1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
|
# -*- coding: utf-8 -*-
# Authors: Mark Wronkiewicz <wronk.mark@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
# Jussi Nurminen <jnu@iki.fi>
# License: BSD (3-clause)
from functools import partial
from math import factorial
from os import path as op
import numpy as np
from scipy import linalg
from .. import __version__
from ..annotations import _annotations_starts_stops
from ..bem import _check_origin
from ..chpi import quat_to_rot, rot_to_quat
from ..transforms import (_str_to_frame, _get_trans, Transform, apply_trans,
_find_vector_rotation, _cart_to_sph, _get_n_moments,
_sph_to_cart_partials, _deg_ord_idx, _average_quats,
_sh_complex_to_real, _sh_real_to_complex, _sh_negate)
from ..forward import _concatenate_coils, _prep_meg_channels, _create_meg_coils
from ..surface import _normalize_vectors
from ..io.constants import FIFF, FWD
from ..io.meas_info import _simplify_info
from ..io.proc_history import _read_ctc
from ..io.write import _generate_meas_id, DATE_NONE
from ..io import _loc_to_coil_trans, _coil_trans_to_loc, BaseRaw
from ..io.pick import pick_types, pick_info
from ..utils import verbose, logger, _clean_names, warn, _time_mask, _pl
from ..fixes import _get_args, _safe_svd, _get_sph_harm, einsum
from ..externals.six import string_types
from ..channels.channels import _get_T1T2_mag_inds
# Note: Elekta uses single precision and some algorithms might use
# truncated versions of constants (e.g., μ0), which could lead to small
# differences between algorithms
@verbose
def maxwell_filter(raw, origin='auto', int_order=8, ext_order=3,
calibration=None, cross_talk=None, st_duration=None,
st_correlation=0.98, coord_frame='head', destination=None,
regularize='in', ignore_ref=False, bad_condition='error',
head_pos=None, st_fixed=True, st_only=False, mag_scale=100.,
skip_by_annotation=('edge', 'bad_acq_skip'), verbose=None):
u"""Apply Maxwell filter to data using multipole moments.
.. warning:: Automatic bad channel detection is not currently implemented.
It is critical to mark bad channels before running Maxwell
filtering to prevent artifact spreading.
.. warning:: Maxwell filtering in MNE is not designed or certified
for clinical use.
Parameters
----------
raw : instance of mne.io.Raw
Data to be filtered
origin : array-like, shape (3,) | str
Origin of internal and external multipolar moment space in meters.
The default is ``'auto'``, which means a head-digitization-based
origin fit when ``coord_frame='head'``, and ``(0., 0., 0.)`` when
``coord_frame='meg'``.
int_order : int
Order of internal component of spherical expansion.
ext_order : int
Order of external component of spherical expansion.
calibration : str | None
Path to the ``'.dat'`` file with fine calibration coefficients.
File can have 1D or 3D gradiometer imbalance correction.
This file is machine/site-specific.
cross_talk : str | None
Path to the FIF file with cross-talk correction information.
st_duration : float | None
If not None, apply spatiotemporal SSS with specified buffer duration
(in seconds). Elekta's default is 10.0 seconds in MaxFilter™ v2.2.
Spatiotemporal SSS acts as implicitly as a high-pass filter where the
cut-off frequency is 1/st_dur Hz. For this (and other) reasons, longer
buffers are generally better as long as your system can handle the
higher memory usage. To ensure that each window is processed
identically, choose a buffer length that divides evenly into your data.
Any data at the trailing edge that doesn't fit evenly into a whole
buffer window will be lumped into the previous buffer.
st_correlation : float
Correlation limit between inner and outer subspaces used to reject
ovwrlapping intersecting inner/outer signals during spatiotemporal SSS.
coord_frame : str
The coordinate frame that the ``origin`` is specified in, either
``'meg'`` or ``'head'``. For empty-room recordings that do not have
a head<->meg transform ``info['dev_head_t']``, the MEG coordinate
frame should be used.
destination : str | array-like, shape (3,) | None
The destination location for the head. Can be ``None``, which
will not change the head position, or a string path to a FIF file
containing a MEG device<->head transformation, or a 3-element array
giving the coordinates to translate to (with no rotations).
For example, ``destination=(0, 0, 0.04)`` would translate the bases
as ``--trans default`` would in MaxFilter™ (i.e., to the default
head location).
regularize : str | None
Basis regularization type, must be "in" or None.
"in" is the same algorithm as the "-regularize in" option in
MaxFilter™.
ignore_ref : bool
If True, do not include reference channels in compensation. This
option should be True for KIT files, since Maxwell filtering
with reference channels is not currently supported.
bad_condition : str
How to deal with ill-conditioned SSS matrices. Can be "error"
(default), "warning", "info", or "ignore".
head_pos : array | None
If array, movement compensation will be performed.
