1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
|
# -*- coding: utf-8 -*-
#
# Authors: Denis A. Engemann <denis.engemann@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Juergen Dammers <j.dammers@fz-juelich.de>
#
# License: BSD (3-clause)
from inspect import isfunction
from collections import namedtuple
from copy import deepcopy
from numbers import Integral
from time import time
import os
import json
import numpy as np
from scipy import linalg
from .ecg import (qrs_detector, _get_ecg_channel_index, _make_ecg,
create_ecg_epochs)
from .eog import _find_eog_events, _get_eog_channel_index
from .infomax_ import infomax
from ..cov import compute_whitener
from .. import Covariance, Evoked
from ..io.pick import (pick_types, pick_channels, pick_info,
_pick_data_channels, _DATA_CH_TYPES_SPLIT)
from ..io.write import (write_double_matrix, write_string,
write_name_list, write_int, start_block,
end_block)
from ..io.tree import dir_tree_find
from ..io.open import fiff_open
from ..io.tag import read_tag
from ..io.meas_info import write_meas_info, read_meas_info
from ..io.constants import Bunch, FIFF
from ..io.base import BaseRaw
from ..epochs import BaseEpochs
from ..viz import (plot_ica_components, plot_ica_scores,
plot_ica_sources, plot_ica_overlay)
from ..viz.ica import plot_ica_properties
from ..viz.topomap import _plot_corrmap
from ..channels.channels import _contains_ch_type, ContainsMixin
from ..io.write import start_file, end_file, write_id
from ..utils import (check_version, logger, check_fname, verbose,
_reject_data_segments, check_random_state,
compute_corr, _get_inst_data, _ensure_int,
copy_function_doc_to_method_doc, _pl, warn,
_check_preload, _check_compensation_grade)
from ..fixes import _get_args
from ..filter import filter_data
from .bads import find_outliers
from .ctps_ import ctps
from ..externals.six import string_types, text_type
from ..io.pick import channel_type
__all__ = ('ICA', 'ica_find_ecg_events', 'ica_find_eog_events',
'get_score_funcs', 'read_ica', 'run_ica')
def _make_xy_sfunc(func, ndim_output=False):
"""Aux function."""
if ndim_output:
def sfunc(x, y):
return np.array([func(a, y.ravel()) for a in x])[:, 0]
else:
def sfunc(x, y):
return np.array([func(a, y.ravel()) for a in x])
sfunc.__name__ = '.'.join(['score_func', func.__module__, func.__name__])
sfunc.__doc__ = func.__doc__
return sfunc
# makes score funcs attr accessible for users
def get_score_funcs():
"""Get the score functions."""
from scipy import stats
from scipy.spatial import distance
score_funcs = Bunch()
xy_arg_dist_funcs = [(n, f) for n, f in vars(distance).items()
if isfunction(f) and not n.startswith('_')]
xy_arg_stats_funcs = [(n, f) for n, f in vars(stats).items()
if isfunction(f) and not n.startswith('_')]
score_funcs.update(dict((n, _make_xy_sfunc(f))
for n, f in xy_arg_dist_funcs
if _get_args(f) == ['u', 'v']))
score_funcs.update(dict((n, _make_xy_sfunc(f, ndim_output=True))
for n, f in xy_arg_stats_funcs
if _get_args(f) == ['x', 'y']))
return score_funcs
def _check_for_unsupported_ica_channels(picks, info):
"""Check for channels in picks that are not considered valid channels.
Accepted channels are the data channels
('seeg','ecog','eeg', 'hbo', 'hbr', 'mag', and 'grad') and 'eog'.
This prevents the program from crashing without
feedback when a bad channel is provided to ICA whitening.
"""
if picks is None:
return
elif len(picks) == 0:
raise ValueError('No channels provided to ICA')
types = _DATA_CH_TYPES_SPLIT + ['eog']
chs = list(set([channel_type(info, j) for j in picks]))
check = all([ch in types for ch in chs])
if not check:
raise ValueError('Invalid channel type(s) passed for ICA.\n'
'Only the following channels are supported {0}\n'
'Following types were passed {1}\n'
.format(types, chs))
class ICA(ContainsMixin):
u"""M/EEG signal decomposition using Independent Component Analysis (ICA).
This object can be used to estimate ICA components and then remove some
from :class:`mne.io.Raw`, :class:`mne.Epochs`, or :class:`mne.Evoked`
for data exploration or artifact correction.
.. warning:: ICA is sensitive to low-frequency drifts and therefore
requires the data to be high-pass filtered prior to fitting.
Typically, a cutoff frequency of 1 Hz is recommended.
Parameters
----------
n_components : int | float | None
Controls the number of PCA components from the pre-ICA PCA entering the
ICA decomposition in the :meth:`ICA.fit` method.
If None (default), all PCA components will be used
(== `max_pca_components`).
If int, must be <= `max_pca_components`.
If float between 0 and 1, the number of components selected matches the
number of components with a cumulative explained variance below
`n_components` (a value of 1. resulting in `max_pca_components`).
The actual number of components resulting from evaluating this
parameter in the :meth:`ICA.fit` method is stored in the attribute
`n_components_` after fitting.
max_pca_components : int | None
The number of components returned by the PCA decomposition in the
:meth:`ICA.fit` method.
If None (default), no dimensionality reduction will be applied and
`max_pca_components` will equal the number of channels supplied for
decomposing the data.
If > `n_components_`, the additional PCA-only-components can later be
used for re-projecting the data into sensor space, additionally
controllable by the `n_pca_components` parameter.
n_pca_components : int | float
The number of PCA components used by the :meth:`ICA.apply` method for
re-projecting the decomposed data into sensor space. Has to be
>= `n_components(_)` and <= `max_pca_components`.
If greater than `n_components_`, the next `n_pca_components` minus
`n_components` PCA components will be added before restoring the sensor
space data.
If None (default), all PCA components will be used.
If float between 0 and 1, the number of components selected matches the
number of components with a cumulative explained variance below
`n_pca_components`. This attribute allows to balance noise reduction
against potential loss of features due to dimensionality reduction,
independently of the number of ICA components.
noise_cov : None | instance of mne.cov.Covariance
Noise covariance used for pre-whitening. If None (default), channels
are scaled to unit variance ("z-standardized") prior to the whitening
by PCA.
random_state : None | int | instance of np.random.RandomState
Random state to initialize ICA estimation for reproducible results.
method : {'fastica', 'infomax', 'extended-infomax', 'picard'}
The ICA method to use in the fit() method. Defaults to 'fastica'.
For reference, see [1]_, [2]_, [3]_ and [4]_.
fit_params : dict | None
Additional parameters passed to the ICA estimator as specified by
`method`.
max_iter : int
Maximum number of iterations during fit. Defaults to 200.
verbose : bool | str | int | None
If not None, override default verbosity level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>`).
Attributes
----------
current_fit : str
Flag informing about which data type (raw or epochs) was used for the
fit.
ch_names : list-like
Channel names resulting from initial picking.
n_components_ : int
If fit, the actual number of PCA components used for ICA decomposition.
pre_whitener_ : ndarray, shape (n_channels, 1)
If fit, array used to pre-whiten the data prior to PCA.
pca_components_ : ndarray, shape (`max_pca_components`, n_channels)
If fit, the PCA components.
pca_mean_ : ndarray, shape (n_channels,)
If fit, the mean vector used to center the data before doing the PCA.
pca_explained_variance_ : ndarray, shape (`max_pca_components`,)
If fit, the variance explained by each PCA component.
mixing_matrix_ : ndarray, shape (`n_components_`, `n_components_`)
If fit, the whitened mixing matrix to go back from ICA space to PCA
space.
It is, in combination with the `pca_components_`, used by
:meth:`ICA.apply` and :meth:`ICA.get_components` to re-mix/project
a subset of the ICA components into the observed channel space.
The former method also removes the pre-whitening (z-scaling) and the
de-meaning.
unmixing_matrix_ : ndarray, shape (`n_components_`, `n_components_`)
If fit, the whitened matrix to go from PCA space to ICA space.
Used, in combination with the `pca_components_`, by the methods
:meth:`ICA.get_sources` and :meth:`ICA.apply` to unmix the observed data.
exclude : list
List of sources indices to exclude when re-mixing the data in the
:meth:`ICA.apply` method, i.e. artifactual ICA components.
The components identified manually and by the various automatic
artifact detection methods should be (manually) appended to this list
(e.g. ``ica.exclude.extend(eog_inds)``).
(There is also an `exclude` parameter in the :meth:`ICA.apply` method.)
To scrap all marked components, set this attribute to an empty list.
info : None | instance of Info
The measurement info copied from the object fitted.
n_samples_ : int
The number of samples used on fit.
labels_ : dict
A dictionary of independent component indices, grouped by types of
independent components. This attribute is set by some of the artifact
detection functions.
Notes
-----
A trailing ``_`` in an attribute name signifies that the attribute was
added to the object during fitting, consistent with standard scikit-learn
practice.
Prior to fitting and applying the ICA, data is whitened (de-correlated and
scaled to unit variance, also called sphering transformation) by means of
a Principle Component Analysis (PCA). In addition to the whitening, this
step introduces the option to reduce the dimensionality of the data, both
prior to fitting the ICA and prior to reverting to sensor space.
This is controllable by the two parameters `max_pca_components` and
`n_pca_components`, respectively.
.. note:: Commonly used for reasons of i) computational efficiency and
ii) additional noise reduction, it is a matter of current debate
whether pre-ICA dimensionality reduction could decrease the
reliability and stability of the ICA, at least for EEG data and
especially during preprocessing [5]_.
On the other hand, for rank-deficient data such as EEG data after
average reference or interpolation, it is recommended to reduce
the dimensionality by 1 for optimal ICA performance
(see the `EEGLAB wiki <eeglab_wiki_>`_).
Caveat! If supplying a noise covariance, keep track of the projections
available in the cov or in the raw object. For example, if you are
interested in EOG or ECG artifacts, EOG and ECG projections should be
temporally removed before fitting ICA, for example::
>> projs, raw.info['projs'] = raw.info['projs'], []
>> ica.fit(raw)
>> raw.info['projs'] = projs
Methods currently implemented are FastICA (default), Infomax,
Extended Infomax, and Picard. Infomax can be quite sensitive to differences
in floating point arithmetic. Extended Infomax seems to be more stable in
this respect enhancing reproducibility and stability of results.
Reducing the tolerance (set in `fit_params`) speeds up estimation at the
cost of consistency of the obtained results. It is difficult to directly
compare tolerance levels between Infomax and Picard, but for Picard and
FastICA a good rule of thumb is ``tol_fastica == tol_picard ** 2``.
