization factors (%s)...'
% method)
if method == 'eLORETA':
_compute_eloreta(inv, lambda2, method_params)
elif method != 'MNE':
# Here we have::
#
# inv['reginv'] = sing / (sing ** 2 + lambda2)
#
# where ``sing`` are the singular values of the whitened gain matrix.
if method == "dSPM":
# dSPM normalization
noise_weight = inv['reginv']
elif method == 'sLORETA':
# sLORETA normalization is given by the square root of the
# diagonal entries of the resolution matrix R, which is
# the product of the inverse and forward operators as:
#
# w = diag(diag(R)) ** 0.5
#
noise_weight = (inv['reginv'] *
np.sqrt((1. + inv['sing'] ** 2 / lambda2)))
noise_norm = np.zeros(inv['eigen_leads']['nrow'])
nrm2, = linalg.get_blas_funcs(('nrm2',), (noise_norm,))
if inv['eigen_leads_weighted']:
for k in range(inv['eigen_leads']['nrow']):
one = inv['eigen_leads']['data'][k, :] * noise_weight
noise_norm[k] = nrm2(one)
else:
for k in range(inv['eigen_leads']['nrow']):
one = (sqrt(inv['source_cov']['data'][k]) *
inv['eigen_leads']['data'][k, :] * noise_weight)
noise_norm[k] = nrm2(one)
#
# Compute the final result
#
if inv['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI:
#
# The three-component case is a little bit more involved
# The variances at three consecutive entries must be squared and
# added together
#
# Even in this case return only one noise-normalization factor
# per source location
#
noise_norm = combine_xyz(noise_norm[:, None]).ravel()
inv['noisenorm'] = 1.0 / np.abs(noise_norm)
logger.info('[done]')
else:
inv['noisenorm'] = []
return InverseOperator(inv)
@verbose
def _assemble_kernel(inv, label, method, pick_ori, verbose=None):
"""Assemble the kernel.
Simple matrix multiplication followed by combination of the current
components. This does all the data transformations to compute the weights
for the eigenleads.
Parameters
----------
inv : instance of InverseOperator
The inverse operator to use. This object contains the matrices that
will be multiplied to assemble the kernel.
label : Label | None
Restricts the source estimates to a given label. If None,
source estimates will be computed for the entire source space.
method : "MNE" | "dSPM" | "sLORETA" | "eLORETA"
Use minimum norm, dSPM, sLORETA, or eLORETA.
pick_ori : None | "normal" | "vector"
Which orientation to pick (only matters in the case of 'normal').
Returns
-------
K : array, shape (n_vertices, n_channels) | (3 * n_vertices, n_channels)
The kernel matrix. Multiply this with the data to obtain the source
estimate.
noise_norm : array, shape (n_vertices, n_samples) | (3 * n_vertices, n_samples)
Normalization to apply to the source estimate in order to obtain dSPM
or sLORETA solutions.
vertices : list of length 2
Vertex numbers for lh and rh hemispheres that correspond to the
vertices in the source estimate. When the label parameter has been
set, these correspond to the vertices in the label. Otherwise, all
vertex numbers are returned.
source_nn : array, shape (3 * n_vertices, 3)
The direction in carthesian coordicates of the direction of the source
dipoles.
""" # noqa: E501
eigen_leads = inv['eigen_leads']['data']
source_cov = inv['source_cov']['data'][:, None]
if method in ('dSPM', 'sLORETA'):
noise_norm = inv['noisenorm'][:, None]
else:
noise_norm = None
src = inv['src']
vertno = _get_vertno(src)
source_nn = inv['source_nn']
if label is not None:
vertno, src_sel = label_src_vertno_sel(label, inv['src'])
if method != "MNE":
noise_norm = noise_norm[src_sel]
if inv['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI:
src_sel = 3 * src_sel
src_sel = np.c_[src_sel, src_sel + 1, src_sel + 2]
src_sel = src_sel.ravel()
eigen_leads = eigen_leads[src_sel]
source_cov = source_cov[src_sel]
source_nn = source_nn[src_sel]
if pick_ori == "normal":
if not inv['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI:
raise ValueError('Picking normal orientation can only be done '
'with a free orientation inverse operator.')
is_loose = 0 < inv['orient_prior']['data'][0] <= 1
if not is_loose:
raise ValueError('Picking normal orientation can only be done '
'when working with loose orientations.')
# keep only the normal components
eigen_leads = eigen_leads[2::3]
source_cov = source_cov[2::3]
trans = np.dot(inv['eigen_fields']['data'],
np.dot(inv['whitener'], inv['proj']))
trans *= inv['reginv'][:, None]
#
# Transformation into current distributions by weighting the eigenleads
# with the weights computed above
#
if inv['eigen_leads_weighted']:
#
# R^0.5 has been already factored in
#
logger.info(' Eigenleads already weighted ... ')
K = np.dot(eigen_leads, trans)
else:
#
# R^0.5 has to be factored in
#
logger.info(' Eigenleads need to be weighted ...')
K = np.sqrt(source_cov) * np.dot(eigen_leads, trans)
return K, noise_norm, vertno, source_nn
def _check_comps(info, data_info, kind):
"""Check for compatibility between compensation grades."""
comp = get_current_comp(info)
data_comp = get_current_comp(data_info)
if comp != data_comp and \
any(c not in (None, 0) for c in (comp, data_comp)):
raise RuntimeError('compensation grade mismatch between %s (%s) '
'and data (%s), consider recomputing the %s.'