The array should be of shape (N, 10), holding the position
parameters as returned by e.g. `read_head_pos`.
.. versionadded:: 0.12
st_fixed : bool
If True (default), do tSSS using the median head position during the
``st_duration`` window. This is the default behavior of MaxFilter
and has been most extensively tested.
.. versionadded:: 0.12
st_only : bool
If True, only tSSS (temporal) projection of MEG data will be
performed on the output data. The non-tSSS parameters (e.g.,
``int_order``, ``calibration``, ``head_pos``, etc.) will still be
used to form the SSS bases used to calculate temporal projectors,
but the output MEG data will *only* have temporal projections
performed. Noise reduction from SSS basis multiplication,
cross-talk cancellation, movement compensation, and so forth
will not be applied to the data. This is useful, for example, when
evoked movement compensation will be performed with
:func:`mne.epochs.average_movements`.
.. versionadded:: 0.12
mag_scale : float | str
The magenetometer scale-factor used to bring the magnetometers
to approximately the same order of magnitude as the gradiometers
(default 100.), as they have different units (T vs T/m).
Can be ``'auto'`` to use the reciprocal of the physical distance
between the gradiometer pickup loops (e.g., 0.0168 m yields
59.5 for VectorView).
.. versionadded:: 0.13
skip_by_annotation : str | list of str
If a string (or list of str), any annotation segment that begins
with the given string will not be included in filtering, and
segments on either side of the given excluded annotated segment
will be filtered separately (i.e., as independent signals).
The default (``('edge', 'bad_acq_skip')`` will separately filter
any segments that were concatenated by :func:`mne.concatenate_raws`
or :meth:`mne.io.Raw.append`, or separated during acquisition.
To disable, provide an empty list.
.. versionadded:: 0.17
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
raw_sss : instance of mne.io.Raw
The raw data with Maxwell filtering applied.
See Also
--------
mne.chpi.filter_chpi
mne.chpi.read_head_pos
mne.epochs.average_movements
Notes
-----
.. versionadded:: 0.11
Some of this code was adapted and relicensed (with BSD form) with
permission from Jussi Nurminen. These algorithms are based on work
from [1]_ and [2]_.
.. note:: This code may use multiple CPU cores, see the
:ref:`FAQ <faq_cpu>` for more information.
Compared to Elekta's MaxFilter™ software, the MNE Maxwell filtering
routines currently provide the following features:
+-----------------------------------------------------------------------------+-----+-----------+
| Feature | MNE | MaxFilter |
+=============================================================================+=====+===========+
| Maxwell filtering software shielding | X | X |
+-----------------------------------------------------------------------------+-----+-----------+
| Bad channel reconstruction | X | X |
+-----------------------------------------------------------------------------+-----+-----------+
| Cross-talk cancellation | X | X |
+-----------------------------------------------------------------------------+-----+-----------+
| Fine calibration correction (1D) | X | X |
+-----------------------------------------------------------------------------+-----+-----------+
| Fine calibration correction (3D) | X | |
+-----------------------------------------------------------------------------+-----+-----------+
| Spatio-temporal SSS (tSSS) | X | X |
+-----------------------------------------------------------------------------+-----+-----------+
| Coordinate frame translation | X | X |
+-----------------------------------------------------------------------------+-----+-----------+
| Regularization using information theory | X | X |
+-----------------------------------------------------------------------------+-----+-----------+
| Movement compensation (raw) | X | X |
+-----------------------------------------------------------------------------+-----+-----------+
| Movement compensation (:func:`epochs <mne.epochs.average_movements>`) | X | |
+-----------------------------------------------------------------------------+-----+-----------+
| :func:`cHPI subtraction <mne.chpi.filter_chpi>` | X | X |
+-----------------------------------------------------------------------------+-----+-----------+
| Double floating point precision | X | |
+-----------------------------------------------------------------------------+-----+-----------+
| Seamless processing of split (``-1.fif``) and concatenated files | X | |
+-----------------------------------------------------------------------------+-----+-----------+
| Certified for clinical use | | X |
+-----------------------------------------------------------------------------+-----+-----------+
| Automatic bad channel detection | | X |
+-----------------------------------------------------------------------------+-----+-----------+
| Head position estimation | | X |
+-----------------------------------------------------------------------------+-----+-----------+
Epoch-based movement compensation is described in [1]_.
Use of Maxwell filtering routines with non-Elekta systems is currently
**experimental**. Worse results for non-Elekta systems are expected due
to (at least):
* Missing fine-calibration and cross-talk cancellation data for
other systems.
* Processing with reference sensors has not been vetted.
* Regularization of components may not work well for all systems.
* Coil integration has not been optimized using Abramowitz/Stegun
definitions.
.. note:: Various Maxwell filtering algorithm components are covered by
patents owned by Elekta Oy, Helsinki, Finland.
