1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
|
# Author(s): Tommy Clausner <tommy.clausner@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Eric Larson <larson.eric.d@gmail.com>
# License: BSD (3-clause)
import os.path as op
import warnings
import copy
import numpy as np
from scipy import sparse
from .parallel import parallel_func
from .source_estimate import (VolSourceEstimate, SourceEstimate,
VectorSourceEstimate, _get_ico_tris)
from .source_space import SourceSpaces
from .surface import read_morph_map, mesh_edges, read_surface, _compute_nearest
from .utils import (logger, verbose, check_version, get_subjects_dir,
warn as warn_, deprecated)
from .externals.six import string_types
from .externals.h5io import read_hdf5, write_hdf5
def compute_source_morph(src, subject_from=None, subject_to='fsaverage',
subjects_dir=None, zooms=5,
niter_affine=(100, 100, 10), niter_sdr=(5, 5, 3),
spacing=5, smooth=None, warn=True, xhemi=False,
sparse=False, verbose=False):
"""Create a SourceMorph from one subject to another.
Method is based on spherical morphing by FreeSurfer for surface
cortical estimates [1]_ and Symmetric Diffeomorphic Registration
for volumic data [2]_.
Parameters
----------
src : instance of SourceSpaces | instance of SourceEstimate
The SourceSpaces of subject_from (can be a
SourceEstimate if only using a surface source space).
subject_from : str | None
Name of the original subject as named in the SUBJECTS_DIR.
If None (default), then ``src[0]['subject_his_id]'`` will be used.
subject_to : str
Name of the subject to which to morph as named in the SUBJECTS_DIR.
subjects_dir : str | None
Path to SUBJECTS_DIR if it is not set in the environment. The default
is None.
zooms : float | tuple | None
The voxel size of volume for each spatial dimension in mm.
If spacing is None, MRIs won't be resliced, and both volumes
must have the same number of spatial dimensions.
niter_affine : tuple of int
Number of levels (``len(niter_affine)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the affine transform.
Default is niter_affine=(100, 100, 10).
niter_sdr : tuple of int
Number of levels (``len(niter_sdr)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the Symmetric Diffeomorphic Registration (sdr)
transform. Default is niter_sdr=(5, 5, 3).
spacing : int | list | None
The resolution of the icosahedral mesh (typically 5).
If None, all vertices will be used (potentially filling the
surface). If a list, then values will be morphed to the set of
vertices specified in in ``spacing[0]`` and ``spacing[1]``.
smooth : int | None
Number of iterations for the smoothing of the surface data.
If None, smooth is automatically defined to fill the surface
with non-zero values. The default is spacing=None.
warn : bool
If True, warn if not all vertices were used. The default is warn=True.
xhemi : bool
Morph across hemisphere. Currently only implemented for
``subject_to == subject_from``. See notes below.
The default is xhemi=False.
sparse : bool
Morph as a sparse source estimate. Works only with (Vector)
SourceEstimate. If True the only parameters used are subject_to and
subject_from, and spacing has to be None. Default is sparse=False.
verbose : bool | str | int | None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more). The default
is verbose=None.
Notes
-----
This function can be used to morph data between hemispheres by setting
``xhemi=True``. The full cross-hemisphere morph matrix maps left to right
and right to left. A matrix for cross-mapping only one hemisphere can be
constructed by specifying the appropriate vertices, for example, to map the
right hemisphere to the left:
``vertices_from=[[], vert_rh], vertices_to=[vert_lh, []]``.
Cross-hemisphere mapping requires appropriate ``sphere.left_right``
morph-maps in the subject's directory. These morph maps are included
with the ``fsaverage_sym`` FreeSurfer subject, and can be created for other
subjects with the ``mris_left_right_register`` FreeSurfer command. The
``fsaverage_sym`` subject is included with FreeSurfer > 5.1 and can be
obtained as described `here
<http://surfer.nmr.mgh.harvard.edu/fswiki/Xhemi>`_. For statistical
comparisons between hemispheres, use of the symmetric ``fsaverage_sym``
model is recommended to minimize bias [1]_.
.. versionadded:: 0.17.0
References
----------
.. [1] Greve D. N., Van der Haegen L., Cai Q., Stufflebeam S., Sabuncu M.
R., Fischl B., Brysbaert M.
A Surface-based Analysis of Language Lateralization and Cortical
Asymmetry. Journal of Cognitive Neuroscience 25(9), 1477-1492, 2013.
.. [2] Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2009).
Symmetric Diffeomorphic Image Registration with Cross- Correlation:
Evaluating Automated Labeling of Elderly and Neurodegenerative
Brain, 12(1), 26-41.
"""
if isinstance(src, (SourceEstimate, VectorSourceEstimate)):
src_data = dict(vertices_from=copy.deepcopy(src.vertices))
kind = 'surface'
subject_from = _check_subject_from(subject_from, src.subject)
else:
src_data, kind = _get_src_data(src)
subject_from = _check_subject_from(subject_from, src)
if not isinstance(subject_to, string_types):
raise TypeError('subject_to must be str, got type %s (%s)'
% (type(subject_to), subject_to))
del src
# Params
warn = False if sparse else warn
if kind not in 'surface' and xhemi:
raise ValueError('Inter-hemispheric morphing can only be used '
'with surface source estimates.')
if sparse and kind != 'surface':
raise ValueError('Only surface source estimates can compute a '
'sparse morph.')