.. _eeglab_wiki: https://sccn.ucsd.edu/wiki/Chapter_09:_Decomposing_Data_Using_ICA#Issue:_ICA_returns_near-identical_components_with_opposite_polarities # noqa
References
----------
.. [1] Hyvärinen, A., 1999. Fast and robust fixed-point algorithms for
independent component analysis. IEEE transactions on Neural
Networks, 10(3), pp.626-634.
.. [2] Bell, A.J., Sejnowski, T.J., 1995. An information-maximization
approach to blind separation and blind deconvolution. Neural
computation, 7(6), pp.1129-1159.
.. [3] Lee, T.W., Girolami, M., Sejnowski, T.J., 1999. Independent
component analysis using an extended infomax algorithm for mixed
subgaussian and supergaussian sources. Neural computation, 11(2),
pp.417-441.
.. [4] Ablin, P., Cardoso, J.F., Gramfort, A., 2017. Faster Independent
Component Analysis by preconditioning with Hessian approximations.
arXiv:1706.08171
.. [5] Artoni, F., Delorme, A., und Makeig, S, 2018. Applying Dimension
Reduction to EEG Data by Principal Component Analysis Reduces the
Quality of Its Subsequent Independent Component Decomposition.
NeuroImage 175, pp.176–187.
https://sccn.ucsd.edu/%7Earno/mypapers/Artoni2018.pdf
""" # noqa: E501
@verbose
def __init__(self, n_components=None, max_pca_components=None,
n_pca_components=None, noise_cov=None, random_state=None,
method='fastica', fit_params=None, max_iter=200,
verbose=None): # noqa: D102
methods = ('fastica', 'infomax', 'extended-infomax', 'picard')
if method not in methods:
raise ValueError('`method` must be "%s". You passed: "%s"' %
('" or "'.join(methods), method))
if not check_version('sklearn', '0.15'):
raise RuntimeError('the scikit-learn package (version >= 0.15) '
'is required for ICA')
self.noise_cov = noise_cov
if (n_components is not None and
max_pca_components is not None and
n_components > max_pca_components):
raise ValueError('n_components must be smaller than '
'max_pca_components')
if isinstance(n_components, float) \
and not 0 < n_components <= 1:
raise ValueError('Selecting ICA components by explained variance '
'needs values between 0.0 and 1.0 ')
self.current_fit = 'unfitted'
self.verbose = verbose
self.n_components = n_components
self.max_pca_components = max_pca_components
self.n_pca_components = n_pca_components
self.ch_names = None
self.random_state = random_state
if fit_params is None:
fit_params = {}
fit_params = deepcopy(fit_params) # avoid side effects
if "extended" in fit_params:
raise ValueError("'extended' parameter provided. You should "
"rather use method='extended-infomax'.")
if method == 'fastica':
update = {'algorithm': 'parallel', 'fun': 'logcosh',
'fun_args': None}
fit_params.update(dict((k, v) for k, v in update.items() if k
not in fit_params))
elif method == 'infomax':
fit_params.update({'extended': False})
elif method == 'extended-infomax':
fit_params.update({'extended': True})
elif method == 'picard':
update = {'ortho': True, 'fun': 'tanh', 'tol': 1e-5}
fit_params.update(dict((k, v) for k, v in update.items() if k
not in fit_params))
if 'max_iter' not in fit_params:
fit_params['max_iter'] = max_iter
self.max_iter = max_iter
self.fit_params = fit_params
self.exclude = []
self.info = None
self.method = method
self.labels_ = dict()
def __repr__(self):
"""ICA fit information."""
if self.current_fit == 'unfitted':
s = 'no'
elif self.current_fit == 'raw':
s = 'raw data'
else:
s = 'epochs'
s += ' decomposition, '
s += 'fit (%s): %s samples, ' % (self.method,
str(getattr(self, 'n_samples_', '')))
s += ('%s components' % str(self.n_components_) if
hasattr(self, 'n_components_') else
'no dimension reduction')
if self.info is not None:
ch_fit = ['"%s"' % c for c in _DATA_CH_TYPES_SPLIT if c in self]
s += ', channels used: {0}'.format('; '.join(ch_fit))
if self.exclude:
s += ', %i sources marked for exclusion' % len(self.exclude)
return '<ICA | %s>' % s
@verbose
def fit(self, inst, picks=None, start=None, stop=None, decim=None,
reject=None, flat=None, tstep=2.0, reject_by_annotation=True,
verbose=None):
"""Run the ICA decomposition on raw data.
Caveat! If supplying a noise covariance keep track of the projections
available in the cov, the raw or the epochs object. For example,
if you are interested in EOG or ECG artifacts, EOG and ECG projections
should be temporally removed before fitting the ICA.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Raw measurements to be decomposed.
picks : array-like of int
Channels to be included. This selection remains throughout the
initialized ICA solution. If None only good data channels are used.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
decim : int | None
Increment for selecting each nth time slice. If None, all samples
within ``start`` and ``stop`` are used.
reject : dict | None
Rejection parameters based on peak-to-peak amplitude.
Valid keys are 'grad', 'mag', 'eeg', 'seeg', 'ecog', 'eog', 'ecg',
'hbo', 'hbr'.
If reject is None then no rejection is done. Example::
reject = dict(grad=4000e-13, # T / m (gradiometers)
mag=4e-12, # T (magnetometers)
eeg=40e-6, # V (EEG channels)
eog=250e-6 # V (EOG channels)
)
It only applies if `inst` is of type Raw.
flat : dict | None
Rejection parameters based on flatness of signal.
Valid keys are 'grad', 'mag', 'eeg', 'seeg', 'ecog', 'eog', 'ecg',
'hbo', 'hbr'.
Values are floats that set the minimum acceptable peak-to-peak
amplitude. If flat is None then no rejection is done.
It only applies if `inst` is of type Raw.
tstep : float
Length of data chunks for artifact rejection in seconds.
It only applies if `inst` is of type Raw.
reject_by_annotation : bool
Whether to omit bad segments from the data before fitting. If True,
annotated segments with a description that starts with 'bad' are
omitted. Has no effect if ``inst`` is an Epochs or Evoked object.
Defaults to True.
.. versionadded:: 0.14.0
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more). Defaults to self.verbose.
Returns
-------
self : instance of ICA
Returns the modified instance.
"""
if isinstance(inst, (BaseRaw, BaseEpochs)):
_check_for_unsupported_ica_channels(picks, inst.info)
t_start = time()
if isinstance(inst, BaseRaw):
self._fit_raw(inst, picks, start, stop, decim, reject, flat,
tstep, reject_by_annotation, verbose)
elif isinstance(inst, BaseEpochs):
self._fit_epochs(inst, picks, decim, verbose)
else:
raise ValueError('Data input must be of Raw or Epochs type')
# sort ICA components by explained variance
var = _ica_explained_variance(self, inst)
var_ord = var.argsort()[::-1]
_sort_components(self, var_ord, copy=False)
t_stop = time()
logger.info("Fitting ICA took {:.1f}s.".format(t_stop - t_start))
return self
def _reset(self):
"""Aux method."""
del self.pre_whitener_
del self.unmixing_matrix_
del self.mixing_matrix_
del self.n_components_
del self.n_samples_
del self.pca_components_
del self.pca_explained_variance_
del self.pca_mean_
if hasattr(self, 'drop_inds_'):
del self.drop_inds_
def _fit_raw(self, raw, picks, start, stop, decim, reject, flat, tstep,
reject_by_annotation, verbose):
"""Aux method."""
if self.current_fit != 'unfitted':
self._reset()
if picks is None: # just use good data channels
picks = _pick_data_channels(raw.info, exclude='bads',
with_ref_meg=False)
logger.info('Fitting ICA to data using %i channels '
'(please be patient, this may take a while)' % len(picks))
if self.max_pca_components is None:
self.max_pca_components = len(picks)
logger.info('Inferring max_pca_components from picks')
self.info = pick_info(raw.info, picks)
if self.info['comps']:
self.info['comps'] = []
self.ch_names = self.info['ch_names']
start, stop = _check_start_stop(raw, start, stop)
reject_by_annotation = 'omit' if reject_by_annotation else None
# this will be a copy
data = raw.get_data(picks, start, stop, reject_by_annotation)
# this will be a view
if decim is not None:
data = data[:, ::decim]
# this will make a copy
if (reject is not None) or (flat is not None):
data, self.drop_inds_ = _reject_data_segments(data, reject, flat,
decim, self.info,
tstep)
self.n_samples_ = data.shape[1]
# this may operate inplace or make a copy
data, self.pre_whitener_ = self._pre_whiten(data, raw.info, picks)
self._fit(data, self.max_pca_components, 'raw')
return self
def _fit_epochs(self, epochs, picks, decim, verbose):
"""Aux method."""
if self.current_fit != 'unfitted':
self._reset()
if picks is None:
picks = _pick_data_channels(epochs.info, exclude='bads',
with_ref_meg=False)
logger.info('Fitting ICA to data using %i channels '
'(please be patient, this may take a while)' % len(picks))
# filter out all the channels the raw wouldn't have initialized
self.info = pick_info(epochs.info, picks)
if self.info['comps']:
self.info['comps'] = []
self.ch_names = self.info['ch_names']
if self.max_pca_components is None:
self.max_pca_components = len(picks)
logger.info('Inferring max_pca_components from picks')
# this should be a copy (picks a list of int)
data = epochs.get_data()[:, picks]
# this will be a view
if decim is not None:
data = data[:, :, ::decim]
self.n_samples_ = np.prod(data[:, 0, :].shape)
# This will make at least one copy (one from hstack, maybe one
# more from _pre_whiten)
data, self.pre_whitener_ = \
self._pre_whiten(np.hstack(data), epochs.info, picks)
self._fit(data, self.max_pca_components, 'epochs')
return self
def _pre_whiten(self, data, info, picks):
"""Aux function."""
has_pre_whitener = hasattr(self, 'pre_whitener_')
if not has_pre_whitener and self.noise_cov is None:
# use standardization as whitener
# Scale (z-score) the data by channel type
info = pick_info(info, picks)
pre_whitener = np.empty([len(data), 1])
for ch_type in _DATA_CH_TYPES_SPLIT + ['eog']:
if _contains_ch_type(info, ch_type):
if ch_type == 'seeg':
this_picks = pick_types(info, meg=False, seeg=True)
elif ch_type == 'ecog':
this_picks = pick_types(info, meg=False, ecog=True)
elif ch_type == 'eeg':
this_picks = pick_types(info, meg=False, eeg=True)
elif ch_type in ('mag', 'grad'):
this_picks = pick_types(info, meg=ch_type)
elif ch_type == 'eog':
this_picks = pick_types(info, meg=False, eog=True)
elif ch_type in ('hbo', 'hbr'):
this_picks = pick_types(info, meg=False, fnirs=ch_type)
else:
raise RuntimeError('Should not be reached.'