These patents include, but may not be limited to:
- US2006031038 (Signal Space Separation)
- US6876196 (Head position determination)
- WO2005067789 (DC fields)
- WO2005078467 (MaxShield)
- WO2006114473 (Temporal Signal Space Separation)
These patents likely preclude the use of Maxwell filtering code
in commercial applications. Consult a lawyer if necessary.
Currently, in order to perform Maxwell filtering, the raw data must not
have any projectors applied. During Maxwell filtering, the spatial
structure of the data is modified, so projectors are discarded (unless
in ``st_only=True`` mode).
References
----------
.. [1] Taulu S. and Kajola M. "Presentation of electromagnetic
multichannel data: The signal space separation method,"
Journal of Applied Physics, vol. 97, pp. 124905 1-10, 2005.
http://lib.tkk.fi/Diss/2008/isbn9789512295654/article2.pdf
.. [2] Taulu S. and Simola J. "Spatiotemporal signal space separation
method for rejecting nearby interference in MEG measurements,"
Physics in Medicine and Biology, vol. 51, pp. 1759-1768, 2006.
http://lib.tkk.fi/Diss/2008/isbn9789512295654/article3.pdf
""" # noqa: E501
# There are an absurd number of different possible notations for spherical
# coordinates, which confounds the notation for spherical harmonics. Here,
# we purposefully stay away from shorthand notation in both and use
# explicit terms (like 'azimuth' and 'polar') to avoid confusion.
# See mathworld.wolfram.com/SphericalHarmonic.html for more discussion.
# Our code follows the same standard that ``scipy`` uses for ``sph_harm``.
# triage inputs ASAP to avoid late-thrown errors
if not isinstance(raw, BaseRaw):
raise TypeError('raw must be Raw, not %s' % type(raw))
_check_usable(raw)
_check_regularize(regularize)
st_correlation = float(st_correlation)
if st_correlation <= 0. or st_correlation > 1.:
raise ValueError('Need 0 < st_correlation <= 1., got %s'
% st_correlation)
if coord_frame not in ('head', 'meg'):
raise ValueError('coord_frame must be either "head" or "meg", not "%s"'
% coord_frame)
head_frame = True if coord_frame == 'head' else False
recon_trans = _check_destination(destination, raw.info, head_frame)
onsets, ends = _annotations_starts_stops(
raw, skip_by_annotation, 'skip_by_annotation', invert=True)
max_samps = (ends - onsets).max()
if st_duration is not None:
st_duration = float(st_duration)
if not 0. < st_duration * raw.info['sfreq'] <= max_samps + 1.:
raise ValueError('st_duration (%0.1fs) must be between 0 and the '
'longest contiguous duration of the data '
'(%0.1fs).' % (st_duration,
max_samps / raw.info['sfreq']))
st_correlation = float(st_correlation)
st_duration = int(round(st_duration * raw.info['sfreq']))
if not 0. < st_correlation <= 1:
raise ValueError('st_correlation must be between 0. and 1.')
if not isinstance(bad_condition, string_types) or \
bad_condition not in ['error', 'warning', 'ignore', 'info']:
raise ValueError('bad_condition must be "error", "warning", "info", or'
' "ignore", not %s' % bad_condition)
if raw.info['dev_head_t'] is None and coord_frame == 'head':
raise RuntimeError('coord_frame cannot be "head" because '
'info["dev_head_t"] is None; if this is an '
'empty room recording, consider using '
'coord_frame="meg"')
if st_only and st_duration is None:
raise ValueError('st_duration must not be None if st_only is True')
head_pos = _check_pos(head_pos, head_frame, raw, st_fixed,
raw.info['sfreq'])
_check_info(raw.info, sss=not st_only, tsss=st_duration is not None,
calibration=not st_only and calibration is not None,
ctc=not st_only and cross_talk is not None)
# Now we can actually get moving
logger.info('Maxwell filtering raw data')
add_channels = (head_pos[0] is not None) and not st_only
raw_sss, pos_picks = _copy_preload_add_channels(
raw, add_channels=add_channels)
del raw
if not st_only:
# remove MEG projectors, they won't apply now
_remove_meg_projs(raw_sss)
info = raw_sss.info
meg_picks, mag_picks, grad_picks, good_picks, mag_or_fine = \
_get_mf_picks(info, int_order, ext_order, ignore_ref)
# Magnetometers are scaled to improve numerical stability
coil_scale, mag_scale = _get_coil_scale(
meg_picks, mag_picks, grad_picks, mag_scale, info)
#
# Fine calibration processing (load fine cal and overwrite sensor geometry)
#
sss_cal = dict()
if calibration is not None:
calibration, sss_cal = _update_sensor_geometry(info, calibration,
ignore_ref)
mag_or_fine.fill(True) # all channels now have some mag-type data
# Determine/check the origin of the expansion
origin = _check_origin(origin, info, coord_frame, disp=True)
# Convert to the head frame
if coord_frame == 'meg' and info['dev_head_t'] is not None:
origin_head = apply_trans(info['dev_head_t'], origin)
else:
origin_head = origin
orig_origin, orig_coord_frame = origin, coord_frame
del origin, coord_frame
origin_head.setflags(write=False)
n_in, n_out = _get_n_moments([int_order, ext_order])
#
# Cross-talk processing
#
if cross_talk is not None:
sss_ctc = _read_ctc(cross_talk)
ctc_chs = sss_ctc['proj_items_chs']
meg_ch_names = [info['ch_names'][p] for p in meg_picks]
# checking for extra space ambiguity in channel names
# between old and new fif files
if meg_ch_names[0] not in ctc_chs:
ctc_chs = _clean_names(ctc_chs, remove_whitespace=True)
missing = sorted(list(set(meg_ch_names) - set(ctc_chs)))
if len(missing) != 0:
raise RuntimeError('Missing MEG channels in cross-talk matrix:\n%s'
% missing)
missing = sorted(list(set(ctc_chs) - set(meg_ch_names)))
if len(missing) > 0:
warn('Not all cross-talk channels in raw:\n%s' % missing)
ctc_picks = [ctc_chs.index(info['ch_names'][c])
for c in meg_picks[good_picks]]
assert len(ctc_picks) == len(good_picks) # otherwise we errored
ctc = sss_ctc['decoupler'][ctc_picks][:, ctc_picks]