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
# VolSourceEstimate
shape = affine = pre_affine = sdr_morph = None
morph_mat = vertices_to = None
if kind == 'volume':
_check_dep(nibabel='2.1.0', dipy=False)
logger.info('volume source space inferred...')
import nibabel as nib
# load moving MRI
mri_subpath = op.join('mri', 'brain.mgz')
mri_path_from = op.join(subjects_dir, subject_from, mri_subpath)
logger.info('loading %s as "from" volume' % mri_path_from)
with warnings.catch_warnings():
mri_from = nib.load(mri_path_from)
# eventually we could let this be some other volume, but for now
# let's KISS and use `brain.mgz`, too
mri_path_to = op.join(subjects_dir, subject_to, mri_subpath)
if not op.isfile(mri_path_to):
raise IOError('cannot read file: %s' % mri_path_to)
logger.info('loading %s as "to" volume' % mri_path_to)
with warnings.catch_warnings():
mri_to = nib.load(mri_path_to)
# pre-compute non-linear morph
shape, zooms, affine, pre_affine, sdr_morph = _compute_morph_sdr(
mri_from, mri_to, niter_affine, niter_sdr, zooms)
elif kind == 'surface':
logger.info('surface source space inferred...')
vertices_from = src_data['vertices_from']
if sparse:
if spacing is not None:
raise ValueError('spacing must be set to None if '
'sparse=True.')
if xhemi:
raise ValueError('xhemi=True can only be used with '
'sparse=False')
vertices_to, morph_mat = _compute_sparse_morph(
vertices_from, subject_from, subject_to, subjects_dir)
else:
vertices_to = grade_to_vertices(
subject_to, spacing, subjects_dir, 1)
morph_mat = _compute_morph_matrix(
subject_from=subject_from, subject_to=subject_to,
vertices_from=vertices_from, vertices_to=vertices_to,
subjects_dir=subjects_dir, smooth=smooth, warn=warn,
xhemi=xhemi)
n_verts = sum(len(v) for v in vertices_to)
assert morph_mat.shape[0] == n_verts
morph = SourceMorph(subject_from, subject_to, kind, zooms,
niter_affine, niter_sdr, spacing, smooth, xhemi,
morph_mat, vertices_to, shape, affine,
pre_affine, sdr_morph, src_data)
logger.info('[done]')
return morph
def _compute_sparse_morph(vertices_from, subject_from, subject_to,
subjects_dir=None):
"""Get nearest vertices from one subject to another."""
maps = read_morph_map(subject_to, subject_from, subjects_dir)
cnt = 0
vertices = list()
cols = list()
for verts, map_hemi in zip(vertices_from, maps):
vertno_h = _sparse_argmax_nnz_row(map_hemi[verts])
order = np.argsort(vertno_h)
cols.append(cnt + order)
vertices.append(vertno_h[order])
cnt += len(vertno_h)
cols = np.concatenate(cols)
rows = np.arange(len(cols))
data = np.ones(len(cols))
morph_mat = sparse.coo_matrix((data, (rows, cols)),
shape=(len(cols), len(cols))).tocsr()
return vertices, morph_mat
_SOURCE_MORPH_ATTRIBUTES = [ # used in writing
'subject_from', 'subject_to', 'kind', 'zooms', 'niter_affine', 'niter_sdr',
'spacing', 'smooth', 'xhemi', 'morph_mat', 'vertices_to',
'shape', 'affine', 'pre_affine', 'sdr_morph', 'src_data']
class SourceMorph(object):
"""Morph source space data from one subject to another.
.. note:: This class should not be instantiated directly.
Use :func:`mne.compute_source_morph` instead.
.. versionadded:: 0.17
Parameters
----------
subject_from : str | None
Name of the subject from which to morph as named in the SUBJECTS_DIR.
subject_to : str | array | list of two arrays
Name of the subject on which to morph as named in the SUBJECTS_DIR.
The default is 'fsaverage'. If morphing a volume source space,
subject_to can be the path to a MRI volume.
kind : str | None
Kind of source estimate. E.g. 'volume' or 'surface'.
zooms : float | tuple
See :func:`mne.compute_source_morph`.
niter_affine : tuple of int
Number of levels (``len(niter_affine)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the affine transform.
niter_sdr : tuple of int
Number of levels (``len(niter_sdr)``) and number of
iterations per level - for each successive stage of iterative
refinement - to perform the Symmetric Diffeomorphic Registration (sdr)
transform [2]_.
spacing : int | list | None
See :func:`mne.compute_source_morph`.
smooth : int | None
Number of iterations for the smoothing of the surface data.
If None, smooth is automatically defined to fill the surface
with non-zero values.
xhemi : bool
Morph across hemisphere.
morph_mat : scipy.sparse.csr_matrix
The sparse surface morphing matrix for spherical surface
based morphing [1]_.
vertices_to : list of ndarray
The destination surface vertices.
shape : tuple
The volume MRI shape.
affine : ndarray
The volume MRI affine.
pre_affine : instance of dipy.align.imaffine.AffineMap
The :class:`dipy.align.imaffine.AffineMap` transformation that is
applied before the before ``sdr_morph``.
sdr_morph : instance of dipy.align.imwarp.DiffeomorphicMap
The :class:`dipy.align.imwarp.DiffeomorphicMap` that applies the
the symmetric diffeomorphic registration (SDR) morph.
src_data : dict
Additional source data necessary to perform morphing.