% (kind, comp, data_comp, kind))
def _check_method(method):
"""Check the method."""
if method not in ['MNE', 'dSPM', 'sLORETA', 'eLORETA']:
raise ValueError('method parameter should be "MNE", "dSPM", '
'"sLORETA" or "eLORETA", got %s.' % (method,))
def _check_ori(pick_ori, source_ori):
"""Check pick_ori."""
if pick_ori not in [None, 'normal', 'vector']:
raise RuntimeError('pick_ori must be None, "normal" or "vector", not '
'%s' % pick_ori)
if pick_ori == 'vector' and source_ori != FIFF.FIFFV_MNE_FREE_ORI:
raise RuntimeError('pick_ori="vector" cannot be combined with an '
'inverse operator with fixed orientations.')
def _check_loose_forward(loose, forward):
"""Check the compatibility between loose and forward."""
src_kind = forward['src'].kind
if src_kind != 'surface':
if loose == 'auto':
loose = 1.
if loose != 1:
raise ValueError('loose parameter has to be 1 or "auto" for '
'non-surface source space (Got loose=%s for %s '
'source space).' % (loose, src_kind))
else: # surface
if loose == 'auto':
loose = 0.2
# put the forward solution in fixed orientation if it's not already
if loose == 0. and not is_fixed_orient(forward):
logger.info('Converting forward solution to fixed orietnation')
forward = convert_forward_solution(forward, force_fixed=True,
use_cps=True)
elif loose < 1. and not forward['surf_ori']:
logger.info('Converting forward solution to surface orientation')
forward = convert_forward_solution(forward, surf_ori=True,
use_cps=True)
assert loose is not None
loose = float(loose)
if loose < 0 or loose > 1:
raise ValueError('loose must be between 0 and 1, got %s' % loose)
if loose == 0. and not is_fixed_orient(forward):
forward = convert_forward_solution(forward, force_fixed=True,
use_cps=True)
return loose, forward
def _check_reference(inst, ch_names=None):
"""Check for EEG ref."""
info = inst.info
if ch_names is not None:
picks = [ci for ci, ch_name in enumerate(info['ch_names'])
if ch_name in ch_names]
info = pick_info(info, sel=picks)
if _needs_eeg_average_ref_proj(info):
raise ValueError('EEG average reference is mandatory for inverse '
'modeling, use set_eeg_reference method.')
if info['custom_ref_applied']:
raise ValueError('Custom EEG reference is not allowed for inverse '
'modeling.')
def _subject_from_inverse(inverse_operator):
"""Get subject id from inverse operator."""
return inverse_operator['src'][0].get('subject_his_id', None)
@verbose
def apply_inverse(evoked, inverse_operator, lambda2=1. / 9., method="dSPM",
pick_ori=None, prepared=False, label=None,
method_params=None, return_residual=False, verbose=None):
"""Apply inverse operator to evoked data.
Parameters
----------
evoked : Evoked object
Evoked data.
inverse_operator: instance of InverseOperator
Inverse operator.
lambda2 : float
The regularization parameter.
method : "MNE" | "dSPM" | "sLORETA" | "eLORETA"
Use minimum norm [1]_, dSPM (default) [2]_, sLORETA [3]_, or
eLORETA [4]_.
pick_ori : None | "normal" | "vector"
If "normal", rather than pooling the orientations by taking the norm,
only the radial component is kept. This is only implemented
when working with loose orientations.
If "vector", no pooling of the orientations is done and the vector
result will be returned in the form of a
:class:`mne.VectorSourceEstimate` object. This is only implemented when
working with loose orientations.
prepared : bool
If True, do not call :func:`prepare_inverse_operator`.
label : Label | None
Restricts the source estimates to a given label. If None,
source estimates will be computed for the entire source space.
method_params : dict | None
Additional options for eLORETA. See Notes for details.
.. versionadded:: 0.16
return_residual : bool
If True (default False), return the residual evoked data.
Cannot be used with ``method=='eLORETA'``.
.. versionadded:: 0.17
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
stc : SourceEstimate | VectorSourceEstimate | VolSourceEstimate
The source estimates.
residual : instance of Evoked
The residual evoked data, only returned if return_residual is True.
See Also
--------
apply_inverse_raw : Apply inverse operator to raw object
apply_inverse_epochs : Apply inverse operator to epochs object
Notes
-----
Currently only the ``method='eLORETA'`` has additional options.
It performs an iterative fit with a convergence criterion, so you can
pass a ``method_params`` :class:`dict` with string keys mapping to values
for:
'eps' : float
The convergence epsilon (default 1e-6).
'max_iter' : int
The maximum number of iterations (default 20).
If less regularization is applied, more iterations may be
necessary.
'force_equal' : bool
Force all eLORETA weights for each direction for a given
location equal. The default is None, which means ``True`` for
loose-orientation inverses and ``False`` for free- and
fixed-orientation inverses. See below.
The eLORETA paper [4]_ defines how to compute inverses for fixed- and
free-orientation inverses. In the free orientation case, the X/Y/Z
orientation triplet for each location is effectively multiplied by a
3x3 weight matrix. This is the behavior obtained with
``force_equal=False`` parameter.
However, other noise normalization methods (dSPM, sLORETA) multiply all
orientations for a given location by a single value.
Using ``force_equal=True`` mimics this behavior by modifying the iterative
algorithm to choose uniform weights (equivalent to a 3x3 diagonal matrix
with equal entries).