'Unsupported channel {0}'
.format(ch_type))
pre_whitener[this_picks] = np.std(data[this_picks])
data /= pre_whitener
elif not has_pre_whitener and self.noise_cov is not None:
pre_whitener, _ = compute_whitener(self.noise_cov, info, picks)
assert data.shape[0] == pre_whitener.shape[1]
data = np.dot(pre_whitener, data)
elif has_pre_whitener and self.noise_cov is None:
data /= self.pre_whitener_
pre_whitener = self.pre_whitener_
else:
data = np.dot(self.pre_whitener_, data)
pre_whitener = self.pre_whitener_
return data, pre_whitener
def _fit(self, data, max_pca_components, fit_type):
"""Aux function."""
random_state = check_random_state(self.random_state)
from sklearn.decomposition import PCA
if not check_version('sklearn', '0.18'):
pca = PCA(n_components=max_pca_components, whiten=True, copy=True)
else:
pca = PCA(n_components=max_pca_components, whiten=True, copy=True,
svd_solver='full')
data = pca.fit_transform(data.T)
if isinstance(self.n_components, float):
n_components_ = np.sum(pca.explained_variance_ratio_.cumsum() <=
self.n_components)
if n_components_ < 1:
raise RuntimeError('One PCA component captures most of the '
'explained variance, your threshold resu'
'lts in 0 components. You should select '
'a higher value.')
logger.info('Selection by explained variance: %i components' %
n_components_)
sel = slice(n_components_)
else:
if self.n_components is not None: # normal n case
sel = slice(self.n_components)
logger.info('Selection by number: %i components' %
self.n_components)
else: # None case
logger.info('Using all PCA components: %i'
% len(pca.components_))
sel = slice(len(pca.components_))
# the things to store for PCA
self.pca_mean_ = pca.mean_
self.pca_components_ = pca.components_
self.pca_explained_variance_ = exp_var = pca.explained_variance_
if not check_version('sklearn', '0.16'):
# sklearn < 0.16 did not apply whitening to the components, so we
# need to do this manually
self.pca_components_ *= np.sqrt(exp_var[:, None])
del pca
# update number of components
self.n_components_ = sel.stop
self._update_ica_names()
if self.n_pca_components is not None:
if self.n_pca_components > len(self.pca_components_):
self.n_pca_components = len(self.pca_components_)
# take care of ICA
if self.method == 'fastica':
from sklearn.decomposition import FastICA
ica = FastICA(whiten=False, random_state=random_state,
**self.fit_params)
ica.fit(data[:, sel])
self.unmixing_matrix_ = ica.components_
elif self.method in ('infomax', 'extended-infomax'):
self.unmixing_matrix_ = infomax(data[:, sel],
random_state=random_state,
**self.fit_params)
elif self.method == 'picard':
from picard import picard
_, W, _ = picard(data[:, sel].T, whiten=False,
random_state=random_state, **self.fit_params)
del _
self.unmixing_matrix_ = W
self.unmixing_matrix_ /= np.sqrt(exp_var[sel])[None, :] # whitening
self.mixing_matrix_ = linalg.pinv(self.unmixing_matrix_)
self.current_fit = fit_type
def _update_ica_names(self):
"""Update ICA names when n_components_ is set."""
self._ica_names = ['ICA%03d' % ii for ii in range(self.n_components_)]
def _transform(self, data):
"""Compute sources from data (operates inplace)."""
if self.pca_mean_ is not None:
data -= self.pca_mean_[:, None]
# Apply first PCA
pca_data = np.dot(self.pca_components_[:self.n_components_], data)
# Apply unmixing to low dimension PCA
sources = np.dot(self.unmixing_matrix_, pca_data)
return sources
def _transform_raw(self, raw, start, stop, reject_by_annotation=False):
"""Transform raw data."""
if not hasattr(self, 'mixing_matrix_'):
raise RuntimeError('No fit available. Please fit ICA.')
start, stop = _check_start_stop(raw, start, stop)
picks = pick_types(raw.info, include=self.ch_names, exclude='bads',
meg=False, ref_meg=False)
if len(picks) != len(self.ch_names):
raise RuntimeError('Raw doesn\'t match fitted data: %i channels '
'fitted but %i channels supplied. \nPlease '
'provide Raw compatible with '
'ica.ch_names' % (len(self.ch_names),
len(picks)))
if reject_by_annotation:
data = raw.get_data(picks, start, stop, 'omit')
else:
data = raw[picks, start:stop][0]
data, _ = self._pre_whiten(data, raw.info, picks)
return self._transform(data)
def _transform_epochs(self, epochs, concatenate):
"""Aux method."""
if not hasattr(self, 'mixing_matrix_'):
raise RuntimeError('No fit available. Please fit ICA.')
picks = pick_types(epochs.info, include=self.ch_names, exclude='bads',
meg=False, ref_meg=False)
# special case where epochs come picked but fit was 'unpicked'.
if len(picks) != len(self.ch_names):
raise RuntimeError('Epochs don\'t match fitted data: %i channels '
'fitted but %i channels supplied. \nPlease '
'provide Epochs compatible with '
'ica.ch_names' % (len(self.ch_names),
len(picks)))
data = np.hstack(epochs.get_data()[:, picks])
data, _ = self._pre_whiten(data, epochs.info, picks)
sources = self._transform(data)
if not concatenate:
# Put the data back in 3D
sources = np.array(np.split(sources, len(epochs.events), 1))
return sources
def _transform_evoked(self, evoked):
"""Aux method."""
if not hasattr(self, 'mixing_matrix_'):
raise RuntimeError('No fit available. Please fit ICA.')
picks = pick_types(evoked.info, include=self.ch_names, exclude='bads',
meg=False, ref_meg=False)
if len(picks) != len(self.ch_names):
raise RuntimeError('Evoked doesn\'t match fitted data: %i channels'
' fitted but %i channels supplied. \nPlease '
'provide Evoked compatible with '
'ica.ch_names' % (len(self.ch_names),
len(picks)))
data, _ = self._pre_whiten(evoked.data[picks], evoked.info, picks)
sources = self._transform(data)
return sources
def get_components(self):
"""Get ICA topomap for components as numpy arrays.
Returns
-------
components : array, shape (n_channels, n_components)
The ICA components (maps).
"""
return np.dot(self.mixing_matrix_[:, :self.n_components_].T,
self.pca_components_[:self.n_components_]).T
def get_sources(self, inst, add_channels=None, start=None, stop=None):
"""Estimate sources given the unmixing matrix.
This method will return the sources in the container format passed.
Typical usecases:
1. pass Raw object to use `raw.plot` for ICA sources
2. pass Epochs object to compute trial-based statistics in ICA space
3. pass Evoked object to investigate time-locking in ICA space
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from and to represent sources in.
add_channels : None | list of str
Additional channels to be added. Useful to e.g. compare sources
with some reference. Defaults to None
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, the entire data will be used.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, the entire data will be used.
Returns
-------
sources : instance of Raw, Epochs or Evoked
The ICA sources time series.
"""
if isinstance(inst, BaseRaw):
_check_compensation_grade(self, inst, 'ICA', 'Raw',
ch_names=self.ch_names)
sources = self._sources_as_raw(inst, add_channels, start, stop)
elif isinstance(inst, BaseEpochs):
_check_compensation_grade(self, inst, 'ICA', 'Epochs',
ch_names=self.ch_names)
sources = self._sources_as_epochs(inst, add_channels, False)
elif isinstance(inst, Evoked):
_check_compensation_grade(self, inst, 'ICA', 'Evoked',
ch_names=self.ch_names)
sources = self._sources_as_evoked(inst, add_channels)
else:
raise ValueError('Data input must be of Raw, Epochs or Evoked '
'type')
return sources
def _sources_as_raw(self, raw, add_channels, start, stop):
"""Aux method."""
# merge copied instance and picked data with sources
sources = self._transform_raw(raw, start=start, stop=stop)
if raw.preload: # get data and temporarily delete
data = raw._data
del raw._data
out = raw.copy() # copy and reappend
if raw.preload:
raw._data = data
# populate copied raw.
start, stop = _check_start_stop(raw, start, stop)
if add_channels is not None:
raw_picked = raw.copy().pick_channels(add_channels)
data_, times_ = raw_picked[:, start:stop]
data_ = np.r_[sources, data_]
else:
data_ = sources
_, times_ = raw[0, start:stop]
out._data = data_
out._times = times_
out._filenames = [None]
out.preload = True
# update first and last samples
out._first_samps = np.array([raw.first_samp +
(start if start else 0)])
out._last_samps = np.array([out.first_samp + stop
if stop else raw.last_samp])
out._projector = None
self._export_info(out.info, raw, add_channels)
out._update_times()
return out
def _sources_as_epochs(self, epochs, add_channels, concatenate):
"""Aux method."""
out = epochs.copy()
sources = self._transform_epochs(epochs, concatenate)
if add_channels is not None:
picks = [epochs.ch_names.index(k) for k in add_channels]
else:
picks = []
out._data = np.concatenate([sources, epochs.get_data()[:, picks]],
axis=1) if len(picks) > 0 else sources
self._export_info(out.info, epochs, add_channels)
out.preload = True
out._raw = None
out._projector = None
return out
def _sources_as_evoked(self, evoked, add_channels):
"""Aux method."""
if add_channels is not None:
picks = [evoked.ch_names.index(k) for k in add_channels]
else:
picks = []
sources = self._transform_evoked(evoked)
if len(picks) > 1:
data = np.r_[sources, evoked.data[picks]]
else:
data = sources
out = evoked.copy()
out.data = data
self._export_info(out.info, evoked, add_channels)
return out
def _export_info(self, info, container, add_channels):
"""Aux method."""