References
----------
.. [1] Greve D. N., Van der Haegen L., Cai Q., Stufflebeam S., Sabuncu M.
R., Fischl B., Brysbaert M.
A Surface-based Analysis of Language Lateralization and Cortical
Asymmetry. Journal of Cognitive Neuroscience 25(9), 1477-1492, 2013.
.. [2] Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2009).
Symmetric Diffeomorphic Image Registration with Cross- Correlation:
Evaluating Automated Labeling of Elderly and Neurodegenerative
Brain, 12(1), 26-41.
"""
def __init__(self, subject_from, subject_to, kind, zooms,
niter_affine, niter_sdr, spacing, smooth, xhemi,
morph_mat, vertices_to, shape,
affine, pre_affine, sdr_morph, src_data):
# universal
self.subject_from = subject_from
self.subject_to = subject_to
self.kind = kind
# vol input
self.zooms = zooms
self.niter_affine = niter_affine
self.niter_sdr = niter_sdr
# surf input
self.spacing = spacing
self.smooth = smooth
self.xhemi = xhemi
# surf computed
self.morph_mat = morph_mat
self.vertices_to = vertices_to
# vol computed
self.shape = shape
self.affine = affine
self.sdr_morph = sdr_morph
self.pre_affine = pre_affine
# used by both
self.src_data = src_data
@verbose
def apply(self, stc_from, output='stc', mri_resolution=False,
mri_space=False, verbose=None):
"""Morph source space data.
Parameters
----------
stc_from : VolSourceEstimate | SourceEstimate | VectorSourceEstimate
The source estimate to morph.
output : str
Can be 'stc' (default), 'nifti1', or 'nifti2'.
mri_resolution: bool | tuple | int | float
If True the image is saved in MRI resolution. Default False.
WARNING: if you have many time points the file produced can be
huge. The default is mri_resolution=False.
mri_space : bool
Whether the image to world registration should be in mri space. The
default is mri_space=mri_resolution.
verbose : bool | str | int | None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more). The default is verbose=None.
Returns
-------
stc_to : VolSourceEstimate | SourceEstimate | VectorSourceEstimate | Nifti1Image | Nifti2Image
The morphed source estimates.
""" # noqa: E501
stc = copy.deepcopy(stc_from)
mri_space = mri_resolution if mri_space is None else mri_space
if stc.subject is None:
stc.subject = self.subject_from
if self.subject_from is None:
self.subject_from = stc.subject
if stc.subject != self.subject_from:
raise ValueError('stc_from.subject and '
'morph.subject_from must match. (%s != %s)' %
(stc.subject, self.subject_from))
if not isinstance(output, string_types):
raise TypeError('output must be str, got type %s (%s)'
% (type(output), output))
out = _apply_morph_data(self, stc)
if output != 'stc': # convert to volume
out = _morphed_stc_as_volume(
self, out, mri_resolution=mri_resolution, mri_space=mri_space,
output=output)
return out
def __repr__(self): # noqa: D105
s = u"%s" % self.kind
s += u", %s -> %s" % (self.subject_from, self.subject_to)
if self.kind == 'volume':
s += ", zooms : {}".format(self.zooms)
s += ", niter_affine : {}".format(self.niter_affine)
s += ", niter_sdr : {}".format(self.niter_sdr)
elif self.kind in ('surface', 'vector'):
s += ", spacing : {}".format(self.spacing)
s += ", smooth : %s" % self.smooth
s += ", xhemi" if self.xhemi else ""
return "<SourceMorph | %s>" % s
@verbose
def save(self, fname, overwrite=False, verbose=None):
"""Save the morph for source estimates to a file.
Parameters
----------
fname : str
The stem of the file name. '-morph.h5' will be added if fname does
not end with '.h5'
overwrite : bool
If True, overwrite existing file.
verbose : bool | str | int | None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
"""
if not fname.endswith('.h5'):
fname = '%s-morph.h5' % fname
out_dict = dict((key, getattr(self, key))
for key in _SOURCE_MORPH_ATTRIBUTES)
for key in ('pre_affine', 'sdr_morph'): # classes
if out_dict[key] is not None:
out_dict[key] = out_dict[key].__dict__
write_hdf5(fname, out_dict, overwrite=overwrite)
###############################################################################
# I/O
def _check_subject_from(subject_from, src):
if isinstance(src, string_types):
subject_check = src
elif src is None: # assume it's correct although dangerous but unlikely
subject_check = subject_from
else:
subject_check = src[0]['subject_his_id']
if subject_from is None:
subject_from = subject_check
elif subject_check is not None and subject_from != subject_check:
raise ValueError('subject_from does not match source space subject'
' (%s != %s)' % (subject_from, subject_check))
if subject_from is None:
raise ValueError('subject_from could not be inferred, it must be '
'specified')
return subject_from
def read_source_morph(fname):
"""Load the morph for source estimates from a file.
Parameters
----------
fname : str
Full filename including path.
Returns
-------
source_morph : instance of SourceMorph
The loaded morph.