It is necessary to use ``force_equal=True``
with loose orientation inverses (e.g., ``loose=0.2``), otherwise the
solution resembles a free-orientation inverse (``loose=1.0``).
It is thus recommended to use ``force_equal=True`` for loose orientation
and ``force_equal=False`` for free orientation inverses. This is the
behavior used when the parameter ``force_equal=None`` (default behavior).
References
----------
.. [1] Hamalainen M S and Ilmoniemi R. Interpreting magnetic fields of
the brain: minimum norm estimates. Medical & Biological Engineering
& Computing, 32(1):35-42, 1994.
.. [2] Dale A, Liu A, Fischl B, Buckner R. (2000) Dynamic statistical
parametric mapping: combining fMRI and MEG for high-resolution
imaging of cortical activity. Neuron, 26:55-67.
.. [3] Pascual-Marqui RD (2002), Standardized low resolution brain
electromagnetic tomography (sLORETA): technical details. Methods
Find. Exp. Clin. Pharmacology, 24(D):5-12.
.. [4] Pascual-Marqui RD (2007). Discrete, 3D distributed, linear imaging
methods of electric neuronal activity. Part 1: exact, zero error
localization. arXiv:0710.3341
"""
_check_reference(evoked, inverse_operator['info']['ch_names'])
_check_method(method)
if method == 'eLORETA' and return_residual:
raise ValueError('eLORETA does not currently support return_residual')
_check_ori(pick_ori, inverse_operator['source_ori'])
#
# Set up the inverse according to the parameters
#
nave = evoked.nave
_check_ch_names(inverse_operator, evoked.info)
inv = _check_or_prepare(inverse_operator, nave, lambda2, method,
method_params, prepared)
#
# Pick the correct channels from the data
#
sel = _pick_channels_inverse_operator(evoked.ch_names, inv)
logger.info('Applying inverse operator to "%s"...' % (evoked.comment,))
logger.info(' Picked %d channels from the data' % len(sel))
logger.info(' Computing inverse...')
K, noise_norm, vertno, source_nn = _assemble_kernel(inv, label, method,
pick_ori)
sol = np.dot(K, evoked.data[sel]) # apply imaging kernel
logger.info(' Computing residual...')
# x̂(t) = G ĵ(t) = C ** 1/2 U Πw(t)
# where the diagonal matrix Πhas elements πk = λk γk
Pi = inv['sing'] * inv['reginv']
data_w = np.dot(inv['whitener'], # C ** -0.5
np.dot(inv['proj'], evoked.data[sel]))
w_t = np.dot(inv['eigen_fields']['data'], data_w) # U.T @ data
data_est = np.dot(inv['colorer'], # C ** 0.5
np.dot(inv['eigen_fields']['data'].T, # U
Pi[:, np.newaxis] * w_t))
data_est_w = np.dot(inv['whitener'], np.dot(inv['proj'], data_est))
var_exp = 1 - ((data_est_w - data_w) ** 2).sum() / (data_w ** 2).sum()
logger.info(' Explained %5.1f%% variance' % (100 * var_exp,))
if return_residual:
residual = evoked.copy()
residual.data[sel] -= data_est
is_free_ori = (inverse_operator['source_ori'] ==
FIFF.FIFFV_MNE_FREE_ORI and pick_ori != 'normal')
if is_free_ori and pick_ori != 'vector':
logger.info(' Combining the current components...')
sol = combine_xyz(sol)
if noise_norm is not None:
logger.info(' %s...' % (method,))
if is_free_ori and pick_ori == 'vector':
noise_norm = noise_norm.repeat(3, axis=0)
sol *= noise_norm
tstep = 1.0 / evoked.info['sfreq']
tmin = float(evoked.times[0])
subject = _subject_from_inverse(inverse_operator)
src_type = _get_src_type(inverse_operator['src'], vertno)
stc = _make_stc(sol, vertno, tmin=tmin, tstep=tstep, subject=subject,
vector=(pick_ori == 'vector'), source_nn=source_nn,
src_type=src_type)
logger.info('[done]')
return (stc, residual) if return_residual else stc
@verbose
def apply_inverse_raw(raw, inverse_operator, lambda2, method="dSPM",
label=None, start=None, stop=None, nave=1,
time_func=None, pick_ori=None, buffer_size=None,
prepared=False, method_params=None, verbose=None):
"""Apply inverse operator to Raw data.
Parameters
----------
raw : Raw object
Raw data.
inverse_operator : dict
Inverse operator.
lambda2 : float
The regularization parameter.
method : "MNE" | "dSPM" | "sLORETA" | "eLORETA"
Use minimum norm, dSPM (default), sLORETA, or eLORETA.
label : Label | None
Restricts the source estimates to a given label. If None,
source estimates will be computed for the entire source space.
start : int
Index of first time sample (index not time is seconds).
stop : int
Index of first time sample not to include (index not time is seconds).
nave : int
Number of averages used to regularize the solution.
Set to 1 on raw data.
time_func : callable
Linear function applied to sensor space time series.
pick_ori : None | "normal" | "vector"
If "normal", rather than pooling the orientations by taking the norm,
only the radial component is kept. This is only implemented
when working with loose orientations.
If "vector", no pooling of the orientations is done and the vector
result will be returned in the form of a
:class:`mne.VectorSourceEstimate` object. This does not work when using
an inverse operator with fixed orientations.
buffer_size : int (or None)
If not None, the computation of the inverse and the combination of the
current components is performed in segments of length buffer_size
samples. While slightly slower, this is useful for long datasets as it
reduces the memory requirements by approx. a factor of 3 (assuming
buffer_size << data length).