# I have no idea why, but MF transposes this for storage..
sss_ctc['decoupler'] = sss_ctc['decoupler'].T.tocsc()
else:
sss_ctc = dict()
#
# Translate to destination frame (always use non-fine-cal bases)
#
exp = dict(origin=origin_head, int_order=int_order, ext_order=0)
all_coils = _prep_mf_coils(info, ignore_ref)
S_recon = _trans_sss_basis(exp, all_coils, recon_trans, coil_scale)
exp['ext_order'] = ext_order
# Reconstruct data from internal space only (Eq. 38), and rescale S_recon
S_recon /= coil_scale
if recon_trans is not None:
# warn if we have translated too far
diff = 1000 * (info['dev_head_t']['trans'][:3, 3] -
recon_trans['trans'][:3, 3])
dist = np.sqrt(np.sum(_sq(diff)))
if dist > 25.:
warn('Head position change is over 25 mm (%s) = %0.1f mm'
% (', '.join('%0.1f' % x for x in diff), dist))
# Reconstruct raw file object with spatiotemporal processed data
max_st = dict()
if st_duration is not None:
if st_only:
job = FIFF.FIFFV_SSS_JOB_TPROJ
else:
job = FIFF.FIFFV_SSS_JOB_ST
max_st.update(job=job, subspcorr=st_correlation,
buflen=st_duration / info['sfreq'])
logger.info(' Processing data using tSSS with st_duration=%s'
% max_st['buflen'])
st_when = 'before' if st_fixed else 'after' # relative to movecomp
else:
# st_duration from here on will act like the chunk size
st_duration = max(int(round(10. * info['sfreq'])), 1)
st_correlation = None
st_when = 'never'
st_duration = min(max_samps, st_duration)
del st_fixed
# Generate time points to break up data into equal-length windows
starts, stops = list(), list()
for onset, end in zip(onsets, ends):
read_lims = np.arange(onset, end + 1, st_duration)
if len(read_lims) == 1:
read_lims = np.concatenate([read_lims, [end]])
if read_lims[-1] != end:
read_lims[-1] = end
# fold it into the previous buffer
n_last_buf = read_lims[-1] - read_lims[-2]
if st_correlation is not None and len(read_lims) > 2:
if n_last_buf >= st_duration:
logger.info(
' Spatiotemporal window did not fit evenly into'
'contiguous data segment. %0.2f seconds were lumped '
'into the previous window.'
% ((n_last_buf - st_duration) / info['sfreq'],))
else:
logger.info(
' Contiguous data segment of duration %0.2f '
'seconds is too short to be processed with tSSS '
'using duration %0.2f'
% (n_last_buf / info['sfreq'],
st_duration / info['sfreq']))
assert len(read_lims) >= 2
assert read_lims[0] == onset and read_lims[-1] == end
starts.extend(read_lims[:-1])
stops.extend(read_lims[1:])
del read_lims
#
# Do the heavy lifting
#
# Figure out which transforms we need for each tSSS block
# (and transform pos[1] to times)
head_pos[1] = raw_sss.time_as_index(head_pos[1], use_rounding=True)
# Compute the first bit of pos_data for cHPI reporting
if info['dev_head_t'] is not None and head_pos[0] is not None:
this_pos_quat = np.concatenate([
rot_to_quat(info['dev_head_t']['trans'][:3, :3]),
info['dev_head_t']['trans'][:3, 3],
np.zeros(3)])
else:
this_pos_quat = None
_get_this_decomp_trans = partial(
_get_decomp, all_coils=all_coils,
cal=calibration, regularize=regularize,
exp=exp, ignore_ref=ignore_ref, coil_scale=coil_scale,
grad_picks=grad_picks, mag_picks=mag_picks, good_picks=good_picks,
mag_or_fine=mag_or_fine, bad_condition=bad_condition,
mag_scale=mag_scale)
S_decomp, pS_decomp, reg_moments, n_use_in = _get_this_decomp_trans(
info['dev_head_t'], t=0.)
