File: ica.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (2549 lines) | stat: -rw-r--r-- 109,092 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
# -*- coding: utf-8 -*-
#
# Authors: Denis A. Engemann <denis.engemann@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Juergen Dammers <j.dammers@fz-juelich.de>
#
# License: BSD (3-clause)

from inspect import isfunction
from collections import namedtuple
from copy import deepcopy
from numbers import Integral
from time import time

import os
import json

import numpy as np
from scipy import linalg

from .ecg import (qrs_detector, _get_ecg_channel_index, _make_ecg,
                  create_ecg_epochs)
from .eog import _find_eog_events, _get_eog_channel_index
from .infomax_ import infomax

from ..cov import compute_whitener
from .. import Covariance, Evoked
from ..io.pick import (pick_types, pick_channels, pick_info,
                       _pick_data_channels, _DATA_CH_TYPES_SPLIT)
from ..io.write import (write_double_matrix, write_string,
                        write_name_list, write_int, start_block,
                        end_block)
from ..io.tree import dir_tree_find
from ..io.open import fiff_open
from ..io.tag import read_tag
from ..io.meas_info import write_meas_info, read_meas_info
from ..io.constants import Bunch, FIFF
from ..io.base import BaseRaw
from ..epochs import BaseEpochs
from ..viz import (plot_ica_components, plot_ica_scores,
                   plot_ica_sources, plot_ica_overlay)
from ..viz.ica import plot_ica_properties
from ..viz.topomap import _plot_corrmap

from ..channels.channels import _contains_ch_type, ContainsMixin
from ..io.write import start_file, end_file, write_id
from ..utils import (check_version, logger, check_fname, verbose,
                     _reject_data_segments, check_random_state,
                     compute_corr, _get_inst_data, _ensure_int,
                     copy_function_doc_to_method_doc, _pl, warn,
                     _check_preload, _check_compensation_grade)

from ..fixes import _get_args
from ..filter import filter_data
from .bads import find_outliers
from .ctps_ import ctps
from ..externals.six import string_types, text_type
from ..io.pick import channel_type


__all__ = ('ICA', 'ica_find_ecg_events', 'ica_find_eog_events',
           'get_score_funcs', 'read_ica', 'run_ica')


def _make_xy_sfunc(func, ndim_output=False):
    """Aux function."""
    if ndim_output:
        def sfunc(x, y):
            return np.array([func(a, y.ravel()) for a in x])[:, 0]
    else:
        def sfunc(x, y):
            return np.array([func(a, y.ravel()) for a in x])
    sfunc.__name__ = '.'.join(['score_func', func.__module__, func.__name__])
    sfunc.__doc__ = func.__doc__
    return sfunc


# makes score funcs attr accessible for users
def get_score_funcs():
    """Get the score functions."""
    from scipy import stats
    from scipy.spatial import distance
    score_funcs = Bunch()
    xy_arg_dist_funcs = [(n, f) for n, f in vars(distance).items()
                         if isfunction(f) and not n.startswith('_')]
    xy_arg_stats_funcs = [(n, f) for n, f in vars(stats).items()
                          if isfunction(f) and not n.startswith('_')]
    score_funcs.update(dict((n, _make_xy_sfunc(f))
                            for n, f in xy_arg_dist_funcs
                            if _get_args(f) == ['u', 'v']))
    score_funcs.update(dict((n, _make_xy_sfunc(f, ndim_output=True))
                            for n, f in xy_arg_stats_funcs
                            if _get_args(f) == ['x', 'y']))
    return score_funcs


def _check_for_unsupported_ica_channels(picks, info):
    """Check for channels in picks that are not considered valid channels.

    Accepted channels are the data channels
    ('seeg','ecog','eeg', 'hbo', 'hbr', 'mag', and 'grad') and 'eog'.
    This prevents the program from crashing without
    feedback when a bad channel is provided to ICA whitening.
    """
    if picks is None:
        return
    elif len(picks) == 0:
        raise ValueError('No channels provided to ICA')
    types = _DATA_CH_TYPES_SPLIT + ['eog']
    chs = list(set([channel_type(info, j) for j in picks]))
    check = all([ch in types for ch in chs])
    if not check:
        raise ValueError('Invalid channel type(s) passed for ICA.\n'
                         'Only the following channels are supported {0}\n'
                         'Following types were passed {1}\n'
                         .format(types, chs))


class ICA(ContainsMixin):
    u"""M/EEG signal decomposition using Independent Component Analysis (ICA).

    This object can be used to estimate ICA components and then remove some
    from :class:`mne.io.Raw`, :class:`mne.Epochs`, or :class:`mne.Evoked`
    for data exploration or artifact correction.

    .. warning:: ICA is sensitive to low-frequency drifts and therefore
                 requires the data to be high-pass filtered prior to fitting.
                 Typically, a cutoff frequency of 1 Hz is recommended.

    Parameters
    ----------
    n_components : int | float | None
        Controls the number of PCA components from the pre-ICA PCA entering the
        ICA decomposition in the :meth:`ICA.fit` method.
        If None (default), all PCA components will be used
        (== `max_pca_components`).
        If int, must be <= `max_pca_components`.
        If float between 0 and 1, the number of components selected matches the
        number of components with a cumulative explained variance below
        `n_components` (a value of 1. resulting in `max_pca_components`).
        The actual number of components resulting from evaluating this
        parameter in the :meth:`ICA.fit` method is stored in the attribute
        `n_components_` after fitting.
    max_pca_components : int | None
        The number of components returned by the PCA decomposition in the
        :meth:`ICA.fit` method.
        If None (default), no dimensionality reduction will be applied and
        `max_pca_components` will equal the number of channels supplied for
        decomposing the data.
        If > `n_components_`, the additional PCA-only-components can later be
        used for re-projecting the data into sensor space, additionally
        controllable by the `n_pca_components` parameter.
    n_pca_components : int | float
        The number of PCA components used by the :meth:`ICA.apply` method for
        re-projecting the decomposed data into sensor space. Has to be
        >= `n_components(_)` and <= `max_pca_components`.
        If greater than `n_components_`, the next `n_pca_components` minus
        `n_components` PCA components will be added before restoring the sensor
        space data.
        If None (default), all PCA components will be used.
        If float between 0 and 1, the number of components selected matches the
        number of components with a cumulative explained variance below
        `n_pca_components`. This attribute allows to balance noise reduction
        against potential loss of features due to dimensionality reduction,
        independently of the number of ICA components.
    noise_cov : None | instance of mne.cov.Covariance
        Noise covariance used for pre-whitening. If None (default), channels
        are scaled to unit variance ("z-standardized") prior to the whitening
        by PCA.
    random_state : None | int | instance of np.random.RandomState
        Random state to initialize ICA estimation for reproducible results.
    method : {'fastica', 'infomax', 'extended-infomax', 'picard'}
        The ICA method to use in the fit() method. Defaults to 'fastica'.
        For reference, see [1]_, [2]_, [3]_ and [4]_.
    fit_params : dict | None
        Additional parameters passed to the ICA estimator as specified by
        `method`.
    max_iter : int
        Maximum number of iterations during fit. Defaults to 200.
    verbose : bool | str | int | None
        If not None, override default verbosity level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>`).

    Attributes
    ----------
    current_fit : str
        Flag informing about which data type (raw or epochs) was used for the
        fit.
    ch_names : list-like
        Channel names resulting from initial picking.
    n_components_ : int
        If fit, the actual number of PCA components used for ICA decomposition.
    pre_whitener_ : ndarray, shape (n_channels, 1)
        If fit, array used to pre-whiten the data prior to PCA.
    pca_components_ : ndarray, shape (`max_pca_components`, n_channels)
        If fit, the PCA components.
    pca_mean_ : ndarray, shape (n_channels,)
        If fit, the mean vector used to center the data before doing the PCA.
    pca_explained_variance_ : ndarray, shape (`max_pca_components`,)
        If fit, the variance explained by each PCA component.
    mixing_matrix_ : ndarray, shape (`n_components_`, `n_components_`)
        If fit, the whitened mixing matrix to go back from ICA space to PCA
        space.
        It is, in combination with the `pca_components_`, used by
        :meth:`ICA.apply` and :meth:`ICA.get_components` to re-mix/project
        a subset of the ICA components into the observed channel space.
        The former method also removes the pre-whitening (z-scaling) and the
        de-meaning.
    unmixing_matrix_ : ndarray, shape (`n_components_`, `n_components_`)
        If fit, the whitened matrix to go from PCA space to ICA space.
        Used, in combination with the `pca_components_`, by the methods
        :meth:`ICA.get_sources` and :meth:`ICA.apply` to unmix the observed data.
    exclude : list
        List of sources indices to exclude when re-mixing the data in the
        :meth:`ICA.apply` method, i.e. artifactual ICA components.
        The components identified manually and by the various automatic
        artifact detection methods should be (manually) appended to this list
        (e.g. ``ica.exclude.extend(eog_inds)``).
        (There is also an `exclude` parameter in the :meth:`ICA.apply` method.)
        To scrap all marked components, set this attribute to an empty list.
    info : None | instance of Info
        The measurement info copied from the object fitted.
    n_samples_ : int
        The number of samples used on fit.
    labels_ : dict
        A dictionary of independent component indices, grouped by types of
        independent components. This attribute is set by some of the artifact
        detection functions.

    Notes
    -----
    A trailing ``_`` in an attribute name signifies that the attribute was
    added to the object during fitting, consistent with standard scikit-learn
    practice.

    Prior to fitting and applying the ICA, data is whitened (de-correlated and
    scaled to unit variance, also called sphering transformation) by means of
    a Principle Component Analysis (PCA). In addition to the whitening, this
    step introduces the option to reduce the dimensionality of the data, both
    prior to fitting the ICA and prior to reverting to sensor space.
    This is controllable by the two parameters `max_pca_components` and
    `n_pca_components`, respectively.

    .. note:: Commonly used for reasons of i) computational efficiency and
              ii) additional noise reduction, it is a matter of current debate
              whether pre-ICA dimensionality reduction could decrease the
              reliability and stability of the ICA, at least for EEG data and
              especially during preprocessing [5]_.
              On the other hand, for rank-deficient data such as EEG data after
              average reference or interpolation, it is recommended to reduce
              the dimensionality by 1 for optimal ICA performance
              (see the `EEGLAB wiki <eeglab_wiki_>`_).

    Caveat! If supplying a noise covariance, keep track of the projections
    available in the cov or in the raw object. For example, if you are
    interested in EOG or ECG artifacts, EOG and ECG projections should be
    temporally removed before fitting ICA, for example::

        >> projs, raw.info['projs'] = raw.info['projs'], []
        >> ica.fit(raw)
        >> raw.info['projs'] = projs

    Methods currently implemented are FastICA (default), Infomax,
    Extended Infomax, and Picard. Infomax can be quite sensitive to differences
    in floating point arithmetic. Extended Infomax seems to be more stable in
    this respect enhancing reproducibility and stability of results.

    Reducing the tolerance (set in `fit_params`) speeds up estimation at the
    cost of consistency of the obtained results. It is difficult to directly
    compare tolerance levels between Infomax and Picard, but for Picard and
    FastICA a good rule of thumb is ``tol_fastica == tol_picard ** 2``.