Note that this setting has no effect for fixed-orientation inverse
operators.
prepared : bool
If True, do not call :func:`prepare_inverse_operator`.
method_params : dict | None
Additional options for eLORETA. See Notes of :func:`apply_inverse`.
.. versionadded:: 0.16
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
stc : SourceEstimate | VectorSourceEstimate | VolSourceEstimate
The source estimates.
See Also
--------
apply_inverse_epochs : Apply inverse operator to epochs object
apply_inverse : Apply inverse operator to evoked object
"""
_check_reference(raw, inverse_operator['info']['ch_names'])
_check_method(method)
_check_ori(pick_ori, inverse_operator['source_ori'])
_check_ch_names(inverse_operator, raw.info)
#
# Set up the inverse according to the parameters
#
inv = _check_or_prepare(inverse_operator, nave, lambda2, method,
method_params, prepared)
#
# Pick the correct channels from the data
#
sel = _pick_channels_inverse_operator(raw.ch_names, inv)
logger.info('Applying inverse to raw...')
logger.info(' Picked %d channels from the data' % len(sel))
logger.info(' Computing inverse...')
data, times = raw[sel, start:stop]
if time_func is not None:
data = time_func(data)
K, noise_norm, vertno, source_nn = _assemble_kernel(inv, label, method,
pick_ori)
is_free_ori = (inverse_operator['source_ori'] ==
FIFF.FIFFV_MNE_FREE_ORI and pick_ori != 'normal')
if buffer_size is not None and is_free_ori:
# Process the data in segments to conserve memory
n_seg = int(np.ceil(data.shape[1] / float(buffer_size)))
logger.info(' computing inverse and combining the current '
'components (using %d segments)...' % (n_seg))
# Allocate space for inverse solution
n_times = data.shape[1]
n_dipoles = K.shape[0] if pick_ori == 'vector' else K.shape[0] // 3
sol = np.empty((n_dipoles, n_times), dtype=np.result_type(K, data))
for pos in range(0, n_times, buffer_size):
sol_chunk = np.dot(K, data[:, pos:pos + buffer_size])
if pick_ori != 'vector':
sol_chunk = combine_xyz(sol_chunk)
sol[:, pos:pos + buffer_size] = sol_chunk
logger.info(' segment %d / %d done..'
% (pos / buffer_size + 1, n_seg))
else:
sol = np.dot(K, data)
if is_free_ori and pick_ori != 'vector':
logger.info(' combining the current components...')
sol = combine_xyz(sol)
if noise_norm is not None:
if pick_ori == 'vector' and is_free_ori:
noise_norm = noise_norm.repeat(3, axis=0)
sol *= noise_norm
tmin = float(times[0])
tstep = 1.0 / raw.info['sfreq']
subject = _subject_from_inverse(inverse_operator)
src_type = _get_src_type(inverse_operator['src'], vertno)
stc = _make_stc(sol, vertno, tmin=tmin, tstep=tstep, subject=subject,
vector=(pick_ori == 'vector'), source_nn=source_nn,
src_type=src_type)
logger.info('[done]')
return stc
def _apply_inverse_epochs_gen(epochs, inverse_operator, lambda2, method='dSPM',
label=None, nave=1, pick_ori=None,
prepared=False, method_params=None,
verbose=None):
"""Generate inverse solutions for epochs. Used in apply_inverse_epochs."""
_check_method(method)
_check_ori(pick_ori, inverse_operator['source_ori'])
_check_ch_names(inverse_operator, epochs.info)
#
# Set up the inverse according to the parameters
#
inv = _check_or_prepare(inverse_operator, nave, lambda2, method,
method_params, prepared)
#
# Pick the correct channels from the data
#
sel = _pick_channels_inverse_operator(epochs.ch_names, inv)
logger.info('Picked %d channels from the data' % len(sel))
logger.info('Computing inverse...')
K, noise_norm, vertno, source_nn = _assemble_kernel(inv, label, method,
pick_ori)
tstep = 1.0 / epochs.info['sfreq']
tmin = epochs.times[0]
is_free_ori = (inverse_operator['source_ori'] ==
FIFF.FIFFV_MNE_FREE_ORI and pick_ori != 'normal')
if pick_ori == 'vector' and noise_norm is not None:
noise_norm = noise_norm.repeat(3, axis=0)
if not is_free_ori and noise_norm is not None:
# premultiply kernel with noise normalization
K *= noise_norm
subject = _subject_from_inverse(inverse_operator)
for k, e in enumerate(epochs):
logger.info('Processing epoch : %d' % (k + 1))
if is_free_ori:
# Compute solution and combine current components (non-linear)
sol = np.dot(K, e[sel]) # apply imaging kernel
logger.info('combining the current components...')
if pick_ori != 'vector':
sol = combine_xyz(sol)
if noise_norm is not None:
sol *= noise_norm
else:
# Linear inverse: do computation here or delayed
if len(sel) < K.shape[1]:
sol = (K, e[sel])
else:
sol = np.dot(K, e[sel])
src_type = _get_src_type(inverse_operator['src'], vertno)
stc = _make_stc(sol, vertno, tmin=tmin, tstep=tstep, subject=subject,
vector=(pick_ori == 'vector'), source_nn=source_nn,
src_type=src_type)
yield stc
logger.info('[done]')
@verbose
def apply_inverse_epochs(epochs, inverse_operator, lambda2, method="dSPM",
label=None, nave=1, pick_ori=None,
return_generator=False, prepared=False,
method_params=None, verbose=None):
"""Apply inverse operator to Epochs.