# set channel names and info
ch_names = []
ch_info = info['chs'] = []
for ii, name in enumerate(self._ica_names):
ch_names.append(name)
ch_info.append(dict(
ch_name=name, cal=1, logno=ii + 1,
coil_type=FIFF.FIFFV_COIL_NONE, kind=FIFF.FIFFV_MISC_CH,
coord_Frame=FIFF.FIFFV_COORD_UNKNOWN, unit=FIFF.FIFF_UNIT_NONE,
loc=np.array([0., 0., 0., 1.] * 3, dtype='f4'),
range=1.0, scanno=ii + 1, unit_mul=0))
if add_channels is not None:
# re-append additionally picked ch_names
ch_names += add_channels
# re-append additionally picked ch_info
ch_info += [k for k in container.info['chs'] if k['ch_name'] in
add_channels]
info['bads'] = [ch_names[k] for k in self.exclude]
info['projs'] = [] # make sure projections are removed.
info._update_redundant()
info._check_consistency()
@verbose
def score_sources(self, inst, target=None, score_func='pearsonr',
start=None, stop=None, l_freq=None, h_freq=None,
reject_by_annotation=True, verbose=None):
"""Assign score to components based on statistic or metric.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
The object to reconstruct the sources from.
target : array-like | ch_name | None
Signal to which the sources shall be compared. It has to be of
the same shape as the sources. If some string is supplied, a
routine will try to find a matching channel. If None, a score
function expecting only one input-array argument must be used,
for instance, scipy.stats.skew (default).
score_func : callable | str label
Callable taking as arguments either two input arrays
(e.g. Pearson correlation) or one input
array (e. g. skewness) and returns a float. For convenience the
most common score_funcs are available via string labels:
Currently, all distance metrics from scipy.spatial and All
functions from scipy.stats taking compatible input arguments are
supported. These function have been modified to support iteration
over the rows of a 2D array.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
reject_by_annotation : bool
If True, data annotated as bad will be omitted. Defaults to True.
.. versionadded:: 0.14.0
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more). Defaults to self.verbose.
Returns
-------
scores : ndarray
scores for each source as returned from score_func
"""
if isinstance(inst, BaseRaw):
_check_compensation_grade(self, inst, 'ICA', 'Raw',
ch_names=self.ch_names)
sources = self._transform_raw(inst, start, stop,
reject_by_annotation)
elif isinstance(inst, BaseEpochs):
_check_compensation_grade(self, inst, 'ICA', 'Epochs',
ch_names=self.ch_names)
sources = self._transform_epochs(inst, concatenate=True)
elif isinstance(inst, Evoked):
_check_compensation_grade(self, inst, 'ICA', 'Evoked',
ch_names=self.ch_names)
sources = self._transform_evoked(inst)
else:
raise ValueError('Data input must be of Raw, Epochs or Evoked '
'type')
if target is not None: # we can have univariate metrics without target
target = self._check_target(target, inst, start, stop,
reject_by_annotation)
if sources.shape[-1] != target.shape[-1]:
raise ValueError('Sources and target do not have the same'
'number of time slices.')
# auto target selection
if verbose is None:
verbose = self.verbose
if isinstance(inst, BaseRaw):
sources, target = _band_pass_filter(self, sources, target,
l_freq, h_freq, verbose)
scores = _find_sources(sources, target, score_func)
return scores
def _check_target(self, target, inst, start, stop,
reject_by_annotation=False):
"""Aux Method."""
if isinstance(inst, BaseRaw):
reject_by_annotation = 'omit' if reject_by_annotation else None
start, stop = _check_start_stop(inst, start, stop)
if hasattr(target, 'ndim'):
if target.ndim < 2:
target = target.reshape(1, target.shape[-1])
if isinstance(target, string_types):
pick = _get_target_ch(inst, target)
target = inst.get_data(pick, start, stop, reject_by_annotation)
elif isinstance(inst, BaseEpochs):
if isinstance(target, string_types):
pick = _get_target_ch(inst, target)
target = inst.get_data()[:, pick]
if hasattr(target, 'ndim'):
if target.ndim == 3 and min(target.shape) == 1:
target = target.ravel()
elif isinstance(inst, Evoked):
if isinstance(target, string_types):
pick = _get_target_ch(inst, target)
target = inst.data[pick]
return target
@verbose
def find_bads_ecg(self, inst, ch_name=None, threshold=None, start=None,
stop=None, l_freq=8, h_freq=16, method='ctps',
reject_by_annotation=True, verbose=None):
"""Detect ECG related components using correlation.
.. note:: If no ECG channel is available, routine attempts to create
an artificial ECG based on cross-channel averaging.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from.
ch_name : str
The name of the channel to use for ECG peak detection.
The argument is mandatory if the dataset contains no ECG
channels.
threshold : float
The value above which a feature is classified as outlier. If
method is 'ctps', defaults to 0.25, else defaults to 3.0.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
method : {'ctps', 'correlation'}
The method used for detection. If 'ctps', cross-trial phase
statistics [1] are used to detect ECG related components.
Thresholding is then based on the significance value of a Kuiper
statistic.
If 'correlation', detection is based on Pearson correlation
between the filtered data and the filtered ECG channel.
Thresholding is based on iterative z-scoring. The above
threshold components will be masked and the z-score will
be recomputed until no supra-threshold component remains.
Defaults to 'ctps'.
reject_by_annotation : bool
If True, data annotated as bad will be omitted. Defaults to True.
.. versionadded:: 0.14.0
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more). Defaults to self.verbose.
Returns
-------
ecg_idx : list of int
The indices of ECG related components.
scores : np.ndarray of float, shape (``n_components_``)
The correlation scores.
See Also
--------
find_bads_eog
References
----------
[1] Dammers, J., Schiek, M., Boers, F., Silex, C., Zvyagintsev,
M., Pietrzyk, U., Mathiak, K., 2008. Integration of amplitude
and phase statistics for complete artifact removal in independent
components of neuromagnetic recordings. Biomedical
Engineering, IEEE Transactions on 55 (10), 2353-2362.
"""
if verbose is None:
verbose = self.verbose
idx_ecg = _get_ecg_channel_index(ch_name, inst)
if idx_ecg is None:
if verbose is not None:
verbose = self.verbose
ecg, times = _make_ecg(inst, start, stop,
reject_by_annotation=reject_by_annotation,
verbose=verbose)
else:
ecg = inst.ch_names[idx_ecg]
if method == 'ctps':
if threshold is None:
threshold = 0.25
if isinstance(inst, BaseRaw):
sources = self.get_sources(create_ecg_epochs(
inst, ch_name, keep_ecg=False,
reject_by_annotation=reject_by_annotation)).get_data()
if sources.shape[0] == 0:
warn('No ECG activity detected. Consider changing '
'the input parameters.')
elif isinstance(inst, BaseEpochs):
sources = self.get_sources(inst).get_data()
else:
raise ValueError('With `ctps` only Raw and Epochs input is '
'supported')
_, p_vals, _ = ctps(sources)
scores = p_vals.max(-1)
ecg_idx = np.where(scores >= threshold)[0]
elif method == 'correlation':
if threshold is None:
threshold = 3.0
scores = self.score_sources(
inst, target=ecg, score_func='pearsonr', start=start,
stop=stop, l_freq=l_freq, h_freq=h_freq,
reject_by_annotation=reject_by_annotation, verbose=verbose)
ecg_idx = find_outliers(scores, threshold=threshold)
else:
raise ValueError('Method "%s" not supported.' % method)
# sort indices by scores
ecg_idx = ecg_idx[np.abs(scores[ecg_idx]).argsort()[::-1]]
self.labels_['ecg'] = list(ecg_idx)
if ch_name is None:
ch_name = 'ECG-MAG'
self.labels_['ecg/%s' % ch_name] = list(ecg_idx)
return self.labels_['ecg'], scores
@verbose
def find_bads_eog(self, inst, ch_name=None, threshold=3.0, start=None,
stop=None, l_freq=1, h_freq=10,
reject_by_annotation=True, verbose=None):
"""Detect EOG related components using correlation.
Detection is based on Pearson correlation between the
filtered data and the filtered EOG channel.
Thresholding is based on adaptive z-scoring. The above threshold
components will be masked and the z-score will be recomputed
until no supra-threshold component remains.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from.
ch_name : str
The name of the channel to use for EOG peak detection.
The argument is mandatory if the dataset contains no EOG
channels.
threshold : int | float
The value above which a feature is classified as outlier.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
reject_by_annotation : bool
If True, data annotated as bad will be omitted. Defaults to True.
.. versionadded:: 0.14.0
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more). Defaults to self.verbose.
Returns
-------
eog_idx : list of int
The indices of EOG related components, sorted by score.
scores : np.ndarray of float, shape (``n_components_``) | list of array
The correlation scores.
See Also
--------
find_bads_ecg
"""
if verbose is None:
verbose = self.verbose
eog_inds = _get_eog_channel_index(ch_name, inst)
if len(eog_inds) > 2:
eog_inds = eog_inds[:1]
logger.info('Using EOG channel %s' % inst.ch_names[eog_inds[0]])
scores, eog_idx = [], []
eog_chs = [inst.ch_names[k] for k in eog_inds]
# some magic we need inevitably ...
# get targets before equalizing
targets = [self._check_target(k, inst, start, stop,
reject_by_annotation) for k in eog_chs]
for ii, (eog_ch, target) in enumerate(zip(eog_chs, targets)):
scores += [self.score_sources(
inst, target=target, score_func='pearsonr', start=start,
stop=stop, l_freq=l_freq, h_freq=h_freq, verbose=verbose,
reject_by_annotation=reject_by_annotation)]
# pick last scores
this_idx = find_outliers(scores[-1], threshold=threshold)
eog_idx += [this_idx]
self.labels_[('eog/%i/' % ii) + eog_ch] = list(this_idx)
# remove duplicates but keep order by score, even across multiple
# EOG channels
scores_ = np.concatenate([scores[ii][inds]
for ii, inds in enumerate(eog_idx)])
eog_idx_ = np.concatenate(eog_idx)[np.abs(scores_).argsort()[::-1]]
eog_idx_unique = list(np.unique(eog_idx_))
eog_idx = []
for i in eog_idx_:
if i in eog_idx_unique:
eog_idx.append(i)
eog_idx_unique.remove(i)
if len(scores) == 1:
scores = scores[0]
self.labels_['eog'] = list(eog_idx)
return self.labels_['eog'], scores
def apply(self, inst, include=None, exclude=None, n_pca_components=None,
start=None, stop=None):
"""Remove selected components from the signal.
Given the unmixing matrix, transform data,
zero out components, and inverse transform the data.
This procedure will reconstruct M/EEG signals from which
the dynamics described by the excluded components is subtracted.
The data is processed in place.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
The data to be processed. The instance is modified inplace.
include : array_like of int.
The indices referring to columns in the ummixing matrix. The
components to be kept.
exclude : array_like of int.
The indices referring to columns in the ummixing matrix. The
components to be zeroed out.
n_pca_components : int | float | None
The number of PCA components to be kept, either absolute (int)
or percentage of the explained variance (float). If None (default),
all PCA components will be used.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
Returns
-------
out : instance of Raw, Epochs or Evoked
The processed data.