    .. _eeglab_wiki: https://sccn.ucsd.edu/wiki/Chapter_09:_Decomposing_Data_Using_ICA#Issue:_ICA_returns_near-identical_components_with_opposite_polarities  # noqa

    References
    ----------
    .. [1] Hyvärinen, A., 1999. Fast and robust fixed-point algorithms for
           independent component analysis. IEEE transactions on Neural
           Networks, 10(3), pp.626-634.

    .. [2] Bell, A.J., Sejnowski, T.J., 1995. An information-maximization
           approach to blind separation and blind deconvolution. Neural
           computation, 7(6), pp.1129-1159.

    .. [3] Lee, T.W., Girolami, M., Sejnowski, T.J., 1999. Independent
           component analysis using an extended infomax algorithm for mixed
           subgaussian and supergaussian sources. Neural computation, 11(2),
           pp.417-441.

    .. [4] Ablin, P., Cardoso, J.F., Gramfort, A., 2017. Faster Independent
           Component Analysis by preconditioning with Hessian approximations.
           arXiv:1706.08171

    .. [5] Artoni, F., Delorme, A., und Makeig, S, 2018. Applying Dimension
           Reduction to EEG Data by Principal Component Analysis Reduces the
           Quality of Its Subsequent Independent Component Decomposition.
           NeuroImage 175, pp.176–187.
           https://sccn.ucsd.edu/%7Earno/mypapers/Artoni2018.pdf
    """  # noqa: E501

    @verbose
    def __init__(self, n_components=None, max_pca_components=None,
                 n_pca_components=None, noise_cov=None, random_state=None,
                 method='fastica', fit_params=None, max_iter=200,
                 verbose=None):  # noqa: D102
        methods = ('fastica', 'infomax', 'extended-infomax', 'picard')
        if method not in methods:
            raise ValueError('`method` must be "%s". You passed: "%s"' %
                             ('" or "'.join(methods), method))
        if not check_version('sklearn', '0.15'):
            raise RuntimeError('the scikit-learn package (version >= 0.15) '
                               'is required for ICA')

        self.noise_cov = noise_cov

        if (n_components is not None and
                max_pca_components is not None and
                n_components > max_pca_components):
            raise ValueError('n_components must be smaller than '
                             'max_pca_components')

        if isinstance(n_components, float) \
                and not 0 < n_components <= 1:
            raise ValueError('Selecting ICA components by explained variance '
                             'needs values between 0.0 and 1.0 ')

        self.current_fit = 'unfitted'
        self.verbose = verbose
        self.n_components = n_components
        self.max_pca_components = max_pca_components
        self.n_pca_components = n_pca_components
        self.ch_names = None
        self.random_state = random_state

        if fit_params is None:
            fit_params = {}
        fit_params = deepcopy(fit_params)  # avoid side effects
        if "extended" in fit_params:
            raise ValueError("'extended' parameter provided. You should "
                             "rather use method='extended-infomax'.")
        if method == 'fastica':
            update = {'algorithm': 'parallel', 'fun': 'logcosh',
                      'fun_args': None}
            fit_params.update(dict((k, v) for k, v in update.items() if k
                                   not in fit_params))
        elif method == 'infomax':
            fit_params.update({'extended': False})
        elif method == 'extended-infomax':
            fit_params.update({'extended': True})
        elif method == 'picard':
            update = {'ortho': True, 'fun': 'tanh', 'tol': 1e-5}
            fit_params.update(dict((k, v) for k, v in update.items() if k
                                   not in fit_params))
        if 'max_iter' not in fit_params:
            fit_params['max_iter'] = max_iter
        self.max_iter = max_iter
        self.fit_params = fit_params

        self.exclude = []
        self.info = None
        self.method = method
        self.labels_ = dict()

    def __repr__(self):
        """ICA fit information."""
        if self.current_fit == 'unfitted':
            s = 'no'
        elif self.current_fit == 'raw':
            s = 'raw data'
        else:
            s = 'epochs'
        s += ' decomposition, '
        s += 'fit (%s): %s samples, ' % (self.method,
                                         str(getattr(self, 'n_samples_', '')))
        s += ('%s components' % str(self.n_components_) if
              hasattr(self, 'n_components_') else
              'no dimension reduction')
        if self.info is not None:
            ch_fit = ['"%s"' % c for c in _DATA_CH_TYPES_SPLIT if c in self]
            s += ', channels used: {0}'.format('; '.join(ch_fit))
        if self.exclude:
            s += ', %i sources marked for exclusion' % len(self.exclude)

        return '<ICA  |  %s>' % s

    @verbose
    def fit(self, inst, picks=None, start=None, stop=None, decim=None,
            reject=None, flat=None, tstep=2.0, reject_by_annotation=True,
            verbose=None):
        """Run the ICA decomposition on raw data.

        Caveat! If supplying a noise covariance keep track of the projections
        available in the cov, the raw or the epochs object. For example,
        if you are interested in EOG or ECG artifacts, EOG and ECG projections
        should be temporally removed before fitting the ICA.

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            Raw measurements to be decomposed.
        picks : array-like of int
            Channels to be included. This selection remains throughout the
            initialized ICA solution. If None only good data channels are used.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.
        decim : int | None
            Increment for selecting each nth time slice. If None, all samples
            within ``start`` and ``stop`` are used.
        reject : dict | None
            Rejection parameters based on peak-to-peak amplitude.
            Valid keys are 'grad', 'mag', 'eeg', 'seeg', 'ecog', 'eog', 'ecg',
            'hbo', 'hbr'.
            If reject is None then no rejection is done. Example::

                reject = dict(grad=4000e-13, # T / m (gradiometers)
                              mag=4e-12, # T (magnetometers)
                              eeg=40e-6, # V (EEG channels)
                              eog=250e-6 # V (EOG channels)
                              )

            It only applies if `inst` is of type Raw.
        flat : dict | None
            Rejection parameters based on flatness of signal.
            Valid keys are 'grad', 'mag', 'eeg', 'seeg', 'ecog', 'eog', 'ecg',
            'hbo', 'hbr'.
            Values are floats that set the minimum acceptable peak-to-peak
            amplitude. If flat is None then no rejection is done.
            It only applies if `inst` is of type Raw.
        tstep : float
            Length of data chunks for artifact rejection in seconds.
            It only applies if `inst` is of type Raw.
        reject_by_annotation : bool
            Whether to omit bad segments from the data before fitting. If True,
            annotated segments with a description that starts with 'bad' are
            omitted. Has no effect if ``inst`` is an Epochs or Evoked object.
            Defaults to True.

            .. versionadded:: 0.14.0

        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more). Defaults to self.verbose.

        Returns
        -------
        self : instance of ICA
            Returns the modified instance.
        """
        if isinstance(inst, (BaseRaw, BaseEpochs)):
            _check_for_unsupported_ica_channels(picks, inst.info)
            t_start = time()
            if isinstance(inst, BaseRaw):
                self._fit_raw(inst, picks, start, stop, decim, reject, flat,
                              tstep, reject_by_annotation, verbose)
            elif isinstance(inst, BaseEpochs):
                self._fit_epochs(inst, picks, decim, verbose)
        else:
            raise ValueError('Data input must be of Raw or Epochs type')

        # sort ICA components by explained variance
        var = _ica_explained_variance(self, inst)
        var_ord = var.argsort()[::-1]
        _sort_components(self, var_ord, copy=False)
        t_stop = time()
        logger.info("Fitting ICA took {:.1f}s.".format(t_stop - t_start))
        return self

    def _reset(self):
        """Aux method."""
        del self.pre_whitener_
        del self.unmixing_matrix_
        del self.mixing_matrix_
        del self.n_components_
        del self.n_samples_
        del self.pca_components_
        del self.pca_explained_variance_
        del self.pca_mean_
        if hasattr(self, 'drop_inds_'):
            del self.drop_inds_

    def _fit_raw(self, raw, picks, start, stop, decim, reject, flat, tstep,
                 reject_by_annotation, verbose):
        """Aux method."""
        if self.current_fit != 'unfitted':
            self._reset()

        if picks is None:  # just use good data channels
            picks = _pick_data_channels(raw.info, exclude='bads',
                                        with_ref_meg=False)

        logger.info('Fitting ICA to data using %i channels '
                    '(please be patient, this may take a while)' % len(picks))

        if self.max_pca_components is None:
            self.max_pca_components = len(picks)
            logger.info('Inferring max_pca_components from picks')

        self.info = pick_info(raw.info, picks)
        if self.info['comps']:
            self.info['comps'] = []
        self.ch_names = self.info['ch_names']
        start, stop = _check_start_stop(raw, start, stop)

        reject_by_annotation = 'omit' if reject_by_annotation else None
        # this will be a copy
        data = raw.get_data(picks, start, stop, reject_by_annotation)

        # this will be a view
        if decim is not None:
            data = data[:, ::decim]

        # this will make a copy
        if (reject is not None) or (flat is not None):
            data, self.drop_inds_ = _reject_data_segments(data, reject, flat,
                                                          decim, self.info,
                                                          tstep)

        self.n_samples_ = data.shape[1]
        # this may operate inplace or make a copy
        data, self.pre_whitener_ = self._pre_whiten(data, raw.info, picks)

        self._fit(data, self.max_pca_components, 'raw')

        return self

    def _fit_epochs(self, epochs, picks, decim, verbose):
        """Aux method."""
        if self.current_fit != 'unfitted':
            self._reset()

        if picks is None:
            picks = _pick_data_channels(epochs.info, exclude='bads',
                                        with_ref_meg=False)
        logger.info('Fitting ICA to data using %i channels '
                    '(please be patient, this may take a while)' % len(picks))

        # filter out all the channels the raw wouldn't have initialized
        self.info = pick_info(epochs.info, picks)

        if self.info['comps']:
            self.info['comps'] = []
        self.ch_names = self.info['ch_names']

        if self.max_pca_components is None:
            self.max_pca_components = len(picks)
            logger.info('Inferring max_pca_components from picks')

        # this should be a copy (picks a list of int)
        data = epochs.get_data()[:, picks]
        # this will be a view
        if decim is not None:
            data = data[:, :, ::decim]

        self.n_samples_ = np.prod(data[:, 0, :].shape)