Parameters
----------
epochs : Epochs object
Single trial epochs.
inverse_operator : dict
Inverse operator.
lambda2 : float
The regularization parameter.
method : "MNE" | "dSPM" | "sLORETA" | "eLORETA"
Use minimum norm, dSPM (default), sLORETA, or eLORETA.
label : Label | None
Restricts the source estimates to a given label. If None,
source estimates will be computed for the entire source space.
nave : int
Number of averages used to regularize the solution.
Set to 1 on single Epoch by default.
pick_ori : None | "normal" | "vector"
If "normal", rather than pooling the orientations by taking the norm,
only the radial component is kept. This is only implemented
when working with loose orientations.
If "vector", no pooling of the orientations is done and the vector
result will be returned in the form of a
:class:`mne.VectorSourceEstimate` object. This does not work when using
an inverse operator with fixed orientations.
return_generator : bool
Return a generator object instead of a list. This allows iterating
over the stcs without having to keep them all in memory.
prepared : bool
If True, do not call :func:`prepare_inverse_operator`.
method_params : dict | None
Additional options for eLORETA. See Notes of :func:`apply_inverse`.
.. versionadded:: 0.16
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
stc : list of (SourceEstimate | VectorSourceEstimate | VolSourceEstimate)
The source estimates for all epochs.
See Also
--------
apply_inverse_raw : Apply inverse operator to raw object
apply_inverse : Apply inverse operator to evoked object
"""
stcs = _apply_inverse_epochs_gen(
epochs, inverse_operator, lambda2, method=method, label=label,
nave=nave, pick_ori=pick_ori, verbose=verbose, prepared=prepared,
method_params=method_params)
if not return_generator:
# return a list
stcs = [stc for stc in stcs]
return stcs
# XXX what is this???
'''
def _xyz2lf(Lf_xyz, normals):
"""Reorient leadfield to one component matching the normal to the cortex
This program takes a leadfield matrix computed for dipole components
pointing in the x, y, and z directions, and outputs a new lead field
matrix for dipole components pointing in the normal direction of the
cortical surfaces and in the two tangential directions to the cortex
(that is on the tangent cortical space). These two tangential dipole
components are uniquely determined by the SVD (reduction of variance).
Parameters
----------
Lf_xyz: array of shape [n_sensors, n_positions x 3]
Leadfield
normals : array of shape [n_positions, 3]
Normals to the cortex
Returns
-------
Lf_cortex : array of shape [n_sensors, n_positions x 3]
Lf_cortex is a leadfield matrix for dipoles in rotated orientations, so
that the first column is the gain vector for the cortical normal dipole
and the following two column vectors are the gain vectors for the
tangential orientations (tangent space of cortical surface).
"""
n_sensors, n_dipoles = Lf_xyz.shape
n_positions = n_dipoles // 3
Lf_xyz = Lf_xyz.reshape(n_sensors, n_positions, 3)
n_sensors, n_positions, _ = Lf_xyz.shape
Lf_cortex = np.zeros_like(Lf_xyz)
for k in range(n_positions):
lf_normal = np.dot(Lf_xyz[:, k, :], normals[k])
lf_normal_n = lf_normal[:, None] / linalg.norm(lf_normal)
P = np.eye(n_sensors, n_sensors) - np.dot(lf_normal_n, lf_normal_n.T)
lf_p = np.dot(P, Lf_xyz[:, k, :])
U, s, Vh = linalg.svd(lf_p)
Lf_cortex[:, k, 0] = lf_normal
Lf_cortex[:, k, 1:] = np.c_[U[:, 0] * s[0], U[:, 1] * s[1]]
Lf_cortex = Lf_cortex.reshape(n_sensors, n_dipoles)
return Lf_cortex
'''
###############################################################################
# Assemble the inverse operator
@verbose
def _prepare_forward(forward, info, noise_cov, pca=False, rank=None,
verbose=None):
"""Prepare forward solution for inverse solvers."""
# fwd['sol']['row_names'] may be different order from fwd['info']['chs']
fwd_sol_ch_names = forward['sol']['row_names']
ch_names = [c['ch_name'] for c in info['chs']
if ((c['ch_name'] not in info['bads'] and
c['ch_name'] not in noise_cov['bads']) and
(c['ch_name'] in fwd_sol_ch_names and
c['ch_name'] in noise_cov.ch_names))]
if not len(info['bads']) == len(noise_cov['bads']) or \
not all(b in noise_cov['bads'] for b in info['bads']):
logger.info('info["bads"] and noise_cov["bads"] do not match, '
'excluding bad channels from both')
# check the compensation grade
_check_comps(forward['info'], info, 'forward')
n_chan = len(ch_names)
logger.info("Computing inverse operator with %d channels." % n_chan)
whitener, _, noise_cov, n_nzero = _get_whitener(
noise_cov, info, ch_names, rank, pca)
gain = forward['sol']['data']
# This actually reorders the gain matrix to conform to the info ch order
fwd_idx = [fwd_sol_ch_names.index(name) for name in ch_names]
gain = gain[fwd_idx]
# Any function calling this helper will be using the returned fwd_info
# dict, so fwd['sol']['row_names'] becomes obsolete and is NOT re-ordered
info_idx = [info['ch_names'].index(name) for name in ch_names]
fwd_info = pick_info(info, info_idx)
return fwd_info, gain, noise_cov, whitener, n_nzero
@verbose
def make_inverse_operator(info, forward, noise_cov, loose='auto', depth=0.8,
fixed='auto', limit_depth_chs=True, rank=None,
use_cps=True, verbose=None):
"""Assemble inverse operator.