"""
if isinstance(inst, BaseRaw):
_check_compensation_grade(self, inst, 'ICA', 'Raw',
ch_names=self.ch_names)
out = self._apply_raw(raw=inst, include=include,
exclude=exclude,
n_pca_components=n_pca_components,
start=start, stop=stop)
elif isinstance(inst, BaseEpochs):
_check_compensation_grade(self, inst, 'ICA', 'Epochs',
ch_names=self.ch_names)
out = self._apply_epochs(epochs=inst, include=include,
exclude=exclude,
n_pca_components=n_pca_components)
elif isinstance(inst, Evoked):
_check_compensation_grade(self, inst, 'ICA', 'Evoked',
ch_names=self.ch_names)
out = self._apply_evoked(evoked=inst, include=include,
exclude=exclude,
n_pca_components=n_pca_components)
else:
raise ValueError('Data input must be of Raw, Epochs or Evoked '
'type')
return out
def _check_exclude(self, exclude):
if exclude is None:
return list(set(self.exclude))
else:
return list(set(self.exclude + exclude))
def _apply_raw(self, raw, include, exclude, n_pca_components, start, stop):
"""Aux method."""
_check_preload(raw, "ica.apply")
exclude = self._check_exclude(exclude)
if n_pca_components is not None:
self.n_pca_components = n_pca_components
start, stop = _check_start_stop(raw, start, stop)
picks = pick_types(raw.info, meg=False, include=self.ch_names,
exclude='bads', ref_meg=False)
data = raw[picks, start:stop][0]
data, _ = self._pre_whiten(data, raw.info, picks)
data = self._pick_sources(data, include, exclude)
raw[picks, start:stop] = data
return raw
def _apply_epochs(self, epochs, include, exclude, n_pca_components):
"""Aux method."""
_check_preload(epochs, "ica.apply")
exclude = self._check_exclude(exclude)
picks = pick_types(epochs.info, meg=False, ref_meg=False,
include=self.ch_names,
exclude='bads')
# special case where epochs come picked but fit was 'unpicked'.
if len(picks) != len(self.ch_names):
raise RuntimeError('Epochs don\'t match fitted data: %i channels '
'fitted but %i channels supplied. \nPlease '
'provide Epochs compatible with '
'ica.ch_names' % (len(self.ch_names),
len(picks)))
if n_pca_components is not None:
self.n_pca_components = n_pca_components
data = np.hstack(epochs.get_data()[:, picks])
data, _ = self._pre_whiten(data, epochs.info, picks)
data = self._pick_sources(data, include=include, exclude=exclude)
# restore epochs, channels, tsl order
epochs._data[:, picks] = np.array(
np.split(data, len(epochs.events), 1))
epochs.preload = True
return epochs
def _apply_evoked(self, evoked, include, exclude, n_pca_components):
"""Aux method."""
exclude = self._check_exclude(exclude)
picks = pick_types(evoked.info, meg=False, ref_meg=False,
include=self.ch_names,
exclude='bads')
# special case where evoked come picked but fit was 'unpicked'.
if len(picks) != len(self.ch_names):
raise RuntimeError('Evoked does not match fitted data: %i channels'
' fitted but %i channels supplied. \nPlease '
'provide an Evoked object that\'s compatible '
'with ica.ch_names' % (len(self.ch_names),
len(picks)))
if n_pca_components is not None:
self.n_pca_components = n_pca_components
data = evoked.data[picks]
data, _ = self._pre_whiten(data, evoked.info, picks)
data = self._pick_sources(data, include=include,
exclude=exclude)
# restore evoked
evoked.data[picks] = data
return evoked
def _pick_sources(self, data, include, exclude):
"""Aux function."""
if exclude is None:
exclude = self.exclude
else:
exclude = list(set(self.exclude + list(exclude)))
_n_pca_comp = self._check_n_pca_components(self.n_pca_components)
if not(self.n_components_ <= _n_pca_comp <= self.max_pca_components):
raise ValueError('n_pca_components must be >= '
'n_components and <= max_pca_components.')
n_components = self.n_components_
logger.info('Transforming to ICA space (%i components)' % n_components)
# Apply first PCA
if self.pca_mean_ is not None:
data -= self.pca_mean_[:, None]
sel_keep = np.arange(n_components)
if include not in (None, []):
sel_keep = np.unique(include)
elif exclude not in (None, []):
sel_keep = np.setdiff1d(np.arange(n_components), exclude)
logger.info('Zeroing out %i ICA components'
% (n_components - len(sel_keep)))
unmixing = np.eye(_n_pca_comp)
unmixing[:n_components, :n_components] = self.unmixing_matrix_
unmixing = np.dot(unmixing, self.pca_components_[:_n_pca_comp])
mixing = np.eye(_n_pca_comp)
mixing[:n_components, :n_components] = self.mixing_matrix_
mixing = np.dot(self.pca_components_[:_n_pca_comp].T, mixing)
if _n_pca_comp > n_components:
sel_keep = np.concatenate(
(sel_keep, range(n_components, _n_pca_comp)))
proj_mat = np.dot(mixing[:, sel_keep], unmixing[sel_keep, :])
data = np.dot(proj_mat, data)
if self.pca_mean_ is not None:
data += self.pca_mean_[:, None]
# restore scaling
if self.noise_cov is None: # revert standardization
data *= self.pre_whitener_
else:
data = np.dot(linalg.pinv(self.pre_whitener_, cond=1e-14), data)
return data
@verbose
def save(self, fname):
"""Store ICA solution into a fiff file.
Parameters
----------
fname : str
The absolute path of the file name to save the ICA solution into.
The file name should end with -ica.fif or -ica.fif.gz.
"""
if self.current_fit == 'unfitted':
raise RuntimeError('No fit available. Please first fit ICA')
check_fname(fname, 'ICA', ('-ica.fif', '-ica.fif.gz',
'_ica.fif', '_ica.fif.gz'))
logger.info('Writing ICA solution to %s...' % fname)
fid = start_file(fname)
try:
_write_ica(fid, self)
end_file(fid)
except Exception:
end_file(fid)
os.remove(fname)
raise
return self
def copy(self):
"""Copy the ICA object.
Returns
-------
ica : instance of ICA
The copied object.
"""
return deepcopy(self)
@copy_function_doc_to_method_doc(plot_ica_components)
def plot_components(self, picks=None, ch_type=None, res=64, layout=None,
vmin=None, vmax=None, cmap='RdBu_r', sensors=True,
colorbar=False, title=None, show=True, outlines='head',
contours=6, image_interp='bilinear', head_pos=None,
inst=None):
return plot_ica_components(self, picks=picks, ch_type=ch_type,
res=res, layout=layout, vmin=vmin,
vmax=vmax, cmap=cmap, sensors=sensors,
colorbar=colorbar, title=title, show=show,
outlines=outlines, contours=contours,
image_interp=image_interp,
head_pos=head_pos, inst=inst)
@copy_function_doc_to_method_doc(plot_ica_properties)
def plot_properties(self, inst, picks=None, axes=None, dB=True,
plot_std=True, topomap_args=None, image_args=None,
psd_args=None, figsize=None, show=True):
return plot_ica_properties(self, inst, picks=picks, axes=axes,
dB=dB, plot_std=plot_std,
topomap_args=topomap_args,
image_args=image_args, psd_args=psd_args,
figsize=figsize, show=show)
@copy_function_doc_to_method_doc(plot_ica_sources)
def plot_sources(self, inst, picks=None, exclude=None, start=None,
stop=None, title=None, show=True, block=False,
show_first_samp=False):
return plot_ica_sources(self, inst=inst, picks=picks, exclude=exclude,
start=start, stop=stop, title=title, show=show,
block=block, show_first_samp=show_first_samp)
@copy_function_doc_to_method_doc(plot_ica_scores)
def plot_scores(self, scores, exclude=None, labels=None, axhline=None,
title='ICA component scores', figsize=None,
show=True):
return plot_ica_scores(
ica=self, scores=scores, exclude=exclude, labels=labels,
axhline=axhline, title=title, figsize=figsize, show=show)
@copy_function_doc_to_method_doc(plot_ica_overlay)
def plot_overlay(self, inst, exclude=None, picks=None, start=None,
stop=None, title=None, show=True):
return plot_ica_overlay(self, inst=inst, exclude=exclude, picks=picks,
start=start, stop=stop, title=title, show=show)
def detect_artifacts(self, raw, start_find=None, stop_find=None,
ecg_ch=None, ecg_score_func='pearsonr',
ecg_criterion=0.1, eog_ch=None,
eog_score_func='pearsonr',
eog_criterion=0.1, skew_criterion=-1,
kurt_criterion=-1, var_criterion=0,
add_nodes=None):
"""Run ICA artifacts detection workflow.
Note. This is still experimental and will most likely change. Over
the next releases. For maximum control use the workflow exposed in
the examples.
Hints and caveats:
- It is highly recommended to bandpass filter ECG and EOG
data and pass them instead of the channel names as ecg_ch and eog_ch
arguments.
- please check your results. Detection by kurtosis and variance
may be powerful but misclassification of brain signals as
noise cannot be precluded.
- Consider using shorter times for start_find and stop_find than
for start and stop. It can save you much time.
Example invocation (taking advantage of the defaults)::
ica.detect_artifacts(ecg_channel='MEG 1531', eog_channel='EOG 061')
Parameters
----------
raw : instance of Raw
Raw object to draw sources from.
start_find : int | float | None
First sample to include for artifact search. If float, data will be
interpreted as time in seconds. If None, data will be used from the
first sample.
stop_find : int | float | None
Last sample to not include for artifact search. If float, data will
be interpreted as time in seconds. If None, data will be used to
the last sample.
ecg_ch : str | ndarray | None
The `target` argument passed to ica.find_sources_raw. Either the
name of the ECG channel or the ECG time series. If None, this step
will be skipped.
ecg_score_func : str | callable
The `score_func` argument passed to ica.find_sources_raw. Either
the name of function supported by ICA or a custom function.
ecg_criterion : float | int | list-like | slice
The indices of the sorted skewness scores. If float, sources with
scores smaller than the criterion will be dropped. Else, the scores
sorted in descending order will be indexed accordingly.
E.g. range(2) would return the two sources with the highest score.
If None, this step will be skipped.
eog_ch : list | str | ndarray | None
The `target` argument or the list of target arguments subsequently
passed to ica.find_sources_raw. Either the name of the vertical EOG
channel or the corresponding EOG time series. If None, this step
will be skipped.
eog_score_func : str | callable
The `score_func` argument passed to ica.find_sources_raw. Either
the name of function supported by ICA or a custom function.
eog_criterion : float | int | list-like | slice
The indices of the sorted skewness scores. If float, sources with
scores smaller than the criterion will be dropped. Else, the scores
sorted in descending order will be indexed accordingly.