reg_moments_0 = reg_moments.copy()
# Loop through buffer windows of data
n_sig = int(np.floor(np.log10(max(len(starts), 0)))) + 1
logger.info(' Processing %s data chunk%s' % (len(starts), _pl(starts)))
for ii, (start, stop) in enumerate(zip(starts, stops)):
tsss_valid = (stop - start) >= st_duration
rel_times = raw_sss.times[start:stop]
t_str = '%8.3f - %8.3f sec' % tuple(rel_times[[0, -1]])
t_str += ('(#%d/%d)' % (ii + 1, len(starts))).rjust(2 * n_sig + 5)
# Get original data
orig_data = raw_sss._data[meg_picks[good_picks], start:stop]
# This could just be np.empty if not st_only, but shouldn't be slow
# this way so might as well just always take the original data
out_meg_data = raw_sss._data[meg_picks, start:stop]
# Apply cross-talk correction
if cross_talk is not None:
orig_data = ctc.dot(orig_data)
out_pos_data = np.empty((len(pos_picks), stop - start))
# Figure out which positions to use
t_s_s_q_a = _trans_starts_stops_quats(head_pos, start, stop,
this_pos_quat)
n_positions = len(t_s_s_q_a[0])
# Set up post-tSSS or do pre-tSSS
if st_correlation is not None:
# If doing tSSS before movecomp...
resid = orig_data.copy() # to be safe let's operate on a copy
if st_when == 'after':
orig_in_data = np.empty((len(meg_picks), stop - start))
else: # 'before'
avg_trans = t_s_s_q_a[-1]
if avg_trans is not None:
# if doing movecomp
S_decomp_st, pS_decomp_st, _, n_use_in_st = \
_get_this_decomp_trans(avg_trans, t=rel_times[0])
else:
S_decomp_st, pS_decomp_st = S_decomp, pS_decomp
n_use_in_st = n_use_in
orig_in_data = np.dot(np.dot(S_decomp_st[:, :n_use_in_st],
pS_decomp_st[:n_use_in_st]),
resid)
resid -= np.dot(np.dot(S_decomp_st[:, n_use_in_st:],
pS_decomp_st[n_use_in_st:]), resid)
resid -= orig_in_data
# Here we operate on our actual data
proc = out_meg_data if st_only else orig_data
_do_tSSS(proc, orig_in_data, resid, st_correlation,
n_positions, t_str, tsss_valid)
if not st_only or st_when == 'after':
# Do movement compensation on the data
for trans, rel_start, rel_stop, this_pos_quat in \
zip(*t_s_s_q_a[:4]):
# Recalculate bases if necessary (trans will be None iff the
# first position in this interval is the same as last of the
# previous interval)
if trans is not None:
S_decomp, pS_decomp, reg_moments, n_use_in = \
_get_this_decomp_trans(trans, t=rel_times[rel_start])
# Determine multipole moments for this interval
mm_in = np.dot(pS_decomp[:n_use_in],
orig_data[:, rel_start:rel_stop])
# Our output data
if not st_only:
out_meg_data[:, rel_start:rel_stop] = \
np.dot(S_recon.take(reg_moments[:n_use_in], axis=1),
mm_in)
if len(pos_picks) > 0:
out_pos_data[:, rel_start:rel_stop] = \
this_pos_quat[:, np.newaxis]
# Transform orig_data to store just the residual
if st_when == 'after':
# Reconstruct data using original location from external
# and internal spaces and compute residual
rel_resid_data = resid[:, rel_start:rel_stop]
orig_in_data[:, rel_start:rel_stop] = \
np.dot(S_decomp[:, :n_use_in], mm_in)
rel_resid_data -= np.dot(np.dot(S_decomp[:, n_use_in:],
pS_decomp[n_use_in:]),
rel_resid_data)
rel_resid_data -= orig_in_data[:, rel_start:rel_stop]
# If doing tSSS at the end
if st_when == 'after':
_do_tSSS(out_meg_data, orig_in_data, resid, st_correlation,
n_positions, t_str, tsss_valid)
elif st_when == 'never' and head_pos[0] is not None:
logger.info(' Used % 2d head position%s for %s'
% (n_positions, _pl(n_positions), t_str))
raw_sss._data[meg_picks, start:stop] = out_meg_data
raw_sss._data[pos_picks, start:stop] = out_pos_data
# Update info
if not st_only:
info['dev_head_t'] = recon_trans # set the reconstruction transform
_update_sss_info(raw_sss, orig_origin, int_order, ext_order,
len(good_picks), orig_coord_frame, sss_ctc, sss_cal,
max_st, reg_moments_0, st_only)
logger.info('[done]')
return raw_sss
def _get_coil_scale(meg_picks, mag_picks, grad_picks, mag_scale, info):
"""Get the magnetometer scale factor."""