"""
vals = read_hdf5(fname)
if vals['pre_affine'] is not None: # reconstruct
from dipy.align.imaffine import AffineMap
affine = vals['pre_affine']
vals['pre_affine'] = AffineMap(None)
vals['pre_affine'].__dict__ = affine
if vals['sdr_morph'] is not None:
from dipy.align.imwarp import DiffeomorphicMap
morph = vals['sdr_morph']
vals['sdr_morph'] = DiffeomorphicMap(None, [])
vals['sdr_morph'].__dict__ = morph
return SourceMorph(**vals)
###############################################################################
# Helper functions for SourceMorph methods
def _check_dep(nibabel='2.1.0', dipy='0.10.1'):
"""Check dependencies."""
for lib, ver in zip(['nibabel', 'dipy'],
[nibabel, dipy]):
passed = True if not ver else check_version(lib, ver)
if not passed:
raise ImportError('%s %s or higher must be correctly '
'installed and accessible from Python' % (lib,
ver))
def _morphed_stc_as_volume(morph, stc, mri_resolution=False, mri_space=True,
output='nifti1'):
"""Return volume source space as Nifti1Image and/or save to disk."""
if not isinstance(stc, VolSourceEstimate):
raise ValueError('Only volume source estimates can be converted to '
'volumes')
_check_dep(nibabel='2.1.0', dipy=False)
known_types = ('nifti', 'nifti1', 'nifti2')
if output not in known_types:
raise ValueError('output must be one of %s, got %s'
% (known_types, output))
if output in ('nifti', 'nifti1'):
from nibabel import (Nifti1Image as NiftiImage,
Nifti1Header as NiftiHeader)
else:
assert output == 'nifti2'
from nibabel import (Nifti2Image as NiftiImage,
Nifti2Header as NiftiHeader)
new_zooms = None
# if full MRI resolution, compute zooms from shape and MRI zooms
if isinstance(mri_resolution, bool) and mri_resolution:
new_zooms = _get_zooms_orig(morph)
# if MRI resolution is set manually as a single value, convert to tuple
if isinstance(mri_resolution, (int, float)) and not isinstance(
mri_resolution, bool):
# use iso voxel size
new_zooms = (float(mri_resolution),) * 3
# if MRI resolution is set manually as a tuple, use it
if isinstance(mri_resolution, tuple):
new_zooms = mri_resolution
# create header
hdr = NiftiHeader()
hdr.set_xyzt_units('mm', 'msec')
hdr['pixdim'][4] = 1e3 * stc.tstep
# setup empty volume
img = np.zeros(morph.shape + (stc.shape[1],)).reshape(-1, stc.shape[1])
img[stc.vertices, :] = stc.data
img = img.reshape(morph.shape + (-1,))
# make nifti from data
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(img, morph.affine, header=hdr)
# reslice in case of manually defined voxel size
zooms = morph.zooms[:3]
if new_zooms is not None:
from dipy.align.reslice import reslice
new_zooms = new_zooms[:3]
img, affine = reslice(img.get_data(),
img.affine, # MRI to world registration
zooms, # old voxel size in mm
new_zooms) # new voxel size in mm
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(img, affine)
zooms = new_zooms
# set zooms in header
img.header.set_zooms(tuple(zooms) + (1,))
return img
def _get_src_data(src):
"""Obtain src data relevant for as _volume."""
src_data = dict()
# copy data to avoid conflicts
if isinstance(src, SourceEstimate):
src_t = [dict(vertno=src.vertices[0]), dict(vertno=src.vertices[1])]
src_kind = 'surface'
elif isinstance(src, SourceSpaces):
src_t = src.copy()
src_kind = src.kind
else:
raise TypeError('src must be an instance of SourceSpaces or '
'SourceEstimate, got %s (%s)' % (type(src), src))
del src
# extract all relevant data for volume operations
if src_kind == 'volume':
shape = src_t[0]['shape']
src_data.update({'src_shape': (shape[2], shape[1], shape[0]),
'src_affine_vox': src_t[0]['vox_mri_t']['trans'],
'src_affine_src': src_t[0]['src_mri_t']['trans'],
'src_affine_ras': src_t[0]['mri_ras_t']['trans'],
'src_shape_full': (
src_t[0]['mri_height'], src_t[0]['mri_depth'],
src_t[0]['mri_width']),
'interpolator': src_t[0]['interpolator'],
'inuse': src_t[0]['inuse']})
else:
assert src_kind == 'surface'
src_data = dict(vertices_from=[s['vertno'].copy() for s in src_t])
# delete copy
return src_data, src_kind
def _interpolate_data(stc, morph, mri_resolution=True, mri_space=True,
output='nifti1'):
"""Interpolate source estimate data to MRI."""
_check_dep(nibabel='2.1.0', dipy=False)
if output not in ('nifti', 'nifti1', 'nifti2'):
raise ValueError("invalid output specifier %s. Must be 'nifti1' or"
" 'nifti2'" % output)
if output in ('nifti', 'nifti1'):
from nibabel import (Nifti1Image as NiftiImage,
Nifti1Header as NiftiHeader)
else:
assert output == 'nifti2'
from nibabel import (Nifti2Image as NiftiImage,
Nifti2Header as NiftiHeader)
assert morph.kind == 'volume'
voxel_size_defined = False
if isinstance(mri_resolution, (int, float)) and not isinstance(
mri_resolution, bool):
# use iso voxel size
mri_resolution = (float(mri_resolution),) * 3
if isinstance(mri_resolution, tuple):
_check_dep(nibabel=False, dipy='0.10.1') # nibabel was already checked
from dipy.align.reslice import reslice
voxel_size = mri_resolution
voxel_size_defined = True
mri_resolution = True
# if data wasn't morphed yet - necessary for call of
# stc_unmorphed.as_volume. Since only the shape of src is known, it cannot
# be resliced to a given voxel size without knowing the original.
if isinstance(morph, SourceSpaces):
assert morph.kind == 'volume'
if voxel_size_defined:
raise ValueError(
"Cannot infer original voxel size for reslicing... "
"set mri_resolution to boolean value or apply morph first.")