        # This will make at least one copy (one from hstack, maybe one
        # more from _pre_whiten)
        data, self.pre_whitener_ = \
            self._pre_whiten(np.hstack(data), epochs.info, picks)

        self._fit(data, self.max_pca_components, 'epochs')

        return self

    def _pre_whiten(self, data, info, picks):
        """Aux function."""
        has_pre_whitener = hasattr(self, 'pre_whitener_')
        if not has_pre_whitener and self.noise_cov is None:
            # use standardization as whitener
            # Scale (z-score) the data by channel type
            info = pick_info(info, picks)
            pre_whitener = np.empty([len(data), 1])
            for ch_type in _DATA_CH_TYPES_SPLIT + ['eog']:
                if _contains_ch_type(info, ch_type):
                    if ch_type == 'seeg':
                        this_picks = pick_types(info, meg=False, seeg=True)
                    elif ch_type == 'ecog':
                        this_picks = pick_types(info, meg=False, ecog=True)
                    elif ch_type == 'eeg':
                        this_picks = pick_types(info, meg=False, eeg=True)
                    elif ch_type in ('mag', 'grad'):
                        this_picks = pick_types(info, meg=ch_type)
                    elif ch_type == 'eog':
                        this_picks = pick_types(info, meg=False, eog=True)
                    elif ch_type in ('hbo', 'hbr'):
                        this_picks = pick_types(info, meg=False, fnirs=ch_type)
                    else:
                        raise RuntimeError('Should not be reached.'
                                           'Unsupported channel {0}'
                                           .format(ch_type))
                    pre_whitener[this_picks] = np.std(data[this_picks])
            data /= pre_whitener
        elif not has_pre_whitener and self.noise_cov is not None:
            pre_whitener, _ = compute_whitener(self.noise_cov, info, picks)
            assert data.shape[0] == pre_whitener.shape[1]
            data = np.dot(pre_whitener, data)
        elif has_pre_whitener and self.noise_cov is None:
            data /= self.pre_whitener_
            pre_whitener = self.pre_whitener_
        else:
            data = np.dot(self.pre_whitener_, data)
            pre_whitener = self.pre_whitener_

        return data, pre_whitener

    def _fit(self, data, max_pca_components, fit_type):
        """Aux function."""
        random_state = check_random_state(self.random_state)

        from sklearn.decomposition import PCA
        if not check_version('sklearn', '0.18'):
            pca = PCA(n_components=max_pca_components, whiten=True, copy=True)
        else:
            pca = PCA(n_components=max_pca_components, whiten=True, copy=True,
                      svd_solver='full')

        data = pca.fit_transform(data.T)

        if isinstance(self.n_components, float):
            n_components_ = np.sum(pca.explained_variance_ratio_.cumsum() <=
                                   self.n_components)
            if n_components_ < 1:
                raise RuntimeError('One PCA component captures most of the '
                                   'explained variance, your threshold resu'
                                   'lts in 0 components. You should select '
                                   'a higher value.')
            logger.info('Selection by explained variance: %i components' %
                        n_components_)
            sel = slice(n_components_)
        else:
            if self.n_components is not None:  # normal n case
                sel = slice(self.n_components)
                logger.info('Selection by number: %i components' %
                            self.n_components)
            else:  # None case
                logger.info('Using all PCA components: %i'
                            % len(pca.components_))
                sel = slice(len(pca.components_))

        # the things to store for PCA
        self.pca_mean_ = pca.mean_
        self.pca_components_ = pca.components_
        self.pca_explained_variance_ = exp_var = pca.explained_variance_
        if not check_version('sklearn', '0.16'):
            # sklearn < 0.16 did not apply whitening to the components, so we
            # need to do this manually
            self.pca_components_ *= np.sqrt(exp_var[:, None])
        del pca
        # update number of components
        self.n_components_ = sel.stop
        self._update_ica_names()
        if self.n_pca_components is not None:
            if self.n_pca_components > len(self.pca_components_):
                self.n_pca_components = len(self.pca_components_)

        # take care of ICA
        if self.method == 'fastica':
            from sklearn.decomposition import FastICA
            ica = FastICA(whiten=False, random_state=random_state,
                          **self.fit_params)
            ica.fit(data[:, sel])
            self.unmixing_matrix_ = ica.components_
        elif self.method in ('infomax', 'extended-infomax'):
            self.unmixing_matrix_ = infomax(data[:, sel],
                                            random_state=random_state,
                                            **self.fit_params)
        elif self.method == 'picard':
            from picard import picard
            _, W, _ = picard(data[:, sel].T, whiten=False,
                             random_state=random_state, **self.fit_params)
            del _
            self.unmixing_matrix_ = W
        self.unmixing_matrix_ /= np.sqrt(exp_var[sel])[None, :]  # whitening
        self.mixing_matrix_ = linalg.pinv(self.unmixing_matrix_)
        self.current_fit = fit_type

    def _update_ica_names(self):
        """Update ICA names when n_components_ is set."""
        self._ica_names = ['ICA%03d' % ii for ii in range(self.n_components_)]

    def _transform(self, data):
        """Compute sources from data (operates inplace)."""
        if self.pca_mean_ is not None:
            data -= self.pca_mean_[:, None]

        # Apply first PCA
        pca_data = np.dot(self.pca_components_[:self.n_components_], data)
        # Apply unmixing to low dimension PCA
        sources = np.dot(self.unmixing_matrix_, pca_data)
        return sources

    def _transform_raw(self, raw, start, stop, reject_by_annotation=False):
        """Transform raw data."""
        if not hasattr(self, 'mixing_matrix_'):
            raise RuntimeError('No fit available. Please fit ICA.')
        start, stop = _check_start_stop(raw, start, stop)

        picks = pick_types(raw.info, include=self.ch_names, exclude='bads',
                           meg=False, ref_meg=False)
        if len(picks) != len(self.ch_names):
            raise RuntimeError('Raw doesn\'t match fitted data: %i channels '
                               'fitted but %i channels supplied. \nPlease '
                               'provide Raw compatible with '
                               'ica.ch_names' % (len(self.ch_names),
                                                 len(picks)))

        if reject_by_annotation:
            data = raw.get_data(picks, start, stop, 'omit')
        else:
            data = raw[picks, start:stop][0]
        data, _ = self._pre_whiten(data, raw.info, picks)
        return self._transform(data)

    def _transform_epochs(self, epochs, concatenate):
        """Aux method."""
        if not hasattr(self, 'mixing_matrix_'):
            raise RuntimeError('No fit available. Please fit ICA.')

        picks = pick_types(epochs.info, include=self.ch_names, exclude='bads',
                           meg=False, ref_meg=False)
        # special case where epochs come picked but fit was 'unpicked'.
        if len(picks) != len(self.ch_names):
            raise RuntimeError('Epochs don\'t match fitted data: %i channels '
                               'fitted but %i channels supplied. \nPlease '
                               'provide Epochs compatible with '
                               'ica.ch_names' % (len(self.ch_names),
                                                 len(picks)))

        data = np.hstack(epochs.get_data()[:, picks])
        data, _ = self._pre_whiten(data, epochs.info, picks)
        sources = self._transform(data)

        if not concatenate:
            # Put the data back in 3D
            sources = np.array(np.split(sources, len(epochs.events), 1))

        return sources

    def _transform_evoked(self, evoked):
        """Aux method."""
        if not hasattr(self, 'mixing_matrix_'):
            raise RuntimeError('No fit available. Please fit ICA.')

        picks = pick_types(evoked.info, include=self.ch_names, exclude='bads',
                           meg=False, ref_meg=False)

        if len(picks) != len(self.ch_names):
            raise RuntimeError('Evoked doesn\'t match fitted data: %i channels'
                               ' fitted but %i channels supplied. \nPlease '
                               'provide Evoked compatible with '
                               'ica.ch_names' % (len(self.ch_names),
                                                 len(picks)))

        data, _ = self._pre_whiten(evoked.data[picks], evoked.info, picks)
        sources = self._transform(data)

        return sources

    def get_components(self):
        """Get ICA topomap for components as numpy arrays.

        Returns
        -------
        components : array, shape (n_channels, n_components)
            The ICA components (maps).
        """
        return np.dot(self.mixing_matrix_[:, :self.n_components_].T,
                      self.pca_components_[:self.n_components_]).T

    def get_sources(self, inst, add_channels=None, start=None, stop=None):
        """Estimate sources given the unmixing matrix.

        This method will return the sources in the container format passed.
        Typical usecases:

        1. pass Raw object to use `raw.plot` for ICA sources
        2. pass Epochs object to compute trial-based statistics in ICA space
        3. pass Evoked object to investigate time-locking in ICA space

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            Object to compute sources from and to represent sources in.
        add_channels : None | list of str
            Additional channels  to be added. Useful to e.g. compare sources
            with some reference. Defaults to None
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, the entire data will be used.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, the entire data will be used.

        Returns
        -------
        sources : instance of Raw, Epochs or Evoked
            The ICA sources time series.
        """
        if isinstance(inst, BaseRaw):
            _check_compensation_grade(self, inst, 'ICA', 'Raw',
                                      ch_names=self.ch_names)
            sources = self._sources_as_raw(inst, add_channels, start, stop)
        elif isinstance(inst, BaseEpochs):
            _check_compensation_grade(self, inst, 'ICA', 'Epochs',
                                      ch_names=self.ch_names)
            sources = self._sources_as_epochs(inst, add_channels, False)
        elif isinstance(inst, Evoked):
            _check_compensation_grade(self, inst, 'ICA', 'Evoked',
                                      ch_names=self.ch_names)
            sources = self._sources_as_evoked(inst, add_channels)
        else:
            raise ValueError('Data input must be of Raw, Epochs or Evoked '
                             'type')
        return sources

    def _sources_as_raw(self, raw, add_channels, start, stop):
        """Aux method."""
        # merge copied instance and picked data with sources
        sources = self._transform_raw(raw, start=start, stop=stop)
        if raw.preload:  # get data and temporarily delete
            data = raw._data
            del raw._data

        out = raw.copy()  # copy and reappend
        if raw.preload:
            raw._data = data

        # populate copied raw.
        start, stop = _check_start_stop(raw, start, stop)
        if add_channels is not None:
            raw_picked = raw.copy().pick_channels(add_channels)
            data_, times_ = raw_picked[:, start:stop]
            data_ = np.r_[sources, data_]
        else:
            data_ = sources
            _, times_ = raw[0, start:stop]
        out._data = data_
        out._times = times_
        out._filenames = [None]
        out.preload = True

        # update first and last samples
        out._first_samps = np.array([raw.first_samp +
                                     (start if start else 0)])
        out._last_samps = np.array([out.first_samp + stop
                                    if stop else raw.last_samp])

        out._projector = None
        self._export_info(out.info, raw, add_channels)
        out._update_times()

        return out

    def _sources_as_epochs(self, epochs, add_channels, concatenate):
        """Aux method."""
        out = epochs.copy()
        sources = self._transform_epochs(epochs, concatenate)
        if add_channels is not None:
            picks = [epochs.ch_names.index(k) for k in add_channels]
        else:
            picks = []
        out._data = np.concatenate([sources, epochs.get_data()[:, picks]],
                                   axis=1) if len(picks) > 0 else sources

        self._export_info(out.info, epochs, add_channels)
        out.preload = True
        out._raw = None
        out._projector = None

        return out

    def _sources_as_evoked(self, evoked, add_channels):
        """Aux method."""
        if add_channels is not None:
            picks = [evoked.ch_names.index(k) for k in add_channels]
        else:
            picks = []

        sources = self._transform_evoked(evoked)
        if len(picks) > 1:
            data = np.r_[sources, evoked.data[picks]]
        else:
            data = sources
        out = evoked.copy()
        out.data = data
        self._export_info(out.info, evoked, add_channels)

        return out

    def _export_info(self, info, container, add_channels):
        """Aux method."""
        # set channel names and info
        ch_names = []
        ch_info = info['chs'] = []
        for ii, name in enumerate(self._ica_names):
            ch_names.append(name)
            ch_info.append(dict(
                ch_name=name, cal=1, logno=ii + 1,
                coil_type=FIFF.FIFFV_COIL_NONE, kind=FIFF.FIFFV_MISC_CH,
                coord_Frame=FIFF.FIFFV_COORD_UNKNOWN, unit=FIFF.FIFF_UNIT_NONE,
                loc=np.array([0., 0., 0., 1.] * 3, dtype='f4'),
                range=1.0, scanno=ii + 1, unit_mul=0))

        if add_channels is not None:
            # re-append additionally picked ch_names
            ch_names += add_channels
            # re-append additionally picked ch_info
            ch_info += [k for k in container.info['chs'] if k['ch_name'] in
                        add_channels]
        info['bads'] = [ch_names[k] for k in self.exclude]
        info['projs'] = []  # make sure projections are removed.
        info._update_redundant()
        info._check_consistency()

    @verbose
    def score_sources(self, inst, target=None, score_func='pearsonr',
                      start=None, stop=None, l_freq=None, h_freq=None,
                      reject_by_annotation=True, verbose=None):
        """Assign score to components based on statistic or metric.