if isinstance(mag_scale, string_types):
if mag_scale != 'auto':
raise ValueError('mag_scale must be a float or "auto", got "%s"'
% mag_scale)
if len(mag_picks) in (0, len(meg_picks)):
mag_scale = 100. # only one coil type, doesn't matter
logger.info(' Setting mag_scale=%0.2f because only one '
'coil type is present' % mag_scale)
else:
# Find our physical distance between gradiometer pickup loops
# ("base line")
coils = _create_meg_coils([info['chs'][pick]
for pick in meg_picks], 'accurate')
grad_base = set(coils[pick]['base'] for pick in grad_picks)
if len(grad_base) != 1 or list(grad_base)[0] <= 0:
raise RuntimeError('Could not automatically determine '
'mag_scale, could not find one '
'proper gradiometer distance from: %s'
% list(grad_base))
grad_base = list(grad_base)[0]
mag_scale = 1. / grad_base
logger.info(' Setting mag_scale=%0.2f based on gradiometer '
'distance %0.2f mm' % (mag_scale, 1000 * grad_base))
mag_scale = float(mag_scale)
coil_scale = np.ones((len(meg_picks), 1))
coil_scale[mag_picks] = mag_scale
return coil_scale, mag_scale
def _remove_meg_projs(inst):
"""Remove inplace existing MEG projectors (assumes inactive)."""
meg_picks = pick_types(inst.info, meg=True, exclude=[])
meg_channels = [inst.ch_names[pi] for pi in meg_picks]
non_meg_proj = list()
for proj in inst.info['projs']:
if not any(c in meg_channels for c in proj['data']['col_names']):
non_meg_proj.append(proj)
inst.add_proj(non_meg_proj, remove_existing=True, verbose=False)
def _check_destination(destination, info, head_frame):
"""Triage our reconstruction trans."""
if destination is None:
return info['dev_head_t']
if not head_frame:
raise RuntimeError('destination can only be set if using the '
'head coordinate frame')
if isinstance(destination, string_types):
recon_trans = _get_trans(destination, 'meg', 'head')[0]
elif isinstance(destination, Transform):
recon_trans = destination
else:
destination = np.array(destination, float)
if destination.shape != (3,):
raise ValueError('destination must be a 3-element vector, '
'str, or None')
recon_trans = np.eye(4)
recon_trans[:3, 3] = destination
recon_trans = Transform('meg', 'head', recon_trans)
if recon_trans.to_str != 'head' or recon_trans.from_str != 'MEG device':
raise RuntimeError('Destination transform is not MEG device -> head, '
'got %s -> %s' % (recon_trans.from_str,
recon_trans.to_str))
return recon_trans
def _prep_mf_coils(info, ignore_ref=True):
"""Get all coil integration information loaded and sorted."""
coils, comp_coils = _prep_meg_channels(
info, accurate=True, head_frame=False,
ignore_ref=ignore_ref, do_picking=False, verbose=False)[:2]
mag_mask = _get_mag_mask(coils)
if len(comp_coils) > 0:
meg_picks = pick_types(info, meg=True, ref_meg=False, exclude=[])
ref_picks = pick_types(info, meg=False, ref_meg=True, exclude=[])
inserts = np.searchsorted(meg_picks, ref_picks)
# len(inserts) == len(comp_coils)
for idx, comp_coil in zip(inserts[::-1], comp_coils[::-1]):
coils.insert(idx, comp_coil)
# Now we have:
# [c['chname'] for c in coils] ==
# [info['ch_names'][ii]
# for ii in pick_types(info, meg=True, ref_meg=True)]
# Now coils is a sorted list of coils. Time to do some vectorization.
n_coils = len(coils)
rmags = np.concatenate([coil['rmag'] for coil in coils])
cosmags = np.concatenate([coil['cosmag'] for coil in coils])
ws = np.concatenate([coil['w'] for coil in coils])
cosmags *= ws[:, np.newaxis]
del ws
n_int = np.array([len(coil['rmag']) for coil in coils])
bins = np.repeat(np.arange(len(n_int)), n_int)
bd = np.concatenate(([0], np.cumsum(n_int)))
slice_map = dict((ii, slice(start, stop))
for ii, (start, stop) in enumerate(zip(bd[:-1], bd[1:])))
return rmags, cosmags, bins, n_coils, mag_mask, slice_map
def _trans_starts_stops_quats(pos, start, stop, this_pos_data):
"""Get all trans and limits we need."""