from mne.io.constants import BunchConst
# Now deal with the fact that we may have multiple sub-volumes
inuse = [morph[k]['inuse'] for k in range(len(morph))]
src_shape = [morph[k]['shape'] for k in range(len(morph))]
assert len(set(map(tuple, src_shape))) == 1
morph = BunchConst(src_data=_get_src_data(morph)[0])
else:
# Make a list as we may have many inuse when using multiple sub-volumes
inuse = [morph.src_data['inuse']]
shape3d = morph.src_data['src_shape']
# setup volume parameters
n_times = stc.data.shape[1]
shape = (n_times,) + shape3d
vols = np.zeros(shape)
n_vertices_seen = 0
for this_inuse in inuse:
mask3d = this_inuse.reshape(shape3d).astype(np.bool)
n_vertices = np.sum(mask3d)
stc_slice = slice(n_vertices_seen, n_vertices_seen + n_vertices)
for k, vol in enumerate(vols): # loop over time instants
vol[mask3d] = stc.data[stc_slice, k]
n_vertices_seen += n_vertices
# use mri resolution as represented in src
if mri_resolution:
mri_shape3d = morph.src_data['src_shape_full']
mri_shape = (n_times,) + mri_shape3d
mri_vol = np.zeros(mri_shape)
interpolator = morph.src_data['interpolator']
for k, vol in enumerate(vols):
mri_vol[k] = (interpolator * vol.ravel()).reshape(mri_shape3d)
vols = mri_vol
vols = vols.T
# set correct space
affine = morph.src_data['src_affine_vox']
if not mri_resolution:
affine = morph.src_data['src_affine_src']
if mri_space:
affine = np.dot(morph.src_data['src_affine_ras'], affine)
affine[:3] *= 1e3
# pre-define header
header = NiftiHeader()
header.set_xyzt_units('mm', 'msec')
header['pixdim'][4] = 1e3 * stc.tstep
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(vols, affine, header=header)
# if a specific voxel size was targeted (only possible after morphing)
if voxel_size_defined:
# reslice mri
img, img_affine = reslice(
img.get_data(), img.affine, _get_zooms_orig(morph), voxel_size)
with warnings.catch_warnings(): # nibabel<->numpy warning
img = NiftiImage(img, img_affine, header=header)
return img
###############################################################################
# Morph for VolSourceEstimate
def _compute_morph_sdr(mri_from, mri_to, niter_affine=(100, 100, 10),
niter_sdr=(5, 5, 3), zooms=(5., 5., 5.)):
"""Get a matrix that morphs data from one subject to another."""
_check_dep(nibabel='2.1.0', dipy='0.10.1')
import nibabel as nib
with np.testing.suppress_warnings():
from dipy.align import imaffine, imwarp, metrics, transforms
from dipy.align.reslice import reslice
logger.info('Computing nonlinear Symmetric Diffeomorphic Registration...')
# use voxel size of mri_from
if zooms is None:
zooms = mri_from.header.get_zooms()[:3]
zooms = np.atleast_1d(zooms).astype(float)
if zooms.shape == (1,):
zooms = np.repeat(zooms, 3)
if zooms.shape != (3,):
raise ValueError('zooms must be None, a singleton, or have shape (3,),'
' got shape %s' % (zooms.shape,))
# reslice mri_from
mri_from_res, mri_from_res_affine = reslice(
mri_from.get_data(), mri_from.affine, mri_from.header.get_zooms()[:3],
zooms)
with warnings.catch_warnings(): # nibabel<->numpy warning
mri_from = nib.Nifti1Image(mri_from_res, mri_from_res_affine)
# reslice mri_to
mri_to_res, mri_to_res_affine = reslice(
mri_to.get_data(), mri_to.affine, mri_to.header.get_zooms()[:3],
zooms)
with warnings.catch_warnings(): # nibabel<->numpy warning
mri_to = nib.Nifti1Image(mri_to_res, mri_to_res_affine)
affine = mri_to.affine
mri_to = np.array(mri_to.dataobj, float) # to ndarray
mri_to /= mri_to.max()
mri_from_affine = mri_from.affine # get mri_from to world transform
mri_from = np.array(mri_from.dataobj, float) # to ndarray
mri_from /= mri_from.max() # normalize
# compute center of mass
c_of_mass = imaffine.transform_centers_of_mass(
mri_to, affine, mri_from, affine)
# set up Affine Registration
affreg = imaffine.AffineRegistration(
metric=imaffine.MutualInformationMetric(nbins=32),
level_iters=list(niter_affine),
sigmas=[3.0, 1.0, 0.0],
factors=[4, 2, 1])
# translation
translation = affreg.optimize(
mri_to, mri_from, transforms.TranslationTransform3D(), None, affine,
mri_from_affine, starting_affine=c_of_mass.affine)
# rigid body transform (translation + rotation)
rigid = affreg.optimize(
mri_to, mri_from, transforms.RigidTransform3D(), None,
affine, mri_from_affine, starting_affine=translation.affine)
# affine transform (translation + rotation + scaling)
pre_affine = affreg.optimize(
mri_to, mri_from, transforms.AffineTransform3D(), None,
affine, mri_from_affine, starting_affine=rigid.affine)
# compute mapping
sdr = imwarp.SymmetricDiffeomorphicRegistration(
metrics.CCMetric(3), list(niter_sdr))
sdr_morph = sdr.optimize(mri_to, pre_affine.transform(mri_from))
shape = tuple(sdr_morph.domain_shape) # should be tuple of int
logger.info('done.')