Parameters
----------
info : dict
The measurement info to specify the channels to include.
Bad channels in info['bads'] are not used.
forward : dict
Forward operator.
noise_cov : instance of Covariance
The noise covariance matrix.
loose : float in [0, 1] | 'auto'
Value that weights the source variances of the dipole components
that are parallel (tangential) to the cortical surface. If loose
is 0 then the solution is computed with fixed orientation,
and fixed must be True or "auto".
If loose is 1, it corresponds to free orientations.
The default value ('auto') is set to 0.2 for surface-oriented source
space and set to 1.0 for volumetric, discrete, or mixed source spaces,
unless ``fixed is True`` in which case the value 0. is used.
depth : None | float in [0, 1]
Depth weighting coefficients. If None, no depth weighting is performed.
fixed : bool | 'auto'
Use fixed source orientations normal to the cortical mantle. If True,
the loose parameter must be "auto" or 0. If 'auto', the loose value
is used.
limit_depth_chs : bool
If True, use only grad channels in depth weighting (equivalent to MNE
C code). If grad channels aren't present, only mag channels will be
used (if no mag, then eeg). If False, use all channels.
rank : None | int | dict
Specified rank of the noise covariance matrix. If None, the rank is
detected automatically. If int, the rank is specified for the MEG
channels. A dictionary with entries 'eeg' and/or 'meg' can be used
to specify the rank for each modality.
use_cps : None | bool (default True)
Whether to use cortical patch statistics to define normal
orientations. Only used when converting to surface orientation
(i.e., for surface source spaces and ``loose < 1``).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`).
Returns
-------
inv : instance of InverseOperator
Inverse operator.
Notes
-----
For different sets of options (**loose**, **depth**, **fixed**) to work,
the forward operator must have been loaded using a certain configuration
(i.e., with **force_fixed** and **surf_ori** set appropriately). For
example, given the desired inverse type (with representative choices
of **loose** = 0.2 and **depth** = 0.8 shown in the table in various
places, as these are the defaults for those parameters):
+---------------------+-----------+-----------+-----------+-----------------+--------------+
| Inverse desired | Forward parameters allowed |
+=====================+===========+===========+===========+=================+==============+
| | **loose** | **depth** | **fixed** | **force_fixed** | **surf_ori** |
+---------------------+-----------+-----------+-----------+-----------------+--------------+
| | Loose constraint, | 0.2 | 0.8 | False | False | True |
| | Depth weighted | | | | | |
+---------------------+-----------+-----------+-----------+-----------------+--------------+
| | Loose constraint | 0.2 | None | False | False | True |
+---------------------+-----------+-----------+-----------+-----------------+--------------+
| | Free orientation, | 1.0 | 0.8 | False | False | True |
| | Depth weighted | | | | | |
+---------------------+-----------+-----------+-----------+-----------------+--------------+
| | Free orientation | 1.0 | None | False | False | True | False |
+---------------------+-----------+-----------+-----------+-----------------+--------------+
| | Fixed constraint, | 0.0 | 0.8 | True | False | True |
| | Depth weighted | | | | | |
+---------------------+-----------+-----------+-----------+-----------------+--------------+
| | Fixed constraint | 0.0 | None | True | True | True |
+---------------------+-----------+-----------+-----------+-----------------+--------------+
Also note that, if the source space (as stored in the forward solution)
has patch statistics computed, these are used to improve the depth
weighting. Thus slightly different results are to be expected with
and without this information.
""" # noqa: E501
is_fixed_ori = is_fixed_orient(forward)
# These gymnastics are necessary due to the redundancy between
# "fixed" and "loose"
if fixed == 'auto':
if loose == 'auto':
fixed, loose = False, 0.2
else:
fixed = True if float(loose) == 0 else False
if fixed:
if loose not in ['auto', 0.]:
raise ValueError('When invoking make_inverse_operator with '
'fixed=True, loose must be 0. or "auto", '
'got %s' % (loose,))
loose = 0.
if loose == 0.:
if fixed not in (True, 'auto'):
raise ValueError('If loose==0., then fixed must be True or "auto",'
'got %s' % (fixed,))
fixed = True
if fixed and not is_fixed_ori:
# Here we use loose=1. because computation of depth priors is improved
# by operating on the free orientation forward; see code at the
# comment below "Deal with fixed orientation forward / inverse"
loose = 1.
if is_fixed_ori:
if not fixed:
raise ValueError(
'Forward operator has fixed orientation and can only '
'be used to make a fixed-orientation inverse '
'operator.')
if fixed and depth is not None:
raise ValueError(
'For a fixed orientation inverse solution with depth '
'weighting, the forward solution must be free-orientation and '
'in surface orientation')
# depth=None can use fixed fwd, depth=0<x<1 must use free ori
if depth is not None:
if not (0 < depth <= 1):
raise ValueError('depth should be a scalar between 0 and 1')
if is_fixed_ori:
raise ValueError('You need a free-orientation, surface-oriented '
'forward solution to do depth weighting even '
'when calculating a fixed-orientation inverse.')