pos_idx = np.arange(*np.searchsorted(pos[1], [start, stop]))
used = np.zeros(stop - start, bool)
trans = list()
rel_starts = list()
rel_stops = list()
quats = list()
weights = list()
for ti in range(-1, len(pos_idx)):
# first iteration for this block of data
if ti < 0:
rel_start = 0
rel_stop = pos[1][pos_idx[0]] if len(pos_idx) > 0 else stop
rel_stop = rel_stop - start
if rel_start == rel_stop:
continue # our first pos occurs on first time sample
# Don't calculate S_decomp here, use the last one
trans.append(None) # meaning: use previous
quats.append(this_pos_data)
else:
rel_start = pos[1][pos_idx[ti]] - start
if ti == len(pos_idx) - 1:
rel_stop = stop - start
else:
rel_stop = pos[1][pos_idx[ti + 1]] - start
trans.append(pos[0][pos_idx[ti]])
quats.append(pos[2][pos_idx[ti]])
assert 0 <= rel_start
assert rel_start < rel_stop
assert rel_stop <= stop - start
assert not used[rel_start:rel_stop].any()
used[rel_start:rel_stop] = True
rel_starts.append(rel_start)
rel_stops.append(rel_stop)
weights.append(rel_stop - rel_start)
assert used.all()
# Use weighted average for average trans over the window
if this_pos_data is None:
avg_trans = None
else:
weights = np.array(weights)
quats = np.array(quats)
weights = weights / weights.sum().astype(float) # int -> float
avg_quat = _average_quats(quats[:, :3], weights)
avg_t = np.dot(weights, quats[:, 3:6])
avg_trans = np.vstack([
np.hstack([quat_to_rot(avg_quat), avg_t[:, np.newaxis]]),
[[0., 0., 0., 1.]]])
return trans, rel_starts, rel_stops, quats, avg_trans
def _do_tSSS(clean_data, orig_in_data, resid, st_correlation,
n_positions, t_str, tsss_valid):
"""Compute and apply SSP-like projection vectors based on min corr."""
if not tsss_valid:
t_proj = np.empty((clean_data.shape[1], 0))
else:
np.asarray_chkfinite(resid)
t_proj = _overlap_projector(orig_in_data, resid, st_correlation)
# Apply projector according to Eq. 12 in [2]_
msg = (' Projecting %2d intersecting tSSS component%s '
'for %s' % (t_proj.shape[1], _pl(t_proj.shape[1], ' '), t_str))
if n_positions > 1:
msg += ' (across %2d position%s)' % (n_positions,
_pl(n_positions, ' '))
logger.info(msg)
clean_data -= np.dot(np.dot(clean_data, t_proj), t_proj.T)
def _copy_preload_add_channels(raw, add_channels):
"""Load data for processing and (maybe) add cHPI pos channels."""
raw = raw.copy()
if add_channels:
kinds = [FIFF.FIFFV_QUAT_1, FIFF.FIFFV_QUAT_2, FIFF.FIFFV_QUAT_3,
FIFF.FIFFV_QUAT_4, FIFF.FIFFV_QUAT_5, FIFF.FIFFV_QUAT_6,
FIFF.FIFFV_HPI_G, FIFF.FIFFV_HPI_ERR, FIFF.FIFFV_HPI_MOV]
out_shape = (len(raw.ch_names) + len(kinds), len(raw.times))
out_data = np.zeros(out_shape, np.float64)
msg = ' Appending head position result channels and '
if raw.preload:
logger.info(msg + 'copying original raw data')
out_data[:len(raw.ch_names)] = raw._data
raw._data = out_data
else:
logger.info(msg + 'loading raw data from disk')
raw._preload_data(out_data[:len(raw.ch_names)], verbose=False)
raw._data = out_data
assert raw.preload is True
off = len(raw.ch_names)
chpi_chs = [
dict(ch_name='CHPI%03d' % (ii + 1), logno=ii + 1,
scanno=off + ii + 1, unit_mul=-1, range=1., unit=-1,
kind=kinds[ii], coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
cal=1e-4, coil_type=FWD.COIL_UNKNOWN, loc=np.zeros(12))
for ii in range(len(kinds))]
raw.info['chs'].extend(chpi_chs)
raw.info._update_redundant()
raw.info._check_consistency()
assert raw._data.shape == (raw.info['nchan'], len(raw.times))
# Return the pos picks
pos_picks = np.arange(len(raw.ch_names) - len(chpi_chs),
len(raw.ch_names))
return raw, pos_picks
else:
if not raw.preload:
logger.info(' Loading raw data from disk')
raw.load_data(verbose=False)
else:
logger.info(' Using loaded raw data')
return raw, np.array([], int)
def _check_pos(pos, head_frame, raw, st_fixed, sfreq):
"""Check for a valid pos array and transform it to a more usable form."""