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            The object to reconstruct the sources from.
        target : array-like | ch_name | None
            Signal to which the sources shall be compared. It has to be of
            the same shape as the sources. If some string is supplied, a
            routine will try to find a matching channel. If None, a score
            function expecting only one input-array argument must be used,
            for instance, scipy.stats.skew (default).
        score_func : callable | str label
            Callable taking as arguments either two input arrays
            (e.g. Pearson correlation) or one input
            array (e. g. skewness) and returns a float. For convenience the
            most common score_funcs are available via string labels:
            Currently, all distance metrics from scipy.spatial and All
            functions from scipy.stats taking compatible input arguments are
            supported. These function have been modified to support iteration
            over the rows of a 2D array.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.
        l_freq : float
            Low pass frequency.
        h_freq : float
            High pass frequency.
        reject_by_annotation : bool
            If True, data annotated as bad will be omitted. Defaults to True.

            .. versionadded:: 0.14.0

        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more). Defaults to self.verbose.

        Returns
        -------
        scores : ndarray
            scores for each source as returned from score_func
        """
        if isinstance(inst, BaseRaw):
            _check_compensation_grade(self, inst, 'ICA', 'Raw',
                                      ch_names=self.ch_names)
            sources = self._transform_raw(inst, start, stop,
                                          reject_by_annotation)
        elif isinstance(inst, BaseEpochs):
            _check_compensation_grade(self, inst, 'ICA', 'Epochs',
                                      ch_names=self.ch_names)
            sources = self._transform_epochs(inst, concatenate=True)
        elif isinstance(inst, Evoked):
            _check_compensation_grade(self, inst, 'ICA', 'Evoked',
                                      ch_names=self.ch_names)
            sources = self._transform_evoked(inst)
        else:
            raise ValueError('Data input must be of Raw, Epochs or Evoked '
                             'type')

        if target is not None:  # we can have univariate metrics without target
            target = self._check_target(target, inst, start, stop,
                                        reject_by_annotation)

            if sources.shape[-1] != target.shape[-1]:
                raise ValueError('Sources and target do not have the same'
                                 'number of time slices.')
            # auto target selection
            if verbose is None:
                verbose = self.verbose
            if isinstance(inst, BaseRaw):
                sources, target = _band_pass_filter(self, sources, target,
                                                    l_freq, h_freq, verbose)

        scores = _find_sources(sources, target, score_func)

        return scores

    def _check_target(self, target, inst, start, stop,
                      reject_by_annotation=False):
        """Aux Method."""
        if isinstance(inst, BaseRaw):
            reject_by_annotation = 'omit' if reject_by_annotation else None
            start, stop = _check_start_stop(inst, start, stop)
            if hasattr(target, 'ndim'):
                if target.ndim < 2:
                    target = target.reshape(1, target.shape[-1])
            if isinstance(target, string_types):
                pick = _get_target_ch(inst, target)
                target = inst.get_data(pick, start, stop, reject_by_annotation)

        elif isinstance(inst, BaseEpochs):
            if isinstance(target, string_types):
                pick = _get_target_ch(inst, target)
                target = inst.get_data()[:, pick]

            if hasattr(target, 'ndim'):
                if target.ndim == 3 and min(target.shape) == 1:
                    target = target.ravel()

        elif isinstance(inst, Evoked):
            if isinstance(target, string_types):
                pick = _get_target_ch(inst, target)
                target = inst.data[pick]

        return target

    @verbose
    def find_bads_ecg(self, inst, ch_name=None, threshold=None, start=None,
                      stop=None, l_freq=8, h_freq=16, method='ctps',
                      reject_by_annotation=True, verbose=None):
        """Detect ECG related components using correlation.

        .. note:: If no ECG channel is available, routine attempts to create
                  an artificial ECG based on cross-channel averaging.

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            Object to compute sources from.
        ch_name : str
            The name of the channel to use for ECG peak detection.
            The argument is mandatory if the dataset contains no ECG
            channels.
        threshold : float
            The value above which a feature is classified as outlier. If
            method is 'ctps', defaults to 0.25, else defaults to 3.0.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.
        l_freq : float
            Low pass frequency.
        h_freq : float
            High pass frequency.
        method : {'ctps', 'correlation'}
            The method used for detection. If 'ctps', cross-trial phase
            statistics [1] are used to detect ECG related components.
            Thresholding is then based on the significance value of a Kuiper
            statistic.
            If 'correlation', detection is based on Pearson correlation
            between the filtered data and the filtered ECG channel.
            Thresholding is based on iterative z-scoring. The above
            threshold components will be masked and the z-score will
            be recomputed until no supra-threshold component remains.
            Defaults to 'ctps'.
        reject_by_annotation : bool
            If True, data annotated as bad will be omitted. Defaults to True.

            .. versionadded:: 0.14.0

        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more). Defaults to self.verbose.

        Returns
        -------
        ecg_idx : list of int
            The indices of ECG related components.
        scores : np.ndarray of float, shape (``n_components_``)
            The correlation scores.

        See Also
        --------
        find_bads_eog

        References
        ----------
        [1] Dammers, J., Schiek, M., Boers, F., Silex, C., Zvyagintsev,
            M., Pietrzyk, U., Mathiak, K., 2008. Integration of amplitude
            and phase statistics for complete artifact removal in independent
            components of neuromagnetic recordings. Biomedical
            Engineering, IEEE Transactions on 55 (10), 2353-2362.
        """
        if verbose is None:
            verbose = self.verbose

        idx_ecg = _get_ecg_channel_index(ch_name, inst)

        if idx_ecg is None:
            if verbose is not None:
                verbose = self.verbose
            ecg, times = _make_ecg(inst, start, stop,
                                   reject_by_annotation=reject_by_annotation,
                                   verbose=verbose)
        else:
            ecg = inst.ch_names[idx_ecg]

        if method == 'ctps':
            if threshold is None:
                threshold = 0.25
            if isinstance(inst, BaseRaw):
                sources = self.get_sources(create_ecg_epochs(
                    inst, ch_name, keep_ecg=False,
                    reject_by_annotation=reject_by_annotation)).get_data()

                if sources.shape[0] == 0:
                    warn('No ECG activity detected. Consider changing '
                         'the input parameters.')
            elif isinstance(inst, BaseEpochs):
                sources = self.get_sources(inst).get_data()
            else:
                raise ValueError('With `ctps` only Raw and Epochs input is '
                                 'supported')
            _, p_vals, _ = ctps(sources)
            scores = p_vals.max(-1)
            ecg_idx = np.where(scores >= threshold)[0]
        elif method == 'correlation':
            if threshold is None:
                threshold = 3.0
            scores = self.score_sources(
                inst, target=ecg, score_func='pearsonr', start=start,
                stop=stop, l_freq=l_freq, h_freq=h_freq,
                reject_by_annotation=reject_by_annotation, verbose=verbose)
            ecg_idx = find_outliers(scores, threshold=threshold)
        else:
            raise ValueError('Method "%s" not supported.' % method)
        # sort indices by scores
        ecg_idx = ecg_idx[np.abs(scores[ecg_idx]).argsort()[::-1]]

        self.labels_['ecg'] = list(ecg_idx)
        if ch_name is None:
            ch_name = 'ECG-MAG'
        self.labels_['ecg/%s' % ch_name] = list(ecg_idx)
        return self.labels_['ecg'], scores

    @verbose
    def find_bads_eog(self, inst, ch_name=None, threshold=3.0, start=None,
                      stop=None, l_freq=1, h_freq=10,
                      reject_by_annotation=True, verbose=None):
        """Detect EOG related components using correlation.

        Detection is based on Pearson correlation between the
        filtered data and the filtered EOG channel.
        Thresholding is based on adaptive z-scoring. The above threshold
        components will be masked and the z-score will be recomputed
        until no supra-threshold component remains.

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            Object to compute sources from.
        ch_name : str
            The name of the channel to use for EOG peak detection.
            The argument is mandatory if the dataset contains no EOG
            channels.
        threshold : int | float
            The value above which a feature is classified as outlier.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.
        l_freq : float
            Low pass frequency.
        h_freq : float
            High pass frequency.
        reject_by_annotation : bool
            If True, data annotated as bad will be omitted. Defaults to True.

            .. versionadded:: 0.14.0

        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more). Defaults to self.verbose.

        Returns
        -------
        eog_idx : list of int
            The indices of EOG related components, sorted by score.
        scores : np.ndarray of float, shape (``n_components_``) | list of array
            The correlation scores.

        See Also
        --------
        find_bads_ecg
        """
        if verbose is None:
            verbose = self.verbose

        eog_inds = _get_eog_channel_index(ch_name, inst)
        if len(eog_inds) > 2:
            eog_inds = eog_inds[:1]
            logger.info('Using EOG channel %s' % inst.ch_names[eog_inds[0]])
        scores, eog_idx = [], []
        eog_chs = [inst.ch_names[k] for k in eog_inds]

        # some magic we need inevitably ...
        # get targets before equalizing
        targets = [self._check_target(k, inst, start, stop,
                                      reject_by_annotation) for k in eog_chs]

        for ii, (eog_ch, target) in enumerate(zip(eog_chs, targets)):
            scores += [self.score_sources(
                inst, target=target, score_func='pearsonr', start=start,
                stop=stop, l_freq=l_freq, h_freq=h_freq, verbose=verbose,
                reject_by_annotation=reject_by_annotation)]
            # pick last scores
            this_idx = find_outliers(scores[-1], threshold=threshold)
            eog_idx += [this_idx]
            self.labels_[('eog/%i/' % ii) + eog_ch] = list(this_idx)

        # remove duplicates but keep order by score, even across multiple
        # EOG channels
        scores_ = np.concatenate([scores[ii][inds]
                                  for ii, inds in enumerate(eog_idx)])
        eog_idx_ = np.concatenate(eog_idx)[np.abs(scores_).argsort()[::-1]]

        eog_idx_unique = list(np.unique(eog_idx_))
        eog_idx = []
        for i in eog_idx_:
            if i in eog_idx_unique:
                eog_idx.append(i)
                eog_idx_unique.remove(i)
        if len(scores) == 1:
            scores = scores[0]
        self.labels_['eog'] = list(eog_idx)

        return self.labels_['eog'], scores

    def apply(self, inst, include=None, exclude=None, n_pca_components=None,
              start=None, stop=None):
        """Remove selected components from the signal.

        Given the unmixing matrix, transform data,
        zero out components, and inverse transform the data.
        This procedure will reconstruct M/EEG signals from which
        the dynamics described by the excluded components is subtracted.
        The data is processed in place.

        Parameters
        ----------
        inst : instance of Raw, Epochs or Evoked
            The data to be processed. The instance is modified inplace.
        include : array_like of int.
            The indices referring to columns in the ummixing matrix. The
            components to be kept.
        exclude : array_like of int.
            The indices referring to columns in the ummixing matrix. The
            components to be zeroed out.
        n_pca_components : int | float | None
            The number of PCA components to be kept, either absolute (int)
            or percentage of the explained variance (float). If None (default),
            all PCA components will be used.
        start : int | float | None
            First sample to include. If float, data will be interpreted as
            time in seconds. If None, data will be used from the first sample.
        stop : int | float | None
            Last sample to not include. If float, data will be interpreted as
            time in seconds. If None, data will be used to the last sample.