loose, forward = _check_loose_forward(loose, forward)
if (depth is not None or loose != 1) and not forward['surf_ori']:
logger.info('Forward is not surface oriented, converting.')
forward = convert_forward_solution(forward, surf_ori=True,
use_cps=use_cps)
#
# 1. Read the bad channels
# 2. Read the necessary data from the forward solution matrix file
# 3. Load the projection data
# 4. Load the sensor noise covariance matrix and attach it to the forward
#
# For now we always have pca=False. It does not seem to affect calculations
# and is also backward-compatible with MNE-C
gain_info, gain, noise_cov, whitener, n_nzero = \
_prepare_forward(forward, info, noise_cov, pca=False, rank=rank)
forward['info']._check_consistency()
#
# 5. Compose the depth-weighting matrix
#
if depth is not None:
patch_areas = forward.get('patch_areas', None)
depth_prior = compute_depth_prior(gain, gain_info, is_fixed_ori,
exp=depth, patch_areas=patch_areas,
limit_depth_chs=limit_depth_chs)
else:
depth_prior = np.ones(gain.shape[1], dtype=gain.dtype)
# Deal with fixed orientation forward / inverse
if fixed:
if depth is not None:
# Convert the depth prior into a fixed-orientation one
logger.info(' Picked elements from a free-orientation '
'depth-weighting prior into the fixed-orientation one')
if not is_fixed_ori:
# Convert to the fixed orientation forward solution now
depth_prior = depth_prior[2::3]
forward = convert_forward_solution(
forward, surf_ori=forward['surf_ori'], force_fixed=True,
use_cps=use_cps)
is_fixed_ori = is_fixed_orient(forward)
gain_info, gain, noise_cov, whitener, n_nzero = \
_prepare_forward(forward, info, noise_cov, pca=False,
verbose=False)
logger.info("Computing inverse operator with %d channels."
% len(gain_info['ch_names']))
#
# 6. Compose the source covariance matrix
#
logger.info('Creating the source covariance matrix')
source_cov = depth_prior.copy()
depth_prior = dict(data=depth_prior, kind=FIFF.FIFFV_MNE_DEPTH_PRIOR_COV,
bads=[], diag=True, names=[], eig=None,
eigvec=None, dim=depth_prior.size, nfree=1,
projs=[])
# apply loose orientations
if not is_fixed_ori:
orient_prior = compute_orient_prior(forward, loose=loose)
source_cov *= orient_prior
orient_prior = dict(data=orient_prior,
kind=FIFF.FIFFV_MNE_ORIENT_PRIOR_COV,
bads=[], diag=True, names=[], eig=None,
eigvec=None, dim=orient_prior.size, nfree=1,
projs=[])
else:
orient_prior = None
# 7. Apply fMRI weighting (not done)
#
# 8. Apply the linear projection to the forward solution
# 9. Apply whitening to the forward computation matrix
#
logger.info('Whitening the forward solution.')
gain = np.dot(whitener, gain)
# 10. Exclude the source space points within the labels (not done)
#
# 11. Do appropriate source weighting to the forward computation matrix
#
# Adjusting Source Covariance matrix to make trace of G*R*G' equal
# to number of sensors.
logger.info('Adjusting source covariance matrix.')
source_std = np.sqrt(source_cov)
gain *= source_std[None, :]
trace_GRGT = linalg.norm(gain, ord='fro') ** 2
scaling_source_cov = n_nzero / trace_GRGT
source_cov *= scaling_source_cov
gain *= sqrt(scaling_source_cov)
source_cov = dict(data=source_cov, dim=source_cov.size,
kind=FIFF.FIFFV_MNE_SOURCE_COV, diag=True,
names=[], projs=[], eig=None, eigvec=None,
nfree=1, bads=[])
# now np.trace(np.dot(gain, gain.T)) == n_nzero
# logger.info(np.trace(np.dot(gain, gain.T)), n_nzero)
#
# 12. Decompose the combined matrix
#
logger.info('Computing SVD of whitened and weighted lead field '
'matrix.')
eigen_fields, sing, eigen_leads = _safe_svd(gain, full_matrices=False)
logger.info(' largest singular value = %g' % np.max(sing))
logger.info(' scaling factor to adjust the trace = %g' % trace_GRGT)
eigen_fields = dict(data=eigen_fields.T, col_names=gain_info['ch_names'],
row_names=[], nrow=eigen_fields.shape[1],
ncol=eigen_fields.shape[0])
eigen_leads = dict(data=eigen_leads.T, nrow=eigen_leads.shape[1],
ncol=eigen_leads.shape[0], row_names=[],
col_names=[])
nave = 1.0
# Handle methods
has_meg = False
has_eeg = False
ch_idx = [k for k, c in enumerate(info['chs'])
if c['ch_name'] in gain_info['ch_names']]
for idx in ch_idx:
ch_type = channel_type(info, idx)
if ch_type == 'eeg':
has_eeg = True
if (ch_type == 'mag') or (ch_type == 'grad'):
has_meg = True
if has_eeg and has_meg:
methods = FIFF.FIFFV_MNE_MEG_EEG
elif has_meg:
methods = FIFF.FIFFV_MNE_MEG
else:
methods = FIFF.FIFFV_MNE_EEG
# We set this for consistency with mne C code written inverses
if depth is None:
depth_prior = None
inv_op = dict(eigen_fields=eigen_fields, eigen_leads=eigen_leads,
sing=sing, nave=nave, depth_prior=depth_prior,
source_cov=source_cov, noise_cov=noise_cov,
orient_prior=orient_prior, projs=deepcopy(info['projs']),
eigen_leads_weighted=False, source_ori=forward['source_ori'],
mri_head_t=deepcopy(forward['mri_head_t']),
methods=methods, nsource=forward['nsource'],
coord_frame=forward['coord_frame'],
source_nn=forward['source_nn'].copy(),
src=deepcopy(forward['src']), fmri_prior=None)
inv_info = deepcopy(forward['info'])
inv_info['bads'] = [bad for bad in info['bads']
if bad in inv_info['ch_names']]
inv_info._check_consistency()
inv_op['units'] = 'Am'
inv_op['info'] = inv_info
return InverseOperator(inv_op)
def compute_rank_inverse(inv):
"""Compute the rank of a linear inverse operator (MNE, dSPM, etc.).