return shape, zooms, affine, pre_affine, sdr_morph
###############################################################################
# Morph for SourceEstimate | VectorSourceEstimate
@deprecated("This function is deprecated and will be removed in version 0.19. "
"Use morph_mat = mne.compute_source_morph(...)morph_mat")
def compute_morph_matrix(subject_from, subject_to, vertices_from, vertices_to,
smooth=None, subjects_dir=None, warn=True,
xhemi=False, verbose=None):
"""Get a matrix that morphs data from one subject to another.
Parameters
----------
subject_from : str
Name of the original subject as named in the SUBJECTS_DIR.
subject_to : str
Name of the subject on which to morph as named in the SUBJECTS_DIR.
vertices_from : list of arrays of int
Vertices for each hemisphere (LH, RH) for subject_from.
vertices_to : list of arrays of int
Vertices for each hemisphere (LH, RH) for subject_to.
smooth : int or None
Number of iterations for the smoothing of the surface data.
If None, smooth is automatically defined to fill the surface
with non-zero values. The default is smooth=None.
subjects_dir : str
Path to SUBJECTS_DIR is not set in the environment. The default is
subjects_dir=None.
warn : bool
If True, warn if not all vertices were used. warn
xhemi : bool
Morph across hemisphere. Currently only implemented for
``subject_to == subject_from``. See notes below. The default is
xhemi=False.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more). The default
is verbose=None.
Returns
-------
morph_matrix : sparse matrix
matrix that morphs data from ``subject_from`` to ``subject_to``.
Notes
-----
This function can be used to morph data between hemispheres by setting
``xhemi=True``. The full cross-hemisphere morph matrix maps left to right
and right to left. A matrix for cross-mapping only one hemisphere can be
constructed by specifying the appropriate vertices, for example, to map the
right hemisphere to the left:
``vertices_from=[[], vert_rh], vertices_to=[vert_lh, []]``.
Cross-hemisphere mapping requires appropriate ``sphere.left_right``
morph-maps in the subject's directory. These morph maps are included
with the ``fsaverage_sym`` FreeSurfer subject, and can be created for other
subjects with the ``mris_left_right_register`` FreeSurfer command. The
``fsaverage_sym`` subject is included with FreeSurfer > 5.1 and can be
obtained as described `here
<http://surfer.nmr.mgh.harvard.edu/fswiki/Xhemi>`_. For statistical
comparisons between hemispheres, use of the symmetric ``fsaverage_sym``
model is recommended to minimize bias [1]_.
References
----------
.. [1] Greve D. N., Van der Haegen L., Cai Q., Stufflebeam S., Sabuncu M.
R., Fischl B., Brysbaert M.
A Surface-based Analysis of Language Lateralization and Cortical
Asymmetry. Journal of Cognitive Neuroscience 25(9), 1477-1492, 2013.
"""
return _compute_morph_matrix(subject_from, subject_to, vertices_from,
vertices_to, smooth, subjects_dir, warn,
xhemi)
def _compute_morph_matrix(subject_from, subject_to, vertices_from, vertices_to,
smooth=None, subjects_dir=None, warn=True,
xhemi=False):
"""Compute morph matrix."""
logger.info('Computing morph matrix...')
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
tris = _get_subject_sphere_tris(subject_from, subjects_dir)
maps = read_morph_map(subject_from, subject_to, subjects_dir, xhemi)
# morph the data
morpher = []
for hemi_to in range(2): # iterate over to / block-rows of CSR matrix
hemi_from = (1 - hemi_to) if xhemi else hemi_to
idx_use = vertices_from[hemi_from]
if len(idx_use) == 0:
morpher.append(
sparse.csr_matrix((len(vertices_to[hemi_to]), 0)))
continue
e = mesh_edges(tris[hemi_from])
e.data[e.data == 2] = 1
n_vertices = e.shape[0]
e = e + sparse.eye(n_vertices, n_vertices)
m = sparse.eye(len(idx_use), len(idx_use), format='csr')
mm = _morph_buffer(m, idx_use, e, smooth, n_vertices,
vertices_to[hemi_to], maps[hemi_from], warn=warn)
assert mm.shape == (len(vertices_to[hemi_to]),
len(vertices_from[hemi_from]))
morpher.append(mm)
shape = (sum(len(v) for v in vertices_to),
sum(len(v) for v in vertices_from))
data = [m.data for m in morpher]
indices = [m.indices.copy() for m in morpher]
indptr = [m.indptr.copy() for m in morpher]
# column indices need to be adjusted
indices[0 if xhemi else 1] += len(vertices_from[0])
indices = np.concatenate(indices)
# row index pointers need to be adjusted
indptr[1] = indptr[1][1:] + len(data[0])
indptr = np.concatenate(indptr)
# data does not need to be adjusted
data = np.concatenate(data)
# this is equivalent to morpher = sparse_block_diag(morpher).tocsr(),
# but works for xhemi mode
morpher = sparse.csr_matrix((data, indices, indptr), shape=shape)
logger.info('[done]')
return morpher
@verbose
def grade_to_vertices(subject, grade, subjects_dir=None, n_jobs=1,
verbose=None):
"""Convert a grade to source space vertices for a given subject.