        Returns
        -------
        out : instance of Raw, Epochs or Evoked
            The processed data.
        """
        if isinstance(inst, BaseRaw):
            _check_compensation_grade(self, inst, 'ICA', 'Raw',
                                      ch_names=self.ch_names)
            out = self._apply_raw(raw=inst, include=include,
                                  exclude=exclude,
                                  n_pca_components=n_pca_components,
                                  start=start, stop=stop)
        elif isinstance(inst, BaseEpochs):
            _check_compensation_grade(self, inst, 'ICA', 'Epochs',
                                      ch_names=self.ch_names)
            out = self._apply_epochs(epochs=inst, include=include,
                                     exclude=exclude,
                                     n_pca_components=n_pca_components)
        elif isinstance(inst, Evoked):
            _check_compensation_grade(self, inst, 'ICA', 'Evoked',
                                      ch_names=self.ch_names)
            out = self._apply_evoked(evoked=inst, include=include,
                                     exclude=exclude,
                                     n_pca_components=n_pca_components)
        else:
            raise ValueError('Data input must be of Raw, Epochs or Evoked '
                             'type')
        return out

    def _check_exclude(self, exclude):
        if exclude is None:
            return list(set(self.exclude))
        else:
            return list(set(self.exclude + exclude))

    def _apply_raw(self, raw, include, exclude, n_pca_components, start, stop):
        """Aux method."""
        _check_preload(raw, "ica.apply")
        exclude = self._check_exclude(exclude)

        if n_pca_components is not None:
            self.n_pca_components = n_pca_components

        start, stop = _check_start_stop(raw, start, stop)

        picks = pick_types(raw.info, meg=False, include=self.ch_names,
                           exclude='bads', ref_meg=False)

        data = raw[picks, start:stop][0]
        data, _ = self._pre_whiten(data, raw.info, picks)

        data = self._pick_sources(data, include, exclude)

        raw[picks, start:stop] = data
        return raw

    def _apply_epochs(self, epochs, include, exclude, n_pca_components):
        """Aux method."""
        _check_preload(epochs, "ica.apply")
        exclude = self._check_exclude(exclude)

        picks = pick_types(epochs.info, meg=False, ref_meg=False,
                           include=self.ch_names,
                           exclude='bads')

        # special case where epochs come picked but fit was 'unpicked'.
        if len(picks) != len(self.ch_names):
            raise RuntimeError('Epochs don\'t match fitted data: %i channels '
                               'fitted but %i channels supplied. \nPlease '
                               'provide Epochs compatible with '
                               'ica.ch_names' % (len(self.ch_names),
                                                 len(picks)))

        if n_pca_components is not None:
            self.n_pca_components = n_pca_components

        data = np.hstack(epochs.get_data()[:, picks])
        data, _ = self._pre_whiten(data, epochs.info, picks)
        data = self._pick_sources(data, include=include, exclude=exclude)

        # restore epochs, channels, tsl order
        epochs._data[:, picks] = np.array(
            np.split(data, len(epochs.events), 1))
        epochs.preload = True

        return epochs

    def _apply_evoked(self, evoked, include, exclude, n_pca_components):
        """Aux method."""
        exclude = self._check_exclude(exclude)
        picks = pick_types(evoked.info, meg=False, ref_meg=False,
                           include=self.ch_names,
                           exclude='bads')

        # special case where evoked come picked but fit was 'unpicked'.
        if len(picks) != len(self.ch_names):
            raise RuntimeError('Evoked does not match fitted data: %i channels'
                               ' fitted but %i channels supplied. \nPlease '
                               'provide an Evoked object that\'s compatible '
                               'with ica.ch_names' % (len(self.ch_names),
                                                      len(picks)))

        if n_pca_components is not None:
            self.n_pca_components = n_pca_components

        data = evoked.data[picks]
        data, _ = self._pre_whiten(data, evoked.info, picks)
        data = self._pick_sources(data, include=include,
                                  exclude=exclude)

        # restore evoked
        evoked.data[picks] = data

        return evoked

    def _pick_sources(self, data, include, exclude):
        """Aux function."""
        if exclude is None:
            exclude = self.exclude
        else:
            exclude = list(set(self.exclude + list(exclude)))

        _n_pca_comp = self._check_n_pca_components(self.n_pca_components)

        if not(self.n_components_ <= _n_pca_comp <= self.max_pca_components):
            raise ValueError('n_pca_components must be >= '
                             'n_components and <= max_pca_components.')

        n_components = self.n_components_
        logger.info('Transforming to ICA space (%i components)' % n_components)

        # Apply first PCA
        if self.pca_mean_ is not None:
            data -= self.pca_mean_[:, None]

        sel_keep = np.arange(n_components)
        if include not in (None, []):
            sel_keep = np.unique(include)
        elif exclude not in (None, []):
            sel_keep = np.setdiff1d(np.arange(n_components), exclude)

        logger.info('Zeroing out %i ICA components'
                    % (n_components - len(sel_keep)))

        unmixing = np.eye(_n_pca_comp)
        unmixing[:n_components, :n_components] = self.unmixing_matrix_
        unmixing = np.dot(unmixing, self.pca_components_[:_n_pca_comp])

        mixing = np.eye(_n_pca_comp)
        mixing[:n_components, :n_components] = self.mixing_matrix_
        mixing = np.dot(self.pca_components_[:_n_pca_comp].T, mixing)

        if _n_pca_comp > n_components:
            sel_keep = np.concatenate(
                (sel_keep, range(n_components, _n_pca_comp)))

        proj_mat = np.dot(mixing[:, sel_keep], unmixing[sel_keep, :])

        data = np.dot(proj_mat, data)

        if self.pca_mean_ is not None:
            data += self.pca_mean_[:, None]

        # restore scaling
        if self.noise_cov is None:  # revert standardization
            data *= self.pre_whitener_
        else:
            data = np.dot(linalg.pinv(self.pre_whitener_, cond=1e-14), data)

        return data

    @verbose
    def save(self, fname):
        """Store ICA solution into a fiff file.

        Parameters
        ----------
        fname : str
            The absolute path of the file name to save the ICA solution into.
            The file name should end with -ica.fif or -ica.fif.gz.
        """
        if self.current_fit == 'unfitted':
            raise RuntimeError('No fit available. Please first fit ICA')

        check_fname(fname, 'ICA', ('-ica.fif', '-ica.fif.gz',
                                   '_ica.fif', '_ica.fif.gz'))

        logger.info('Writing ICA solution to %s...' % fname)
        fid = start_file(fname)

        try:
            _write_ica(fid, self)
            end_file(fid)
        except Exception:
            end_file(fid)
            os.remove(fname)
            raise

        return self

    def copy(self):
        """Copy the ICA object.

        Returns
        -------
        ica : instance of ICA
            The copied object.
        """
        return deepcopy(self)

    @copy_function_doc_to_method_doc(plot_ica_components)
    def plot_components(self, picks=None, ch_type=None, res=64, layout=None,
                        vmin=None, vmax=None, cmap='RdBu_r', sensors=True,
                        colorbar=False, title=None, show=True, outlines='head',
                        contours=6, image_interp='bilinear', head_pos=None,
                        inst=None):
        return plot_ica_components(self, picks=picks, ch_type=ch_type,
                                   res=res, layout=layout, vmin=vmin,
                                   vmax=vmax, cmap=cmap, sensors=sensors,
                                   colorbar=colorbar, title=title, show=show,
                                   outlines=outlines, contours=contours,
                                   image_interp=image_interp,
                                   head_pos=head_pos, inst=inst)

    @copy_function_doc_to_method_doc(plot_ica_properties)
    def plot_properties(self, inst, picks=None, axes=None, dB=True,
                        plot_std=True, topomap_args=None, image_args=None,
                        psd_args=None, figsize=None, show=True):
        return plot_ica_properties(self, inst, picks=picks, axes=axes,
                                   dB=dB, plot_std=plot_std,
                                   topomap_args=topomap_args,
                                   image_args=image_args, psd_args=psd_args,
                                   figsize=figsize, show=show)

    @copy_function_doc_to_method_doc(plot_ica_sources)
    def plot_sources(self, inst, picks=None, exclude=None, start=None,
                     stop=None, title=None, show=True, block=False,
                     show_first_samp=False):
        return plot_ica_sources(self, inst=inst, picks=picks, exclude=exclude,
                                start=start, stop=stop, title=title, show=show,
                                block=block, show_first_samp=show_first_samp)

    @copy_function_doc_to_method_doc(plot_ica_scores)
    def plot_scores(self, scores, exclude=None, labels=None, axhline=None,
                    title='ICA component scores', figsize=None,
                    show=True):
        return plot_ica_scores(
            ica=self, scores=scores, exclude=exclude, labels=labels,
            axhline=axhline, title=title, figsize=figsize, show=show)

    @copy_function_doc_to_method_doc(plot_ica_overlay)
    def plot_overlay(self, inst, exclude=None, picks=None, start=None,
                     stop=None, title=None, show=True):
        return plot_ica_overlay(self, inst=inst, exclude=exclude, picks=picks,
                                start=start, stop=stop, title=title, show=show)

    def detect_artifacts(self, raw, start_find=None, stop_find=None,
                         ecg_ch=None, ecg_score_func='pearsonr',
                         ecg_criterion=0.1, eog_ch=None,
                         eog_score_func='pearsonr',
                         eog_criterion=0.1, skew_criterion=-1,
                         kurt_criterion=-1, var_criterion=0,
                         add_nodes=None):
        """Run ICA artifacts detection workflow.

        Note. This is still experimental and will most likely change. Over
        the next releases. For maximum control use the workflow exposed in
        the examples.

        Hints and caveats:
        - It is highly recommended to bandpass filter ECG and EOG
        data and pass them instead of the channel names as ecg_ch and eog_ch
        arguments.
        - please check your results. Detection by kurtosis and variance
        may be powerful but misclassification of brain signals as
        noise cannot be precluded.
        - Consider using shorter times for start_find and stop_find than
        for start and stop. It can save you much time.