E.g. range(2) would return the two sources with the highest score.
If None, this step will be skipped.
skew_criterion : float | int | list-like | slice
The indices of the sorted skewness scores. If float, sources with
scores smaller than the criterion will be dropped. Else, the scores
sorted in descending order will be indexed accordingly.
E.g. range(2) would return the two sources with the highest score.
If None, this step will be skipped.
kurt_criterion : float | int | list-like | slice
The indices of the sorted skewness scores. If float, sources with
scores smaller than the criterion will be dropped. Else, the scores
sorted in descending order will be indexed accordingly.
E.g. range(2) would return the two sources with the highest score.
If None, this step will be skipped.
var_criterion : float | int | list-like | slice
The indices of the sorted skewness scores. If float, sources with
scores smaller than the criterion will be dropped. Else, the scores
sorted in descending order will be indexed accordingly.
E.g. range(2) would return the two sources with the highest score.
If None, this step will be skipped.
add_nodes : list of ica_nodes
Additional list if tuples carrying the following parameters:
(name : str, target : str | array, score_func : callable,
criterion : float | int | list-like | slice). This parameter is a
generalization of the artifact specific parameters above and has
the same structure. Example:
add_nodes=('ECG phase lock', ECG 01', my_phase_lock_function, 0.5)
Returns
-------
self : instance of ICA
The ICA object with the detected artifact indices marked for
exclusion
"""
logger.info(' Searching for artifacts...')
_detect_artifacts(self, raw=raw, start_find=start_find,
stop_find=stop_find, ecg_ch=ecg_ch,
ecg_score_func=ecg_score_func,
ecg_criterion=ecg_criterion,
eog_ch=eog_ch, eog_score_func=eog_score_func,
eog_criterion=eog_criterion,
skew_criterion=skew_criterion,
kurt_criterion=kurt_criterion,
var_criterion=var_criterion,
add_nodes=add_nodes)
return self
@verbose
def _check_n_pca_components(self, _n_pca_comp, verbose=None):
"""Aux function."""
if isinstance(_n_pca_comp, float):
_n_pca_comp = ((self.pca_explained_variance_ /
self.pca_explained_variance_.sum()).cumsum() <=
_n_pca_comp).sum()
logger.info('Selected %i PCA components by explained '
'variance' % _n_pca_comp)
elif _n_pca_comp is None:
_n_pca_comp = self.max_pca_components
elif _n_pca_comp < self.n_components_:
_n_pca_comp = self.n_components_
return _n_pca_comp
def _check_start_stop(raw, start, stop):
"""Aux function."""
out = list()
for st in (start, stop):
if st is None:
out.append(st)
else:
try:
out.append(_ensure_int(st))
except TypeError: # not int-like
out.append(raw.time_as_index(st)[0])
return out
@verbose
def ica_find_ecg_events(raw, ecg_source, event_id=999,
tstart=0.0, l_freq=5, h_freq=35, qrs_threshold='auto',
verbose=None):
"""Find ECG peaks from one selected ICA source.
Parameters
----------
raw : instance of Raw
Raw object to draw sources from.
ecg_source : ndarray
ICA source resembling ECG to find peaks from.
event_id : int
The index to assign to found events.
tstart : float
Start detection after tstart seconds. Useful when beginning
of run is noisy.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
qrs_threshold : float | str
Between 0 and 1. qrs detection threshold. Can also be "auto" to
automatically choose the threshold that generates a reasonable
number of heartbeats (40-160 beats / min).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
ecg_events : array
Events.
ch_ECG : string
Name of channel used.
average_pulse : float.
Estimated average pulse.
"""
logger.info('Using ICA source to identify heart beats')
# detecting QRS and generating event file
ecg_events = qrs_detector(raw.info['sfreq'], ecg_source.ravel(),
tstart=tstart, thresh_value=qrs_threshold,
l_freq=l_freq, h_freq=h_freq)
n_events = len(ecg_events)
ecg_events = np.c_[ecg_events + raw.first_samp, np.zeros(n_events),
event_id * np.ones(n_events)]
return ecg_events
@verbose
def ica_find_eog_events(raw, eog_source=None, event_id=998, l_freq=1,
h_freq=10, verbose=None):
"""Locate EOG artifacts from one selected ICA source.
Parameters
----------
raw : instance of Raw
The raw data.
eog_source : ndarray
ICA source resembling EOG to find peaks from.
event_id : int
The index to assign to found events.
l_freq : float
Low cut-off frequency in Hz.
h_freq : float
High cut-off frequency in Hz.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
eog_events : array
Events
"""
eog_events = _find_eog_events(eog_source[np.newaxis], event_id=event_id,
l_freq=l_freq, h_freq=h_freq,
sampling_rate=raw.info['sfreq'],
first_samp=raw.first_samp)
return eog_events
def _get_target_ch(container, target):
"""Aux function."""
# auto target selection
picks = pick_channels(container.ch_names, include=[target])
ref_picks = pick_types(container.info, meg=False, eeg=False, ref_meg=True)
if len(ref_picks) > 0:
picks = list(set(picks) - set(ref_picks))
if len(picks) == 0:
raise ValueError('%s not in channel list (%s)' %
(target, container.ch_names))
return picks
def _find_sources(sources, target, score_func):
"""Aux function."""
if isinstance(score_func, string_types):
score_func = get_score_funcs().get(score_func, score_func)
if not callable(score_func):
raise ValueError('%s is not a valid score_func.' % score_func)
scores = (score_func(sources, target) if target is not None
else score_func(sources, 1))
return scores
def _ica_explained_variance(ica, inst, normalize=False):
"""Check variance accounted for by each component in supplied data.
Parameters
----------
ica : ICA
Instance of `mne.preprocessing.ICA`.
inst : Raw | Epochs | Evoked
Data to explain with ICA. Instance of Raw, Epochs or Evoked.
normalize : bool
Whether to normalize the variance.
Returns
-------
var : array
Variance explained by each component.
"""
# check if ica is ICA and whether inst is Raw or Epochs
if not isinstance(ica, ICA):
raise TypeError('first argument must be an instance of ICA.')
if not isinstance(inst, (BaseRaw, BaseEpochs, Evoked)):
raise TypeError('second argument must an instance of either Raw, '
'Epochs or Evoked.')
source_data = _get_inst_data(ica.get_sources(inst))
# if epochs - reshape to channels x timesamples
if isinstance(inst, BaseEpochs):
n_epochs, n_chan, n_samp = source_data.shape
source_data = source_data.transpose(1, 0, 2).reshape(
(n_chan, n_epochs * n_samp))
n_chan, n_samp = source_data.shape
var = np.sum(ica.mixing_matrix_ ** 2, axis=0) * np.sum(
source_data ** 2, axis=1) / (n_chan * n_samp - 1)
if normalize:
var /= var.sum()
return var
def _sort_components(ica, order, copy=True):
"""Change the order of components in ica solution."""
assert ica.n_components_ == len(order)
if copy:
ica = ica.copy()
# reorder components
ica.mixing_matrix_ = ica.mixing_matrix_[:, order]
ica.unmixing_matrix_ = ica.unmixing_matrix_[order, :]
# reorder labels, excludes etc.
if isinstance(order, np.ndarray):
order = list(order)
if ica.exclude:
ica.exclude = [order.index(ic) for ic in ica.exclude]
for k in ica.labels_.keys():
ica.labels_[k] = [order.index(ic) for ic in ica.labels_[k]]
return ica
def _serialize(dict_, outer_sep=';', inner_sep=':'):
"""Aux function."""
s = []
for key, value in dict_.items():
if callable(value):
value = value.__name__
elif isinstance(value, Integral):
value = int(value)
elif isinstance(value, dict):
# py35 json does not support numpy int64
for subkey, subvalue in value.items():
if isinstance(subvalue, list):
if len(subvalue) > 0:
if isinstance(subvalue[0], (int, np.integer)):
value[subkey] = [int(i) for i in subvalue]
for cls in (np.random.RandomState, Covariance):
if isinstance(value, cls):
value = cls.__name__
s.append(key + inner_sep + json.dumps(value))
return outer_sep.join(s)
def _deserialize(str_, outer_sep=';', inner_sep=':'):
"""Aux Function."""
out = {}
for mapping in str_.split(outer_sep):
k, v = mapping.split(inner_sep, 1)
vv = json.loads(v)
out[k] = vv if not isinstance(vv, text_type) else str(vv)
return out
def _write_ica(fid, ica):
"""Write an ICA object.
Parameters
----------
fid: file
The file descriptor
ica:
The instance of ICA to write
"""
ica_init = dict(noise_cov=ica.noise_cov,
n_components=ica.n_components,
n_pca_components=ica.n_pca_components,
max_pca_components=ica.max_pca_components,
current_fit=ica.current_fit)
if ica.info is not None:
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if ica.info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, ica.info['meas_id'])
# Write measurement info
write_meas_info(fid, ica.info)
end_block(fid, FIFF.FIFFB_MEAS)
start_block(fid, FIFF.FIFFB_MNE_ICA)
# ICA interface params
write_string(fid, FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS,
_serialize(ica_init))
# Channel names
if ica.ch_names is not None:
write_name_list(fid, FIFF.FIFF_MNE_ROW_NAMES, ica.ch_names)
# samples on fit
n_samples = getattr(ica, 'n_samples_', None)
ica_misc = {'n_samples_': (None if n_samples is None else int(n_samples)),
'labels_': getattr(ica, 'labels_', None),
'method': getattr(ica, 'method', None)}
write_string(fid, FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS,
_serialize(ica_init))
# ICA misct params
write_string(fid, FIFF.FIFF_MNE_ICA_MISC_PARAMS,
_serialize(ica_misc))
# Whitener
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_WHITENER, ica.pre_whitener_)
# PCA components_
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_COMPONENTS,
ica.pca_components_)
# PCA mean_
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_MEAN, ica.pca_mean_)
# PCA explained_variance_
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR,
ica.pca_explained_variance_)
# ICA unmixing
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_MATRIX, ica.unmixing_matrix_)
# Write bad components
write_int(fid, FIFF.FIFF_MNE_ICA_BADS, ica.exclude)
# Done!
end_block(fid, FIFF.FIFFB_MNE_ICA)
@verbose
def read_ica(fname, verbose=None):
"""Restore ICA solution from fif file.
Parameters
----------
fname : str
Absolute path to fif file containing ICA matrices.
The file name should end with -ica.fif or -ica.fif.gz.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
ica : instance of ICA
The ICA estimator.