Parameters
----------
inv : instance of InverseOperator
The inverse operator.
Returns
-------
rank : int
The rank of the inverse operator.
"""
# this code shortened from prepare_inverse_operator
eig = inv['noise_cov']['eig']
if not inv['noise_cov']['diag']:
rank = np.sum(eig > 0)
else:
ncomp = make_projector(inv['projs'], inv['noise_cov']['names'])[1]
rank = inv['noise_cov']['dim'] - ncomp
return rank
# #############################################################################
# SNR Estimation
@verbose
def estimate_snr(evoked, inv, verbose=None):
r"""Estimate the SNR as a function of time for evoked data.
Parameters
----------
evoked : instance of Evoked
Evoked instance.
inv : instance of InverseOperator
The inverse operator.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`).
Returns
-------
snr : ndarray, shape (n_times,)
The SNR estimated from the whitened data.
snr_est : ndarray, shape (n_times,)
The SNR estimated using the mismatch between the unregularized
solution and the regularized solution.
Notes
-----
``snr_est`` is estimated by using different amounts of inverse
regularization and checking the mismatch between predicted and
measured whitened data.
In more detail, given our whitened inverse obtained from SVD:
.. math::
\tilde{M} = R^\frac{1}{2}V\Gamma U^T
The values in the diagonal matrix :math:`\Gamma` are expressed in terms
of the chosen regularization :math:`\lambda\approx\frac{1}{\rm{SNR}^2}`
and singular values :math:`\lambda_k` as:
.. math::
\gamma_k = \frac{1}{\lambda_k}\frac{\lambda_k^2}{\lambda_k^2 + \lambda^2}
We also know that our predicted data is given by:
.. math::
\hat{x}(t) = G\hat{j}(t)=C^\frac{1}{2}U\Pi w(t)
And thus our predicted whitened data is just:
.. math::
\hat{w}(t) = U\Pi w(t)
Where :math:`\Pi` is diagonal with entries entries:
.. math::
\lambda_k\gamma_k = \frac{\lambda_k^2}{\lambda_k^2 + \lambda^2}
If we use no regularization, note that :math:`\Pi` is just the
identity matrix. Here we test the squared magnitude of the difference
between unregularized solution and regularized solutions, choosing the
biggest regularization that achieves a :math:`\chi^2`-test significance
of 0.001.
.. versionadded:: 0.9.0
""" # noqa: E501
from scipy.stats import chi2
_check_reference(evoked, inv['info']['ch_names'])
_check_ch_names(inv, evoked.info)
inv = prepare_inverse_operator(inv, evoked.nave, 1. / 9., 'MNE')
sel = _pick_channels_inverse_operator(evoked.ch_names, inv)
logger.info('Picked %d channels from the data' % len(sel))
data_white = np.dot(inv['whitener'], np.dot(inv['proj'], evoked.data[sel]))
data_white_ef = np.dot(inv['eigen_fields']['data'], data_white)
n_ch, n_times = data_white.shape
# Adapted from mne_analyze/regularization.c, compute_regularization
n_zero = (inv['noise_cov']['eig'] <= 0).sum()
n_ch_eff = n_ch - n_zero
logger.info('Effective nchan = %d - %d = %d'
% (n_ch, n_zero, n_ch_eff))
del n_ch
signal = np.sum(data_white ** 2, axis=0) # sum of squares across channels
snr = signal / n_ch_eff
# Adapted from noise_regularization
lambda2_est = np.empty(n_times)
lambda2_est.fill(10.)
remaining = np.ones(n_times, bool)
# deal with low SNRs
bad = (snr <= 1)
lambda2_est[bad] = np.inf
remaining[bad] = False
# parameters
lambda_mult = 0.99
sing2 = (inv['sing'] * inv['sing'])[:, np.newaxis]
val = chi2.isf(1e-3, n_ch_eff)
for n_iter in range(1000):
# get_mne_weights (ew=error_weights)
# (split newaxis creation here for old numpy)
f = sing2 / (sing2 + lambda2_est[np.newaxis][:, remaining])
f[inv['sing'] == 0] = 0
ew = data_white_ef[:, remaining] * (1.0 - f)
# check condition
err = np.sum(ew * ew, axis=0)
remaining[np.where(remaining)[0][err < val]] = False
if not remaining.any():
break
lambda2_est[remaining] *= lambda_mult
else:
warn('SNR estimation did not converge')
snr_est = 1.0 / np.sqrt(lambda2_est)
snr = np.sqrt(snr)
return snr, snr_est
|