        Example invocation (taking advantage of the defaults)::

            ica.detect_artifacts(ecg_channel='MEG 1531', eog_channel='EOG 061')

        Parameters
        ----------
        raw : instance of Raw
            Raw object to draw sources from.
        start_find : int | float | None
            First sample to include for artifact search. If float, data will be
            interpreted as time in seconds. If None, data will be used from the
            first sample.
        stop_find : int | float | None
            Last sample to not include for artifact search. If float, data will
            be interpreted as time in seconds. If None, data will be used to
            the last sample.
        ecg_ch : str | ndarray | None
            The `target` argument passed to ica.find_sources_raw. Either the
            name of the ECG channel or the ECG time series. If None, this step
            will be skipped.
        ecg_score_func : str | callable
            The `score_func` argument passed to ica.find_sources_raw. Either
            the name of function supported by ICA or a custom function.
        ecg_criterion : float | int | list-like | slice
            The indices of the sorted skewness scores. If float, sources with
            scores smaller than the criterion will be dropped. Else, the scores
            sorted in descending order will be indexed accordingly.
            E.g. range(2) would return the two sources with the highest score.
            If None, this step will be skipped.
        eog_ch : list | str | ndarray | None
            The `target` argument or the list of target arguments subsequently
            passed to ica.find_sources_raw. Either the name of the vertical EOG
            channel or the corresponding EOG time series. If None, this step
            will be skipped.
        eog_score_func : str | callable
            The `score_func` argument passed to ica.find_sources_raw. Either
            the name of function supported by ICA or a custom function.
        eog_criterion : float | int | list-like | slice
            The indices of the sorted skewness scores. If float, sources with
            scores smaller than the criterion will be dropped. Else, the scores
            sorted in descending order will be indexed accordingly.
            E.g. range(2) would return the two sources with the highest score.
            If None, this step will be skipped.
        skew_criterion : float | int | list-like | slice
            The indices of the sorted skewness scores. If float, sources with
            scores smaller than the criterion will be dropped. Else, the scores
            sorted in descending order will be indexed accordingly.
            E.g. range(2) would return the two sources with the highest score.
            If None, this step will be skipped.
        kurt_criterion : float | int | list-like | slice
            The indices of the sorted skewness scores. If float, sources with
            scores smaller than the criterion will be dropped. Else, the scores
            sorted in descending order will be indexed accordingly.
            E.g. range(2) would return the two sources with the highest score.
            If None, this step will be skipped.
        var_criterion : float | int | list-like | slice
            The indices of the sorted skewness scores. If float, sources with
            scores smaller than the criterion will be dropped. Else, the scores
            sorted in descending order will be indexed accordingly.
            E.g. range(2) would return the two sources with the highest score.
            If None, this step will be skipped.
        add_nodes : list of ica_nodes
            Additional list if tuples carrying the following parameters:
            (name : str, target : str | array, score_func : callable,
            criterion : float | int | list-like | slice). This parameter is a
            generalization of the artifact specific parameters above and has
            the same structure. Example:
            add_nodes=('ECG phase lock', ECG 01', my_phase_lock_function, 0.5)

        Returns
        -------
        self : instance of ICA
            The ICA object with the detected artifact indices marked for
            exclusion
        """
        logger.info('    Searching for artifacts...')
        _detect_artifacts(self, raw=raw, start_find=start_find,
                          stop_find=stop_find, ecg_ch=ecg_ch,
                          ecg_score_func=ecg_score_func,
                          ecg_criterion=ecg_criterion,
                          eog_ch=eog_ch, eog_score_func=eog_score_func,
                          eog_criterion=eog_criterion,
                          skew_criterion=skew_criterion,
                          kurt_criterion=kurt_criterion,
                          var_criterion=var_criterion,
                          add_nodes=add_nodes)

        return self

    @verbose
    def _check_n_pca_components(self, _n_pca_comp, verbose=None):
        """Aux function."""
        if isinstance(_n_pca_comp, float):
            _n_pca_comp = ((self.pca_explained_variance_ /
                            self.pca_explained_variance_.sum()).cumsum() <=
                           _n_pca_comp).sum()
            logger.info('Selected %i PCA components by explained '
                        'variance' % _n_pca_comp)
        elif _n_pca_comp is None:
            _n_pca_comp = self.max_pca_components
        elif _n_pca_comp < self.n_components_:
            _n_pca_comp = self.n_components_

        return _n_pca_comp


def _check_start_stop(raw, start, stop):
    """Aux function."""
    out = list()
    for st in (start, stop):
        if st is None:
            out.append(st)
        else:
            try:
                out.append(_ensure_int(st))
            except TypeError:  # not int-like
                out.append(raw.time_as_index(st)[0])
    return out


@verbose
def ica_find_ecg_events(raw, ecg_source, event_id=999,
                        tstart=0.0, l_freq=5, h_freq=35, qrs_threshold='auto',
                        verbose=None):
    """Find ECG peaks from one selected ICA source.

    Parameters
    ----------
    raw : instance of Raw
        Raw object to draw sources from.
    ecg_source : ndarray
        ICA source resembling ECG to find peaks from.
    event_id : int
        The index to assign to found events.
    tstart : float
        Start detection after tstart seconds. Useful when beginning
        of run is noisy.
    l_freq : float
        Low pass frequency.
    h_freq : float
        High pass frequency.
    qrs_threshold : float | str
        Between 0 and 1. qrs detection threshold. Can also be "auto" to
        automatically choose the threshold that generates a reasonable
        number of heartbeats (40-160 beats / min).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    ecg_events : array
        Events.
    ch_ECG : string
        Name of channel used.
    average_pulse : float.
        Estimated average pulse.
    """
    logger.info('Using ICA source to identify heart beats')

    # detecting QRS and generating event file
    ecg_events = qrs_detector(raw.info['sfreq'], ecg_source.ravel(),
                              tstart=tstart, thresh_value=qrs_threshold,
                              l_freq=l_freq, h_freq=h_freq)

    n_events = len(ecg_events)

    ecg_events = np.c_[ecg_events + raw.first_samp, np.zeros(n_events),
                       event_id * np.ones(n_events)]

    return ecg_events


@verbose
def ica_find_eog_events(raw, eog_source=None, event_id=998, l_freq=1,
                        h_freq=10, verbose=None):
    """Locate EOG artifacts from one selected ICA source.

    Parameters
    ----------
    raw : instance of Raw
        The raw data.
    eog_source : ndarray
        ICA source resembling EOG to find peaks from.
    event_id : int
        The index to assign to found events.
    l_freq : float
        Low cut-off frequency in Hz.
    h_freq : float
        High cut-off frequency in Hz.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    eog_events : array
        Events
    """
    eog_events = _find_eog_events(eog_source[np.newaxis], event_id=event_id,
                                  l_freq=l_freq, h_freq=h_freq,
                                  sampling_rate=raw.info['sfreq'],
                                  first_samp=raw.first_samp)
    return eog_events


def _get_target_ch(container, target):
    """Aux function."""
    # auto target selection
    picks = pick_channels(container.ch_names, include=[target])
    ref_picks = pick_types(container.info, meg=False, eeg=False, ref_meg=True)
    if len(ref_picks) > 0:
        picks = list(set(picks) - set(ref_picks))

    if len(picks) == 0:
        raise ValueError('%s not in channel list (%s)' %
                         (target, container.ch_names))
    return picks


def _find_sources(sources, target, score_func):
    """Aux function."""
    if isinstance(score_func, string_types):
        score_func = get_score_funcs().get(score_func, score_func)

    if not callable(score_func):
        raise ValueError('%s is not a valid score_func.' % score_func)

    scores = (score_func(sources, target) if target is not None
              else score_func(sources, 1))

    return scores


def _ica_explained_variance(ica, inst, normalize=False):
    """Check variance accounted for by each component in supplied data.

    Parameters
    ----------
    ica : ICA
        Instance of `mne.preprocessing.ICA`.
    inst : Raw | Epochs | Evoked
        Data to explain with ICA. Instance of Raw, Epochs or Evoked.
    normalize : bool
        Whether to normalize the variance.

    Returns
    -------
    var : array
        Variance explained by each component.
    """
    # check if ica is ICA and whether inst is Raw or Epochs
    if not isinstance(ica, ICA):
        raise TypeError('first argument must be an instance of ICA.')
    if not isinstance(inst, (BaseRaw, BaseEpochs, Evoked)):
        raise TypeError('second argument must an instance of either Raw, '
                        'Epochs or Evoked.')

    source_data = _get_inst_data(ica.get_sources(inst))

    # if epochs - reshape to channels x timesamples
    if isinstance(inst, BaseEpochs):
        n_epochs, n_chan, n_samp = source_data.shape
        source_data = source_data.transpose(1, 0, 2).reshape(
            (n_chan, n_epochs * n_samp))

    n_chan, n_samp = source_data.shape
    var = np.sum(ica.mixing_matrix_ ** 2, axis=0) * np.sum(
        source_data ** 2, axis=1) / (n_chan * n_samp - 1)
    if normalize:
        var /= var.sum()
    return var


def _sort_components(ica, order, copy=True):
    """Change the order of components in ica solution."""
    assert ica.n_components_ == len(order)
    if copy:
        ica = ica.copy()

    # reorder components
    ica.mixing_matrix_ = ica.mixing_matrix_[:, order]
    ica.unmixing_matrix_ = ica.unmixing_matrix_[order, :]

    # reorder labels, excludes etc.
    if isinstance(order, np.ndarray):
        order = list(order)
    if ica.exclude:
        ica.exclude = [order.index(ic) for ic in ica.exclude]
    for k in ica.labels_.keys():
        ica.labels_[k] = [order.index(ic) for ic in ica.labels_[k]]

    return ica


def _serialize(dict_, outer_sep=';', inner_sep=':'):
    """Aux function."""
    s = []
    for key, value in dict_.items():
        if callable(value):
            value = value.__name__
        elif isinstance(value, Integral):
            value = int(value)
        elif isinstance(value, dict):
            # py35 json does not support numpy int64
            for subkey, subvalue in value.items():
                if isinstance(subvalue, list):
                    if len(subvalue) > 0:
                        if isinstance(subvalue[0], (int, np.integer)):
                            value[subkey] = [int(i) for i in subvalue]

        for cls in (np.random.RandomState, Covariance):
            if isinstance(value, cls):
                value = cls.__name__

        s.append(key + inner_sep + json.dumps(value))

    return outer_sep.join(s)


def _deserialize(str_, outer_sep=';', inner_sep=':'):
    """Aux Function."""
    out = {}
    for mapping in str_.split(outer_sep):
        k, v = mapping.split(inner_sep, 1)
        vv = json.loads(v)
        out[k] = vv if not isinstance(vv, text_type) else str(vv)

    return out


def _write_ica(fid, ica):
    """Write an ICA object.

    Parameters
    ----------
    fid: file
        The file descriptor
    ica:
        The instance of ICA to write
    """
    ica_init = dict(noise_cov=ica.noise_cov,
                    n_components=ica.n_components,
                    n_pca_components=ica.n_pca_components,
                    max_pca_components=ica.max_pca_components,
                    current_fit=ica.current_fit)

    if ica.info is not None:
        start_block(fid, FIFF.FIFFB_MEAS)
        write_id(fid, FIFF.FIFF_BLOCK_ID)
        if ica.info['meas_id'] is not None:
            write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, ica.info['meas_id'])

        # Write measurement info
        write_meas_info(fid, ica.info)
        end_block(fid, FIFF.FIFFB_MEAS)

    start_block(fid, FIFF.FIFFB_MNE_ICA)

    #   ICA interface params
    write_string(fid, FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS,
                 _serialize(ica_init))

    #   Channel names
    if ica.ch_names is not None:
        write_name_list(fid, FIFF.FIFF_MNE_ROW_NAMES, ica.ch_names)

    # samples on fit
    n_samples = getattr(ica, 'n_samples_', None)
    ica_misc = {'n_samples_': (None if n_samples is None else int(n_samples)),
                'labels_': getattr(ica, 'labels_', None),
                'method': getattr(ica, 'method', None)}

    write_string(fid, FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS,
                 _serialize(ica_init))

    #   ICA misct params
    write_string(fid, FIFF.FIFF_MNE_ICA_MISC_PARAMS,
                 _serialize(ica_misc))

    #   Whitener
    write_double_matrix(fid, FIFF.FIFF_MNE_ICA_WHITENER, ica.pre_whitener_)

    #   PCA components_
    write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_COMPONENTS,
                        ica.pca_components_)

    #   PCA mean_
    write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_MEAN, ica.pca_mean_)

    #   PCA explained_variance_
    write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR,
                        ica.pca_explained_variance_)

    #   ICA unmixing
    write_double_matrix(fid, FIFF.FIFF_MNE_ICA_MATRIX, ica.unmixing_matrix_)

    #   Write bad components

    write_int(fid, FIFF.FIFF_MNE_ICA_BADS, ica.exclude)

    # Done!
    end_block(fid, FIFF.FIFFB_MNE_ICA)


@verbose
def read_ica(fname, verbose=None):
    """Restore ICA solution from fif file.