"""
check_fname(fname, 'ICA', ('-ica.fif', '-ica.fif.gz',
'_ica.fif', '_ica.fif.gz'))
logger.info('Reading %s ...' % fname)
fid, tree, _ = fiff_open(fname)
try:
# we used to store bads that weren't part of the info...
info, meas = read_meas_info(fid, tree, clean_bads=True)
except ValueError:
logger.info('Could not find the measurement info. \n'
'Functionality requiring the info won\'t be'
' available.')
info = None
ica_data = dir_tree_find(tree, FIFF.FIFFB_MNE_ICA)
if len(ica_data) == 0:
ica_data = dir_tree_find(tree, 123) # Constant 123 Used before v 0.11
if len(ica_data) == 0:
fid.close()
raise ValueError('Could not find ICA data')
my_ica_data = ica_data[0]
for d in my_ica_data['directory']:
kind = d.kind
pos = d.pos
if kind == FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS:
tag = read_tag(fid, pos)
ica_init = tag.data
elif kind == FIFF.FIFF_MNE_ROW_NAMES:
tag = read_tag(fid, pos)
ch_names = tag.data
elif kind == FIFF.FIFF_MNE_ICA_WHITENER:
tag = read_tag(fid, pos)
pre_whitener = tag.data
elif kind == FIFF.FIFF_MNE_ICA_PCA_COMPONENTS:
tag = read_tag(fid, pos)
pca_components = tag.data
elif kind == FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR:
tag = read_tag(fid, pos)
pca_explained_variance = tag.data
elif kind == FIFF.FIFF_MNE_ICA_PCA_MEAN:
tag = read_tag(fid, pos)
pca_mean = tag.data
elif kind == FIFF.FIFF_MNE_ICA_MATRIX:
tag = read_tag(fid, pos)
unmixing_matrix = tag.data
elif kind == FIFF.FIFF_MNE_ICA_BADS:
tag = read_tag(fid, pos)
exclude = tag.data
elif kind == FIFF.FIFF_MNE_ICA_MISC_PARAMS:
tag = read_tag(fid, pos)
ica_misc = tag.data
fid.close()
ica_init, ica_misc = [_deserialize(k) for k in (ica_init, ica_misc)]
current_fit = ica_init.pop('current_fit')
if ica_init['noise_cov'] == Covariance.__name__:
logger.info('Reading whitener drawn from noise covariance ...')
logger.info('Now restoring ICA solution ...')
# make sure dtypes are np.float64 to satisfy fast_dot
def f(x):
return x.astype(np.float64)
ica_init = dict((k, v) for k, v in ica_init.items()
if k in _get_args(ICA.__init__))
ica = ICA(**ica_init)
ica.current_fit = current_fit
ica.ch_names = ch_names.split(':')
ica.pre_whitener_ = f(pre_whitener)
ica.pca_mean_ = f(pca_mean)
ica.pca_components_ = f(pca_components)
ica.n_components_ = unmixing_matrix.shape[0]
ica._update_ica_names()
ica.pca_explained_variance_ = f(pca_explained_variance)
ica.unmixing_matrix_ = f(unmixing_matrix)
ica.mixing_matrix_ = linalg.pinv(ica.unmixing_matrix_)
ica.exclude = [] if exclude is None else list(exclude)
ica.info = info
if 'n_samples_' in ica_misc:
ica.n_samples_ = ica_misc['n_samples_']
if 'labels_' in ica_misc:
labels_ = ica_misc['labels_']
if labels_ is not None:
ica.labels_ = labels_
if 'method' in ica_misc:
ica.method = ica_misc['method']
logger.info('Ready.')
return ica
_ica_node = namedtuple('Node', 'name target score_func criterion')
def _detect_artifacts(ica, raw, start_find, stop_find, ecg_ch, ecg_score_func,
ecg_criterion, eog_ch, eog_score_func, eog_criterion,
skew_criterion, kurt_criterion, var_criterion,
add_nodes):
"""Aux Function."""
from scipy import stats
nodes = []
if ecg_ch is not None:
nodes += [_ica_node('ECG', ecg_ch, ecg_score_func, ecg_criterion)]
if eog_ch not in [None, []]:
if not isinstance(eog_ch, list):
eog_ch = [eog_ch]
for idx, ch in enumerate(eog_ch):
nodes += [_ica_node('EOG %02d' % idx, ch, eog_score_func,
eog_criterion)]
if skew_criterion is not None:
nodes += [_ica_node('skewness', None, stats.skew, skew_criterion)]
if kurt_criterion is not None:
nodes += [_ica_node('kurtosis', None, stats.kurtosis, kurt_criterion)]
if var_criterion is not None:
nodes += [_ica_node('variance', None, np.var, var_criterion)]
if add_nodes is not None:
nodes.extend(add_nodes)
for node in nodes:
scores = ica.score_sources(raw, start=start_find, stop=stop_find,
target=node.target,
score_func=node.score_func)
if isinstance(node.criterion, float):
found = list(np.where(np.abs(scores) > node.criterion)[0])
else:
found = list(np.atleast_1d(abs(scores).argsort()[node.criterion]))
case = (len(found), _pl(found), node.name)
logger.info(' found %s artifact%s by %s' % case)
ica.exclude += found
logger.info('Artifact indices found:\n ' + str(ica.exclude).strip('[]'))
if len(set(ica.exclude)) != len(ica.exclude):
logger.info(' Removing duplicate indices...')
ica.exclude = list(set(ica.exclude))
logger.info('Ready.')
@verbose
def run_ica(raw, n_components, max_pca_components=100,
n_pca_components=64, noise_cov=None,
random_state=None, picks=None, start=None, stop=None,
start_find=None, stop_find=None, ecg_ch=None,
ecg_score_func='pearsonr', ecg_criterion=0.1, eog_ch=None,
eog_score_func='pearsonr', eog_criterion=0.1, skew_criterion=-1,
kurt_criterion=-1, var_criterion=0, add_nodes=None, verbose=None,
method='fastica'):
"""Run ICA decomposition on raw data and identify artifact sources.
This function implements an automated artifact removal work flow.
Hints and caveats:
- It is highly recommended to bandpass filter ECG and EOG
data and pass them instead of the channel names as ecg_ch and eog_ch
arguments.
- Please check your results. Detection by kurtosis and variance
can be powerful but misclassification of brain signals as
noise cannot be precluded. If you are not sure set those to None.
- Consider using shorter times for start_find and stop_find than
for start and stop. It can save you much time.
Example invocation (taking advantage of defaults)::
ica = run_ica(raw, n_components=.9, start_find=10000, stop_find=12000,
ecg_ch='MEG 1531', eog_ch='EOG 061')
Parameters
----------
raw : instance of Raw
The raw data to decompose.
n_components : int | float | None
The number of components used for ICA decomposition. If int, it must be
smaller then max_pca_components. If None, all PCA components will be
used. If float between 0 and 1 components can will be selected by the
cumulative percentage of explained variance.
max_pca_components : int | None
The number of components used for PCA decomposition. If None, no
dimension reduction will be applied and max_pca_components will equal
the number of channels supplied on decomposing data.
n_pca_components
The number of PCA components used after ICA recomposition. The ensuing
attribute allows to balance noise reduction against potential loss of
features due to dimensionality reduction. If greater than
``self.n_components_``, the next ``'n_pca_components'`` minus
``'n_components_'`` PCA components will be added before restoring the
sensor space data. The attribute gets updated each time the according
parameter for in .pick_sources_raw or .pick_sources_epochs is changed.
noise_cov : None | instance of mne.cov.Covariance
Noise covariance used for whitening. If None, channels are just
z-scored.
random_state : None | int | instance of np.random.RandomState
np.random.RandomState to initialize the FastICA estimation.
As the estimation is non-deterministic it can be useful to
fix the seed to have reproducible results.
picks : array-like of int
Channels to be included. This selection remains throughout the
initialized ICA solution. If None only good data channels are used.
start : int | float | None
First sample to include for decomposition. If float, data will be
interpreted as time in seconds. If None, data will be used from the
first sample.
stop : int | float | None
Last sample to not include for decomposition. If float, data will be
interpreted as time in seconds. If None, data will be used to the
last sample.
start_find : int | float | None
First sample to include for artifact search. If float, data will be
interpreted as time in seconds. If None, data will be used from the
first sample.
stop_find : int | float | None
Last sample to not include for artifact search. If float, data will be
interpreted as time in seconds. If None, data will be used to the last
sample.
ecg_ch : str | ndarray | None
The ``target`` argument passed to ica.find_sources_raw. Either the
name of the ECG channel or the ECG time series. If None, this step
will be skipped.
ecg_score_func : str | callable
The ``score_func`` argument passed to ica.find_sources_raw. Either
the name of function supported by ICA or a custom function.
ecg_criterion : float | int | list-like | slice
The indices of the sorted skewness scores. If float, sources with
scores smaller than the criterion will be dropped. Else, the scores
sorted in descending order will be indexed accordingly.
E.g. range(2) would return the two sources with the highest score.
If None, this step will be skipped.
eog_ch : list | str | ndarray | None
The ``target`` argument or the list of target arguments subsequently
passed to ica.find_sources_raw. Either the name of the vertical EOG
channel or the corresponding EOG time series. If None, this step
will be skipped.
eog_score_func : str | callable
The ``score_func`` argument passed to ica.find_sources_raw. Either
the name of function supported by ICA or a custom function.
eog_criterion : float | int | list-like | slice
The indices of the sorted skewness scores. If float, sources with
scores smaller than the criterion will be dropped. Else, the scores
sorted in descending order will be indexed accordingly.
E.g. range(2) would return the two sources with the highest score.
If None, this step will be skipped.
skew_criterion : float | int | list-like | slice
The indices of the sorted skewness scores. If float, sources with
scores smaller than the criterion will be dropped. Else, the scores
sorted in descending order will be indexed accordingly.
E.g. range(2) would return the two sources with the highest score.
If None, this step will be skipped.
kurt_criterion : float | int | list-like | slice
The indices of the sorted skewness scores. If float, sources with
scores smaller than the criterion will be dropped. Else, the scores
sorted in descending order will be indexed accordingly.
E.g. range(2) would return the two sources with the highest score.
If None, this step will be skipped.
var_criterion : float | int | list-like | slice
The indices of the sorted skewness scores. If float, sources with
scores smaller than the criterion will be dropped. Else, the scores
sorted in descending order will be indexed accordingly.
E.g. range(2) would return the two sources with the highest score.
If None, this step will be skipped.
add_nodes : list of ica_nodes
Additional list if tuples carrying the following parameters:
(name : str, target : str | array, score_func : callable,
criterion : float | int | list-like | slice). This parameter is a
generalization of the artifact specific parameters above and has
the same structure. Example::
add_nodes=('ECG phase lock', ECG 01', my_phase_lock_function, 0.5)
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
method : {'fastica', 'picard'}
The ICA method to use. Defaults to 'fastica'.