Parameters
----------
subject : str
Name of the subject
grade : int | list
Resolution of the icosahedral mesh (typically 5). If None, all
vertices will be used (potentially filling the surface). If a list,
then values will be morphed to the set of vertices specified in
in grade[0] and grade[1]. Note that specifying the vertices (e.g.,
grade=[np.arange(10242), np.arange(10242)] for fsaverage on a
standard grade 5 source space) can be substantially faster than
computing vertex locations. Note that if subject='fsaverage'
and 'grade=5', this set of vertices will automatically be used
(instead of computed) for speed, since this is a common morph.
subjects_dir : str | None
Path to SUBJECTS_DIR if it is not set in the environment
n_jobs : int
Number of jobs to run in parallel. The default is n_jobs=1.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
vertices : list of arrays of int
Vertex numbers for LH and RH
"""
# add special case for fsaverage for speed
if subject == 'fsaverage' and isinstance(grade, int) and grade == 5:
return [np.arange(10242), np.arange(10242)]
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
spheres_to = [op.join(subjects_dir, subject, 'surf',
xh + '.sphere.reg') for xh in ['lh', 'rh']]
lhs, rhs = [read_surface(s)[0] for s in spheres_to]
if grade is not None: # fill a subset of vertices
if isinstance(grade, list):
if not len(grade) == 2:
raise ValueError('grade as a list must have two elements '
'(arrays of output vertices)')
vertices = grade
else:
# find which vertices to use in "to mesh"
ico = _get_ico_tris(grade, return_surf=True)
lhs /= np.sqrt(np.sum(lhs ** 2, axis=1))[:, None]
rhs /= np.sqrt(np.sum(rhs ** 2, axis=1))[:, None]
# Compute nearest vertices in high dim mesh
parallel, my_compute_nearest, _ = \
parallel_func(_compute_nearest, n_jobs)
lhs, rhs, rr = [a.astype(np.float32)
for a in [lhs, rhs, ico['rr']]]
vertices = parallel(my_compute_nearest(xhs, rr)
for xhs in [lhs, rhs])
# Make sure the vertices are ordered
vertices = [np.sort(verts) for verts in vertices]
for verts in vertices:
if (np.diff(verts) == 0).any():
raise ValueError(
'Cannot use icosahedral grade %s with subject %s, '
'mapping %s vertices onto the high-resolution mesh '
'yields repeated vertices, use a lower grade or a '
'list of vertices from an existing source space'
% (grade, subject, len(verts)))
else: # potentially fill the surface
vertices = [np.arange(lhs.shape[0]), np.arange(rhs.shape[0])]
return vertices
def _morph_buffer(data, idx_use, e, smooth, n_vertices, nearest, maps,
warn=True):
"""Morph data from one subject's source space to another.
Parameters
----------
data : array, or csr sparse matrix
A n_vertices [x 3] x n_times (or other dimension) dataset to morph.
idx_use : array of int
Vertices from the original subject's data.
e : sparse matrix
The mesh edges of the "from" subject.
smooth : int
Number of smoothing iterations to perform. A hard limit of 100 is
also imposed.
n_vertices : int
Number of vertices.
nearest : array of int
Vertices on the reference surface to use.
maps : sparse matrix
Morph map from one subject to the other.
warn : bool
If True, warn if not all vertices were used.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more). The default
is verbose=None.
Returns
-------
data_morphed : array, or csr sparse matrix
The morphed data (same type as input).
"""
# When operating on vector data, morph each dimension separately
if data.ndim == 3:
data_morphed = np.zeros((len(nearest), 3, data.shape[2]),
dtype=data.dtype)
for dim in range(3):
data_morphed[:, dim, :] = _morph_buffer(
data=data[:, dim, :], idx_use=idx_use, e=e, smooth=smooth,
n_vertices=n_vertices, nearest=nearest, maps=maps, warn=warn)
return data_morphed
n_iter = 99 # max nb of smoothing iterations (minus one)
if smooth is not None:
if smooth <= 0:
raise ValueError('The number of smoothing operations ("smooth") '
'has to be at least 1.')
smooth -= 1
# make sure we're in CSR format
e = e.tocsr()
if sparse.issparse(data):
use_sparse = True
if not isinstance(data, sparse.csr_matrix):
data = data.tocsr()
else:
use_sparse = False
done = False
# do the smoothing
for k in range(n_iter + 1):
# get the row sum
mult = np.zeros(e.shape[1])
mult[idx_use] = 1
idx_use_data = idx_use
data_sum = e * mult
# new indices are non-zero sums
idx_use = np.where(data_sum)[0]
# typically want to make the next iteration have these indices
idx_out = idx_use
# figure out if this is the last iteration
if smooth is None:
if k == n_iter or len(idx_use) >= n_vertices:
# stop when vertices filled
idx_out = None
done = True
elif k == smooth:
idx_out = None
done = True
# do standard smoothing multiplication
data = _morph_mult(data, e, use_sparse, idx_use_data, idx_out)
if done is True:
break
# do standard normalization
if use_sparse:
data.data /= data_sum[idx_use].repeat(np.diff(data.indptr))
else:
data /= data_sum[idx_use][:, None]
# do special normalization for last iteration
if use_sparse:
data_sum[data_sum == 0] = 1
data.data /= data_sum.repeat(np.diff(data.indptr))
else:
data[idx_use, :] /= data_sum[idx_use][:, None]
if len(idx_use) != len(data_sum) and warn:
warn_('%s/%s vertices not included in smoothing, consider increasing '
'the number of steps'
% (len(data_sum) - len(idx_use), len(data_sum)))
logger.info(' %d smooth iterations done.' % (k + 1))
data_morphed = maps[nearest, :] * data
return data_morphed
def _morph_mult(data, e, use_sparse, idx_use_data, idx_use_out=None):
"""Help morphing.