    Parameters
    ----------
    fname : str
        Absolute path to fif file containing ICA matrices.
        The file name should end with -ica.fif or -ica.fif.gz.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    ica : instance of ICA
        The ICA estimator.
    """
    check_fname(fname, 'ICA', ('-ica.fif', '-ica.fif.gz',
                               '_ica.fif', '_ica.fif.gz'))

    logger.info('Reading %s ...' % fname)
    fid, tree, _ = fiff_open(fname)

    try:
        # we used to store bads that weren't part of the info...
        info, meas = read_meas_info(fid, tree, clean_bads=True)
    except ValueError:
        logger.info('Could not find the measurement info. \n'
                    'Functionality requiring the info won\'t be'
                    ' available.')
        info = None

    ica_data = dir_tree_find(tree, FIFF.FIFFB_MNE_ICA)
    if len(ica_data) == 0:
        ica_data = dir_tree_find(tree, 123)  # Constant 123 Used before v 0.11
        if len(ica_data) == 0:
            fid.close()
            raise ValueError('Could not find ICA data')

    my_ica_data = ica_data[0]
    for d in my_ica_data['directory']:
        kind = d.kind
        pos = d.pos
        if kind == FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS:
            tag = read_tag(fid, pos)
            ica_init = tag.data
        elif kind == FIFF.FIFF_MNE_ROW_NAMES:
            tag = read_tag(fid, pos)
            ch_names = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_WHITENER:
            tag = read_tag(fid, pos)
            pre_whitener = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_PCA_COMPONENTS:
            tag = read_tag(fid, pos)
            pca_components = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR:
            tag = read_tag(fid, pos)
            pca_explained_variance = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_PCA_MEAN:
            tag = read_tag(fid, pos)
            pca_mean = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_MATRIX:
            tag = read_tag(fid, pos)
            unmixing_matrix = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_BADS:
            tag = read_tag(fid, pos)
            exclude = tag.data
        elif kind == FIFF.FIFF_MNE_ICA_MISC_PARAMS:
            tag = read_tag(fid, pos)
            ica_misc = tag.data

    fid.close()

    ica_init, ica_misc = [_deserialize(k) for k in (ica_init, ica_misc)]
    current_fit = ica_init.pop('current_fit')
    if ica_init['noise_cov'] == Covariance.__name__:
        logger.info('Reading whitener drawn from noise covariance ...')

    logger.info('Now restoring ICA solution ...')

    # make sure dtypes are np.float64 to satisfy fast_dot
    def f(x):
        return x.astype(np.float64)

    ica_init = dict((k, v) for k, v in ica_init.items()
                    if k in _get_args(ICA.__init__))
    ica = ICA(**ica_init)
    ica.current_fit = current_fit
    ica.ch_names = ch_names.split(':')
    ica.pre_whitener_ = f(pre_whitener)
    ica.pca_mean_ = f(pca_mean)
    ica.pca_components_ = f(pca_components)
    ica.n_components_ = unmixing_matrix.shape[0]
    ica._update_ica_names()
    ica.pca_explained_variance_ = f(pca_explained_variance)
    ica.unmixing_matrix_ = f(unmixing_matrix)
    ica.mixing_matrix_ = linalg.pinv(ica.unmixing_matrix_)
    ica.exclude = [] if exclude is None else list(exclude)
    ica.info = info
    if 'n_samples_' in ica_misc:
        ica.n_samples_ = ica_misc['n_samples_']
    if 'labels_' in ica_misc:
        labels_ = ica_misc['labels_']
        if labels_ is not None:
            ica.labels_ = labels_
    if 'method' in ica_misc:
        ica.method = ica_misc['method']

    logger.info('Ready.')

    return ica


_ica_node = namedtuple('Node', 'name target score_func criterion')


def _detect_artifacts(ica, raw, start_find, stop_find, ecg_ch, ecg_score_func,
                      ecg_criterion, eog_ch, eog_score_func, eog_criterion,
                      skew_criterion, kurt_criterion, var_criterion,
                      add_nodes):
    """Aux Function."""
    from scipy import stats

    nodes = []
    if ecg_ch is not None:
        nodes += [_ica_node('ECG', ecg_ch, ecg_score_func, ecg_criterion)]

    if eog_ch not in [None, []]:
        if not isinstance(eog_ch, list):
            eog_ch = [eog_ch]
        for idx, ch in enumerate(eog_ch):
            nodes += [_ica_node('EOG %02d' % idx, ch, eog_score_func,
                                eog_criterion)]

    if skew_criterion is not None:
        nodes += [_ica_node('skewness', None, stats.skew, skew_criterion)]

    if kurt_criterion is not None:
        nodes += [_ica_node('kurtosis', None, stats.kurtosis, kurt_criterion)]

    if var_criterion is not None:
        nodes += [_ica_node('variance', None, np.var, var_criterion)]

    if add_nodes is not None:
        nodes.extend(add_nodes)

    for node in nodes:
        scores = ica.score_sources(raw, start=start_find, stop=stop_find,
                                   target=node.target,
                                   score_func=node.score_func)
        if isinstance(node.criterion, float):
            found = list(np.where(np.abs(scores) > node.criterion)[0])
        else:
            found = list(np.atleast_1d(abs(scores).argsort()[node.criterion]))

        case = (len(found), _pl(found), node.name)
        logger.info('    found %s artifact%s by %s' % case)
        ica.exclude += found

    logger.info('Artifact indices found:\n    ' + str(ica.exclude).strip('[]'))
    if len(set(ica.exclude)) != len(ica.exclude):
        logger.info('    Removing duplicate indices...')
        ica.exclude = list(set(ica.exclude))

    logger.info('Ready.')


@verbose
def run_ica(raw, n_components, max_pca_components=100,
            n_pca_components=64, noise_cov=None,
            random_state=None, picks=None, start=None, stop=None,
            start_find=None, stop_find=None, ecg_ch=None,
            ecg_score_func='pearsonr', ecg_criterion=0.1, eog_ch=None,
            eog_score_func='pearsonr', eog_criterion=0.1, skew_criterion=-1,
            kurt_criterion=-1, var_criterion=0, add_nodes=None, verbose=None,
            method='fastica'):
    """Run ICA decomposition on raw data and identify artifact sources.

    This function implements an automated artifact removal work flow.

    Hints and caveats:

        - It is highly recommended to bandpass filter ECG and EOG
          data and pass them instead of the channel names as ecg_ch and eog_ch
          arguments.
        - Please check your results. Detection by kurtosis and variance
          can be powerful but misclassification of brain signals as
          noise cannot be precluded. If you are not sure set those to None.
        - Consider using shorter times for start_find and stop_find than
          for start and stop. It can save you much time.

    Example invocation (taking advantage of defaults)::

        ica = run_ica(raw, n_components=.9, start_find=10000, stop_find=12000,
                      ecg_ch='MEG 1531', eog_ch='EOG 061')

    Parameters
    ----------
    raw : instance of Raw
        The raw data to decompose.
    n_components : int | float | None
        The number of components used for ICA decomposition. If int, it must be
        smaller then max_pca_components. If None, all PCA components will be
        used. If float between 0 and 1 components can will be selected by the
        cumulative percentage of explained variance.
    max_pca_components : int | None
        The number of components used for PCA decomposition. If None, no
        dimension reduction will be applied and max_pca_components will equal
        the number of channels supplied on decomposing data.
    n_pca_components
        The number of PCA components used after ICA recomposition. The ensuing
        attribute allows to balance noise reduction against potential loss of
        features due to dimensionality reduction. If greater than
        ``self.n_components_``, the next ``'n_pca_components'`` minus
        ``'n_components_'`` PCA components will be added before restoring the
        sensor space data. The attribute gets updated each time the according
        parameter for in .pick_sources_raw or .pick_sources_epochs is changed.
    noise_cov : None | instance of mne.cov.Covariance
        Noise covariance used for whitening. If None, channels are just
        z-scored.
    random_state : None | int | instance of np.random.RandomState
        np.random.RandomState to initialize the FastICA estimation.
        As the estimation is non-deterministic it can be useful to
        fix the seed to have reproducible results.
    picks : array-like of int
        Channels to be included. This selection remains throughout the
        initialized ICA solution. If None only good data channels are used.
    start : int | float | None
        First sample to include for decomposition. If float, data will be
        interpreted as time in seconds. If None, data will be used from the
        first sample.
    stop : int | float | None
        Last sample to not include for decomposition. If float, data will be
        interpreted as time in seconds. If None, data will be used to the
        last sample.
    start_find : int | float | None
        First sample to include for artifact search. If float, data will be
        interpreted as time in seconds. If None, data will be used from the
        first sample.
    stop_find : int | float | None
        Last sample to not include for artifact search. If float, data will be
        interpreted as time in seconds. If None, data will be used to the last
        sample.
    ecg_ch : str | ndarray | None
        The ``target`` argument passed to ica.find_sources_raw. Either the
        name of the ECG channel or the ECG time series. If None, this step
        will be skipped.
    ecg_score_func : str | callable
        The ``score_func`` argument passed to ica.find_sources_raw. Either
        the name of function supported by ICA or a custom function.
    ecg_criterion : float | int | list-like | slice
        The indices of the sorted skewness scores. If float, sources with
        scores smaller than the criterion will be dropped. Else, the scores
        sorted in descending order will be indexed accordingly.
        E.g. range(2) would return the two sources with the highest score.
        If None, this step will be skipped.
    eog_ch : list | str | ndarray | None
        The ``target`` argument or the list of target arguments subsequently
        passed to ica.find_sources_raw. Either the name of the vertical EOG
        channel or the corresponding EOG time series. If None, this step
        will be skipped.
    eog_score_func : str | callable
        The ``score_func`` argument passed to ica.find_sources_raw. Either
        the name of function supported by ICA or a custom function.
    eog_criterion : float | int | list-like | slice
        The indices of the sorted skewness scores. If float, sources with
        scores smaller than the criterion will be dropped. Else, the scores
        sorted in descending order will be indexed accordingly.
        E.g. range(2) would return the two sources with the highest score.
        If None, this step will be skipped.
    skew_criterion : float | int | list-like | slice
        The indices of the sorted skewness scores. If float, sources with
        scores smaller than the criterion will be dropped. Else, the scores
        sorted in descending order will be indexed accordingly.
        E.g. range(2) would return the two sources with the highest score.
        If None, this step will be skipped.
    kurt_criterion : float | int | list-like | slice
        The indices of the sorted skewness scores. If float, sources with
        scores smaller than the criterion will be dropped. Else, the scores
        sorted in descending order will be indexed accordingly.
        E.g. range(2) would return the two sources with the highest score.
        If None, this step will be skipped.
    var_criterion : float | int | list-like | slice
        The indices of the sorted skewness scores. If float, sources with
        scores smaller than the criterion will be dropped. Else, the scores
        sorted in descending order will be indexed accordingly.
        E.g. range(2) would return the two sources with the highest score.
        If None, this step will be skipped.
    add_nodes : list of ica_nodes
        Additional list if tuples carrying the following parameters:
        (name : str, target : str | array, score_func : callable,
        criterion : float | int | list-like | slice). This parameter is a
        generalization of the artifact specific parameters above and has
        the same structure. Example::

            add_nodes=('ECG phase lock', ECG 01', my_phase_lock_function, 0.5)

    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).
    method : {'fastica', 'picard'}
        The ICA method to use. Defaults to 'fastica'.