Returns
-------
ica : instance of ICA
The ICA object with detected artifact sources marked for exclusion.
"""
ica = ICA(n_components=n_components, max_pca_components=max_pca_components,
n_pca_components=n_pca_components, method=method,
noise_cov=noise_cov, random_state=random_state, verbose=verbose)
ica.fit(raw, start=start, stop=stop, picks=picks)
logger.info('%s' % ica)
logger.info(' Now searching for artifacts...')
_detect_artifacts(ica=ica, raw=raw, start_find=start_find,
stop_find=stop_find, ecg_ch=ecg_ch,
ecg_score_func=ecg_score_func,
ecg_criterion=ecg_criterion, eog_ch=eog_ch,
eog_score_func=eog_score_func,
eog_criterion=eog_criterion,
skew_criterion=skew_criterion,
kurt_criterion=kurt_criterion,
var_criterion=var_criterion,
add_nodes=add_nodes)
return ica
@verbose
def _band_pass_filter(ica, sources, target, l_freq, h_freq, verbose=None):
"""Optionally band-pass filter the data."""
if l_freq is not None and h_freq is not None:
logger.info('... filtering ICA sources')
# use FIR here, steeper is better
kw = dict(phase='zero-double', filter_length='10s', fir_window='hann',
l_trans_bandwidth=0.5, h_trans_bandwidth=0.5,
fir_design='firwin2')
sources = filter_data(sources, ica.info['sfreq'], l_freq, h_freq, **kw)
logger.info('... filtering target')
target = filter_data(target, ica.info['sfreq'], l_freq, h_freq, **kw)
elif l_freq is not None or h_freq is not None:
raise ValueError('Must specify both pass bands')
return sources, target
# #############################################################################
# CORRMAP
def _find_max_corrs(all_maps, target, threshold):
"""Compute correlations between template and target components."""
all_corrs = [compute_corr(target, subj.T) for subj in all_maps]
abs_corrs = [np.abs(a) for a in all_corrs]
corr_polarities = [np.sign(a) for a in all_corrs]
if threshold <= 1:
max_corrs = [list(np.nonzero(s_corr > threshold)[0])
for s_corr in abs_corrs]
else:
max_corrs = [list(find_outliers(s_corr, threshold=threshold))
for s_corr in abs_corrs]
am = [l[i] for l, i_s in zip(abs_corrs, max_corrs)
for i in i_s]
median_corr_with_target = np.median(am) if len(am) > 0 else 0
polarities = [l[i] for l, i_s in zip(corr_polarities, max_corrs)
for i in i_s]
maxmaps = [l[i] for l, i_s in zip(all_maps, max_corrs)
for i in i_s]
if len(maxmaps) == 0:
return [], 0, 0, []
newtarget = np.zeros(maxmaps[0].size)
std_of_maps = np.std(np.asarray(maxmaps))
mean_of_maps = np.std(np.asarray(maxmaps))
for maxmap, polarity in zip(maxmaps, polarities):
newtarget += (maxmap / std_of_maps - mean_of_maps) * polarity
newtarget /= len(maxmaps)
newtarget *= std_of_maps
sim_i_o = np.abs(np.corrcoef(target, newtarget)[1, 0])
return newtarget, median_corr_with_target, sim_i_o, max_corrs
@verbose
def corrmap(icas, template, threshold="auto", label=None, ch_type="eeg",
plot=True, show=True, verbose=None, outlines='head', layout=None,
sensors=True, contours=6, cmap=None):
"""Find similar Independent Components across subjects by map similarity.
Corrmap (Viola et al. 2009 Clin Neurophysiol) identifies the best group
match to a supplied template. Typically, feed it a list of fitted ICAs and
a template IC, for example, the blink for the first subject, to identify
specific ICs across subjects.
The specific procedure consists of two iterations. In a first step, the
maps best correlating with the template are identified. In the next step,
the analysis is repeated with the mean of the maps identified in the first
stage.
Run with `plot` and `show` set to `True` and `label=False` to find
good parameters. Then, run with labelling enabled to apply the
labelling in the IC objects. (Running with both `plot` and `labels`
off does nothing.)
Outputs a list of fitted ICAs with the indices of the marked ICs in a
specified field.
The original Corrmap website: www.debener.de/corrmap/corrmapplugin1.html
Parameters
----------
icas : list of mne.preprocessing.ICA
A list of fitted ICA objects.
template : tuple | np.ndarray, shape (n_components,)
Either a tuple with two elements (int, int) representing the list
indices of the set from which the template should be chosen, and the
template. E.g., if template=(1, 0), the first IC of the 2nd ICA object
is used.
Or a numpy array whose size corresponds to each IC map from the
supplied maps, in which case this map is chosen as the template.
threshold : "auto" | list of float | float
Correlation threshold for identifying ICs
If "auto", search for the best map by trying all correlations between
0.6 and 0.95. In the original proposal, lower values are considered,
but this is not yet implemented.
If list of floats, search for the best map in the specified range of
correlation strengths. As correlation values, must be between 0 and 1
If float > 0, select ICs correlating better than this.
If float > 1, use find_outliers to identify ICs within subjects (not in
original Corrmap)
Defaults to "auto".
label : None | str
If not None, categorised ICs are stored in a dictionary ``labels_``
under the given name. Preexisting entries will be appended to
(excluding repeats), not overwritten. If None, a dry run is performed
and the supplied ICs are not changed.
ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg'
The channel type to plot. Defaults to 'eeg'.
plot : bool
Should constructed template and selected maps be plotted? Defaults
to True.
show : bool
Show figures if True.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
outlines : 'head' | dict | None
The outlines to be drawn. If 'head', a head scheme will be drawn. If
dict, each key refers to a tuple of x and y positions. The values in
'mask_pos' will serve as image mask. If None, nothing will be drawn.
Defaults to 'head'. If dict, the 'autoshrink' (bool) field will
trigger automated shrinking of the positions due to points outside the
outline. Moreover, a matplotlib patch object can be passed for
advanced masking options, either directly or as a function that returns
patches (required for multi-axis plots).
layout : None | Layout | list of Layout
Layout instance specifying sensor positions (does not need to be
specified for Neuromag data). Or a list of Layout if projections
are from different sensor types.
sensors : bool | str
Add markers for sensor locations to the plot. Accepts matplotlib plot
format string (e.g., 'r+' for red plusses). If True, a circle will be
used (via .add_artist). Defaults to True.
contours : int | array of float
The number of contour lines to draw. If 0, no contours will be drawn.
When an integer, matplotlib ticker locator is used to find suitable
values for the contour thresholds (may sometimes be inaccurate, use
array for accuracy). If an array, the values represent the levels for
the contours. Defaults to 6.
cmap : None | matplotlib colormap
Colormap for the plot. If ``None``, defaults to 'Reds_r' for norm data,
otherwise to 'RdBu_r'.
Returns
-------
template_fig : fig
Figure showing the template.
labelled_ics : fig
Figure showing the labelled ICs in all ICA decompositions.
"""
if not isinstance(plot, bool):
raise ValueError("`plot` must be of type `bool`")
if threshold == 'auto':
threshold = np.arange(60, 95, dtype=np.float64) / 100.
all_maps = [ica.get_components().T for ica in icas]
# check if template is an index to one IC in one ICA object, or an array
if len(template) == 2:
target = all_maps[template[0]][template[1]]
is_subject = True
elif template.ndim == 1 and len(template) == all_maps[0].shape[1]:
target = template
is_subject = False
else:
raise ValueError("`template` must be a length-2 tuple or an array the "
"size of the ICA maps.")
template_fig, labelled_ics = None, None
if plot is True:
if is_subject: # plotting from an ICA object
ttl = 'Template from subj. {0}'.format(str(template[0]))
template_fig = icas[template[0]].plot_components(
picks=template[1], ch_type=ch_type, title=ttl,
outlines=outlines, cmap=cmap, contours=contours, layout=layout,
show=show)
else: # plotting an array
template_fig = _plot_corrmap([template], [0], [0], ch_type,
icas[0].copy(), "Template",
outlines=outlines, cmap=cmap,
contours=contours, layout=layout,
show=show, template=True)
template_fig.subplots_adjust(top=0.8)
template_fig.canvas.draw()
# first run: use user-selected map
if isinstance(threshold, (int, float)):
if len(all_maps) == 0:
logger.info('No component detected using find_outliers.'
' Consider using threshold="auto"')
return icas
nt, mt, s, mx = _find_max_corrs(all_maps, target, threshold)
elif len(threshold) > 1:
paths = [_find_max_corrs(all_maps, target, t) for t in threshold]
# find iteration with highest avg correlation with target
nt, mt, s, mx = paths[np.argmax([path[2] for path in paths])]
# second run: use output from first run
if isinstance(threshold, (int, float)):
if len(all_maps) == 0 or len(nt) == 0:
if threshold > 1:
logger.info('No component detected using find_outliers. '
'Consider using threshold="auto"')
return icas
nt, mt, s, mx = _find_max_corrs(all_maps, nt, threshold)
elif len(threshold) > 1:
paths = [_find_max_corrs(all_maps, nt, t) for t in threshold]
# find iteration with highest avg correlation with target
nt, mt, s, mx = paths[np.argmax([path[1] for path in paths])]
allmaps, indices, subjs, nones = [list() for _ in range(4)]
logger.info('Median correlation with constructed map: %0.3f' % mt)
if plot is True:
logger.info('Displaying selected ICs per subject.')
for ii, (ica, max_corr) in enumerate(zip(icas, mx)):
if len(max_corr) > 0:
if isinstance(max_corr[0], np.ndarray):
max_corr = max_corr[0]
if label is not None:
ica.labels_[label] = list(set(list(max_corr) +
ica.labels_.get(label, list())))
if plot is True:
allmaps.extend(ica.get_components()[:, max_corr].T)
subjs.extend([ii] * len(max_corr))
indices.extend(max_corr)
else:
if (label is not None) and (label not in ica.labels_):
ica.labels_[label] = list()
nones.append(ii)
if len(nones) == 0:
logger.info('At least 1 IC detected for each subject.')
else:
logger.info('No maps selected for subject(s) ' +
', '.join([str(x) for x in nones]) +
', consider a more liberal threshold.')
if plot is True:
labelled_ics = _plot_corrmap(allmaps, subjs, indices, ch_type, ica,
label, outlines=outlines, cmap=cmap,
contours=contours, layout=layout,
show=show)
return template_fig, labelled_ics
else:
return None
|