Equivalent to "data = (e[:, idx_use_data] * data)[idx_use_out]"
but faster.
"""
if len(idx_use_data) < e.shape[1]:
if use_sparse:
data = e[:, idx_use_data] * data
else:
# constructing a new sparse matrix is faster than sub-indexing
# e[:, idx_use_data]!
col, row = np.meshgrid(np.arange(data.shape[1]), idx_use_data)
d_sparse = sparse.csr_matrix((data.ravel(),
(row.ravel(), col.ravel())),
shape=(e.shape[1], data.shape[1]))
data = e * d_sparse
data = np.asarray(data.todense())
else:
data = e * data
# trim data
if idx_use_out is not None:
data = data[idx_use_out]
return data
def _sparse_argmax_nnz_row(csr_mat):
"""Return index of the maximum non-zero index in each row."""
n_rows = csr_mat.shape[0]
idx = np.empty(n_rows, dtype=np.int)
for k in range(n_rows):
row = csr_mat[k].tocoo()
idx[k] = row.col[np.argmax(row.data)]
return idx
def _get_subject_sphere_tris(subject, subjects_dir):
spheres = [op.join(subjects_dir, subject, 'surf',
xh + '.sphere.reg') for xh in ['lh', 'rh']]
tris = [read_surface(s)[1] for s in spheres]
return tris
###############################################################################
# Apply morph to source estimate
def _get_zooms_orig(morph):
"""Compute src zooms from morph zooms, morph shape and src shape."""
# zooms_to = zooms_from / shape_to * shape_from for each spatial dimension
return [mz / ss * ms for mz, ms, ss in
zip(morph.zooms, morph.shape, morph.src_data['src_shape_full'])]
def _apply_morph_data(morph, stc_from):
"""Morph a source estimate from one subject to another."""
if stc_from.subject is not None and stc_from.subject != morph.subject_from:
raise ValueError('stc.subject (%s) != morph.subject_from (%s)'
% (stc_from.subject, morph.subject_from))
if morph.kind == 'volume':
from dipy.align.reslice import reslice
n_times = stc_from.data.shape[1]
def _morph_one(stc_one):
# prepare data to be morphed
img_to = _interpolate_data(stc_one, morph, mri_resolution=True,
mri_space=True)
# reslice to match morph
img_to, img_to_affine = reslice(
img_to.get_data(), morph.affine, _get_zooms_orig(morph),
morph.zooms)
# morph data
for vol in range(img_to.shape[3]):
img_to[:, :, :, vol] = morph.sdr_morph.transform(
morph.pre_affine.transform(img_to[:, :, :, vol]))
# reshape to nvoxel x nvol
img_to = img_to.reshape(-1, img_to.shape[3])
return img_to
# First get the vertices (vertices_to) you will need the values for
stc_ones = VolSourceEstimate(np.ones_like(stc_from.data[:, :1]),
stc_from.vertices,
tmin=0., tstep=1.)
img_to = _morph_one(stc_ones)
vertices_to = np.where(img_to.sum(axis=1) != 0)[0]
data = np.empty((len(vertices_to), n_times))
# Loop over time points to save memory
for k in range(n_times):
this_stc = VolSourceEstimate(stc_from.data[:, k:k + 1],
stc_from.vertices,
tmin=0., tstep=1.)
this_img_to = _morph_one(this_stc)
data[:, k] = this_img_to[vertices_to, 0]
klass = VolSourceEstimate
else:
assert morph.kind == 'surface'
morph_mat = morph.morph_mat
vertices_to = morph.vertices_to
for hemi, v1, v2 in zip(('left', 'right'),
morph.src_data['vertices_from'],
stc_from.vertices):
if not np.array_equal(v1, v2):
raise ValueError('vertices do not match between morph (%s) '
'and stc (%s) for the %s hemisphere:\n%s\n%s'
% (len(v1), len(v2), hemi, v1, v2))
# select correct data - since vertices_to can have empty hemispheres,
# the correct data needs to be selected in order to apply the morph_mat
# correctly
data = stc_from.data
# apply morph and return new morphed instance of (Vector)SourceEstimate
if isinstance(stc_from, VectorSourceEstimate):
# Morph the locations of the dipoles, but not their orientation
n_verts, _, n_samples = stc_from.data.shape
data = morph_mat * data.reshape(n_verts, 3 * n_samples)
data = data.reshape(morph_mat.shape[0], 3, n_samples)
klass = VectorSourceEstimate
else:
data = morph_mat * data
klass = SourceEstimate
stc_to = klass(data, vertices_to, stc_from.tmin, stc_from.tstep,
morph.subject_to)
return stc_to
|