    Returns
    -------
    ica : instance of ICA
        The ICA object with detected artifact sources marked for exclusion.
    """
    ica = ICA(n_components=n_components, max_pca_components=max_pca_components,
              n_pca_components=n_pca_components, method=method,
              noise_cov=noise_cov, random_state=random_state, verbose=verbose)

    ica.fit(raw, start=start, stop=stop, picks=picks)
    logger.info('%s' % ica)
    logger.info('    Now searching for artifacts...')

    _detect_artifacts(ica=ica, raw=raw, start_find=start_find,
                      stop_find=stop_find, ecg_ch=ecg_ch,
                      ecg_score_func=ecg_score_func,
                      ecg_criterion=ecg_criterion, eog_ch=eog_ch,
                      eog_score_func=eog_score_func,
                      eog_criterion=eog_criterion,
                      skew_criterion=skew_criterion,
                      kurt_criterion=kurt_criterion,
                      var_criterion=var_criterion,
                      add_nodes=add_nodes)
    return ica


@verbose
def _band_pass_filter(ica, sources, target, l_freq, h_freq, verbose=None):
    """Optionally band-pass filter the data."""
    if l_freq is not None and h_freq is not None:
        logger.info('... filtering ICA sources')
        # use FIR here, steeper is better
        kw = dict(phase='zero-double', filter_length='10s', fir_window='hann',
                  l_trans_bandwidth=0.5, h_trans_bandwidth=0.5,
                  fir_design='firwin2')
        sources = filter_data(sources, ica.info['sfreq'], l_freq, h_freq, **kw)
        logger.info('... filtering target')
        target = filter_data(target, ica.info['sfreq'], l_freq, h_freq, **kw)
    elif l_freq is not None or h_freq is not None:
        raise ValueError('Must specify both pass bands')
    return sources, target


# #############################################################################
# CORRMAP

def _find_max_corrs(all_maps, target, threshold):
    """Compute correlations between template and target components."""
    all_corrs = [compute_corr(target, subj.T) for subj in all_maps]
    abs_corrs = [np.abs(a) for a in all_corrs]
    corr_polarities = [np.sign(a) for a in all_corrs]

    if threshold <= 1:
        max_corrs = [list(np.nonzero(s_corr > threshold)[0])
                     for s_corr in abs_corrs]
    else:
        max_corrs = [list(find_outliers(s_corr, threshold=threshold))
                     for s_corr in abs_corrs]

    am = [l[i] for l, i_s in zip(abs_corrs, max_corrs)
          for i in i_s]
    median_corr_with_target = np.median(am) if len(am) > 0 else 0

    polarities = [l[i] for l, i_s in zip(corr_polarities, max_corrs)
                  for i in i_s]

    maxmaps = [l[i] for l, i_s in zip(all_maps, max_corrs)
               for i in i_s]

    if len(maxmaps) == 0:
        return [], 0, 0, []
    newtarget = np.zeros(maxmaps[0].size)
    std_of_maps = np.std(np.asarray(maxmaps))
    mean_of_maps = np.std(np.asarray(maxmaps))
    for maxmap, polarity in zip(maxmaps, polarities):
        newtarget += (maxmap / std_of_maps - mean_of_maps) * polarity

    newtarget /= len(maxmaps)
    newtarget *= std_of_maps

    sim_i_o = np.abs(np.corrcoef(target, newtarget)[1, 0])

    return newtarget, median_corr_with_target, sim_i_o, max_corrs


@verbose
def corrmap(icas, template, threshold="auto", label=None, ch_type="eeg",
            plot=True, show=True, verbose=None, outlines='head', layout=None,
            sensors=True, contours=6, cmap=None):
    """Find similar Independent Components across subjects by map similarity.

    Corrmap (Viola et al. 2009 Clin Neurophysiol) identifies the best group
    match to a supplied template. Typically, feed it a list of fitted ICAs and
    a template IC, for example, the blink for the first subject, to identify
    specific ICs across subjects.

    The specific procedure consists of two iterations. In a first step, the
    maps best correlating with the template are identified. In the next step,
    the analysis is repeated with the mean of the maps identified in the first
    stage.

    Run with `plot` and `show` set to `True` and `label=False` to find
    good parameters. Then, run with labelling enabled to apply the
    labelling in the IC objects. (Running with both `plot` and `labels`
    off does nothing.)

    Outputs a list of fitted ICAs with the indices of the marked ICs in a
    specified field.

    The original Corrmap website: www.debener.de/corrmap/corrmapplugin1.html

    Parameters
    ----------
    icas : list of mne.preprocessing.ICA
        A list of fitted ICA objects.
    template : tuple | np.ndarray, shape (n_components,)
        Either a tuple with two elements (int, int) representing the list
        indices of the set from which the template should be chosen, and the
        template. E.g., if template=(1, 0), the first IC of the 2nd ICA object
        is used.
        Or a numpy array whose size corresponds to each IC map from the
        supplied maps, in which case this map is chosen as the template.
    threshold : "auto" | list of float | float
        Correlation threshold for identifying ICs
        If "auto", search for the best map by trying all correlations between
        0.6 and 0.95. In the original proposal, lower values are considered,
        but this is not yet implemented.
        If list of floats, search for the best map in the specified range of
        correlation strengths. As correlation values, must be between 0 and 1
        If float > 0, select ICs correlating better than this.
        If float > 1, use find_outliers to identify ICs within subjects (not in
        original Corrmap)
        Defaults to "auto".
    label : None | str
        If not None, categorised ICs are stored in a dictionary ``labels_``
        under the given name. Preexisting entries will be appended to
        (excluding repeats), not overwritten. If None, a dry run is performed
        and the supplied ICs are not changed.
    ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg'
        The channel type to plot. Defaults to 'eeg'.
    plot : bool
        Should constructed template and selected maps be plotted? Defaults
        to True.
    show : bool
        Show figures if True.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).
    outlines : 'head' | dict | None
        The outlines to be drawn. If 'head', a head scheme will be drawn. If
        dict, each key refers to a tuple of x and y positions. The values in
        'mask_pos' will serve as image mask. If None, nothing will be drawn.
        Defaults to 'head'. If dict, the 'autoshrink' (bool) field will
        trigger automated shrinking of the positions due to points outside the
        outline. Moreover, a matplotlib patch object can be passed for
        advanced masking options, either directly or as a function that returns
        patches (required for multi-axis plots).
    layout : None | Layout | list of Layout
        Layout instance specifying sensor positions (does not need to be
        specified for Neuromag data). Or a list of Layout if projections
        are from different sensor types.
    sensors : bool | str
        Add markers for sensor locations to the plot. Accepts matplotlib plot
        format string (e.g., 'r+' for red plusses). If True, a circle will be
        used (via .add_artist). Defaults to True.
    contours : int | array of float
        The number of contour lines to draw. If 0, no contours will be drawn.
        When an integer, matplotlib ticker locator is used to find suitable
        values for the contour thresholds (may sometimes be inaccurate, use
        array for accuracy). If an array, the values represent the levels for
        the contours. Defaults to 6.
    cmap : None | matplotlib colormap
        Colormap for the plot. If ``None``, defaults to 'Reds_r' for norm data,
        otherwise to 'RdBu_r'.

    Returns
    -------
    template_fig : fig
        Figure showing the template.
    labelled_ics : fig
        Figure showing the labelled ICs in all ICA decompositions.
    """
    if not isinstance(plot, bool):
        raise ValueError("`plot` must be of type `bool`")

    if threshold == 'auto':
        threshold = np.arange(60, 95, dtype=np.float64) / 100.

    all_maps = [ica.get_components().T for ica in icas]

    # check if template is an index to one IC in one ICA object, or an array
    if len(template) == 2:
        target = all_maps[template[0]][template[1]]
        is_subject = True
    elif template.ndim == 1 and len(template) == all_maps[0].shape[1]:
        target = template
        is_subject = False
    else:
        raise ValueError("`template` must be a length-2 tuple or an array the "
                         "size of the ICA maps.")

    template_fig, labelled_ics = None, None
    if plot is True:
        if is_subject:  # plotting from an ICA object
            ttl = 'Template from subj. {0}'.format(str(template[0]))
            template_fig = icas[template[0]].plot_components(
                picks=template[1], ch_type=ch_type, title=ttl,
                outlines=outlines, cmap=cmap, contours=contours, layout=layout,
                show=show)
        else:  # plotting an array
            template_fig = _plot_corrmap([template], [0], [0], ch_type,
                                         icas[0].copy(), "Template",
                                         outlines=outlines, cmap=cmap,
                                         contours=contours, layout=layout,
                                         show=show, template=True)
        template_fig.subplots_adjust(top=0.8)
        template_fig.canvas.draw()

    # first run: use user-selected map
    if isinstance(threshold, (int, float)):
        if len(all_maps) == 0:
            logger.info('No component detected using find_outliers.'
                        ' Consider using threshold="auto"')
            return icas
        nt, mt, s, mx = _find_max_corrs(all_maps, target, threshold)
    elif len(threshold) > 1:
        paths = [_find_max_corrs(all_maps, target, t) for t in threshold]
        # find iteration with highest avg correlation with target
        nt, mt, s, mx = paths[np.argmax([path[2] for path in paths])]

    # second run: use output from first run
    if isinstance(threshold, (int, float)):
        if len(all_maps) == 0 or len(nt) == 0:
            if threshold > 1:
                logger.info('No component detected using find_outliers. '
                            'Consider using threshold="auto"')
            return icas
        nt, mt, s, mx = _find_max_corrs(all_maps, nt, threshold)
    elif len(threshold) > 1:
        paths = [_find_max_corrs(all_maps, nt, t) for t in threshold]
        # find iteration with highest avg correlation with target
        nt, mt, s, mx = paths[np.argmax([path[1] for path in paths])]

    allmaps, indices, subjs, nones = [list() for _ in range(4)]
    logger.info('Median correlation with constructed map: %0.3f' % mt)
    if plot is True:
        logger.info('Displaying selected ICs per subject.')

    for ii, (ica, max_corr) in enumerate(zip(icas, mx)):
        if len(max_corr) > 0:
            if isinstance(max_corr[0], np.ndarray):
                max_corr = max_corr[0]
            if label is not None:
                ica.labels_[label] = list(set(list(max_corr) +
                                              ica.labels_.get(label, list())))
            if plot is True:
                allmaps.extend(ica.get_components()[:, max_corr].T)
                subjs.extend([ii] * len(max_corr))
                indices.extend(max_corr)
        else:
            if (label is not None) and (label not in ica.labels_):
                ica.labels_[label] = list()
            nones.append(ii)

    if len(nones) == 0:
        logger.info('At least 1 IC detected for each subject.')
    else:
        logger.info('No maps selected for subject(s) ' +
                    ', '.join([str(x) for x in nones]) +
                    ', consider a more liberal threshold.')

    if plot is True:
        labelled_ics = _plot_corrmap(allmaps, subjs, indices, ch_type, ica,
                                     label, outlines=outlines, cmap=cmap,
                                     contours=contours, layout=layout,
                                     show=show)
        return template_fig, labelled_ics
    else:
        return None