File: bads.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (40 lines) | stat: -rw-r--r-- 1,161 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Authors: Denis Engemann <denis.engemann@gmail.com>
# License: BSD (3-clause)


import numpy as np


def find_outliers(X, threshold=3.0, max_iter=2):
    """Find outliers based on iterated Z-scoring.

    This procedure compares the absolute z-score against the threshold.
    After excluding local outliers, the comparison is repeated until no
    local outlier is present any more.

    Parameters
    ----------
    X : np.ndarray of float, shape (n_elemenets,)
        The scores for which to find outliers.
    threshold : float
        The value above which a feature is classified as outlier.
    max_iter : int
        The maximum number of iterations.

    Returns
    -------
    bad_idx : np.ndarray of int, shape (n_features)
        The outlier indices.
    """
    from scipy.stats import zscore
    my_mask = np.zeros(len(X), dtype=np.bool)
    for _ in range(max_iter):
        X = np.ma.masked_array(X, my_mask)
        this_z = np.abs(zscore(X))
        local_bad = this_z > threshold
        my_mask = np.max([my_mask, local_bad], 0)
        if not np.any(local_bad):
            break

    bad_idx = np.where(my_mask)[0]
    return bad_idx