if pos is None:
return [None, np.array([-1])]
if not head_frame:
raise ValueError('positions can only be used if coord_frame="head"')
if not st_fixed:
warn('st_fixed=False is untested, use with caution!')
if not isinstance(pos, np.ndarray):
raise TypeError('pos must be an ndarray')
if pos.ndim != 2 or pos.shape[1] != 10:
raise ValueError('pos must be an array of shape (N, 10)')
t = pos[:, 0]
if not np.array_equal(t, np.unique(t)):
raise ValueError('Time points must unique and in ascending order')
# We need an extra 1e-3 (1 ms) here because MaxFilter outputs values
# only out to 3 decimal places
if not _time_mask(t, tmin=raw._first_time - 1e-3, tmax=None,
sfreq=sfreq).all():
raise ValueError('Head position time points must be greater than '
'first sample offset, but found %0.4f < %0.4f'
% (t[0], raw._first_time))
max_dist = np.sqrt(np.sum(pos[:, 4:7] ** 2, axis=1)).max()
if max_dist > 1.:
warn('Found a distance greater than 1 m (%0.3g m) from the device '
'origin, positions may be invalid and Maxwell filtering could '
'fail' % (max_dist,))
dev_head_ts = np.zeros((len(t), 4, 4))
dev_head_ts[:, 3, 3] = 1.
dev_head_ts[:, :3, 3] = pos[:, 4:7]
dev_head_ts[:, :3, :3] = quat_to_rot(pos[:, 1:4])
pos = [dev_head_ts, t - raw._first_time, pos[:, 1:]]
return pos
def _get_decomp(trans, all_coils, cal, regularize, exp, ignore_ref,
coil_scale, grad_picks, mag_picks, good_picks, mag_or_fine,
bad_condition, t, mag_scale):
"""Get a decomposition matrix and pseudoinverse matrices."""
#
# Fine calibration processing (point-like magnetometers and calib. coeffs)
#
S_decomp = _get_s_decomp(exp, all_coils, trans, coil_scale, cal,
ignore_ref, grad_picks, mag_picks, good_picks,
mag_scale)
#
# Regularization
#
S_decomp, pS_decomp, sing, reg_moments, n_use_in = _regularize(
regularize, exp, S_decomp, mag_or_fine, t=t)
# Pseudo-inverse of total multipolar moment basis set (Part of Eq. 37)
cond = sing[0] / sing[-1]
logger.debug(' Decomposition matrix condition: %0.1f' % cond)
if bad_condition != 'ignore' and cond >= 1000.:
msg = 'Matrix is badly conditioned: %0.0f >= 1000' % cond
if bad_condition == 'error':
raise RuntimeError(msg)
elif bad_condition == 'warning':
warn(msg)
else: # condition == 'info'
logger.info(msg)
# Build in our data scaling here
pS_decomp *= coil_scale[good_picks].T
S_decomp /= coil_scale[good_picks]
return S_decomp, pS_decomp, reg_moments, n_use_in
def _get_s_decomp(exp, all_coils, trans, coil_scale, cal, ignore_ref,
grad_picks, mag_picks, good_picks, mag_scale):
"""Get S_decomp."""
S_decomp = _trans_sss_basis(exp, all_coils, trans, coil_scale)
if cal is not None:
# Compute point-like mags to incorporate gradiometer imbalance
grad_cals = _sss_basis_point(exp, trans, cal, ignore_ref, mag_scale)
# Add point like magnetometer data to bases.
S_decomp[grad_picks, :] += grad_cals
# Scale magnetometers by calibration coefficient
S_decomp[mag_picks, :] /= cal['mag_cals']
# We need to be careful about KIT gradiometers
S_decomp = S_decomp[good_picks]
return S_decomp
@verbose
def _regularize(regularize, exp, S_decomp, mag_or_fine, t, verbose=None):
"""Regularize a decomposition matrix."""
# ALWAYS regularize the out components according to norm, since
# gradiometer-only setups (e.g., KIT) can have zero first-order
# (homogeneous field) components
int_order, ext_order = exp['int_order'], exp['ext_order']
n_in, n_out = _get_n_moments([int_order, ext_order])
t_str = '%8.3f' % t
if regularize is not None: # regularize='in'
in_removes, out_removes = _regularize_in(
int_order, ext_order, S_decomp, mag_or_fine)
else:
in_removes = []
out_removes = _regularize_out(int_order, ext_order, mag_or_fine)
reg_in_moments = np.setdiff1d(np.arange(n_in), in_removes)
reg_out_moments = np.setdiff1d(np.arange(n_in, n_in + n_out),
out_removes)
n_use_in = len(reg_in_moments)
n_use_out = len(reg_out_moments)
reg_moments = np.concatenate((reg_in_moments, reg_out_moments))
S_decomp = S_decomp.take(reg_moments, axis=1)
pS_decomp, sing = _col_norm_pinv(S_decomp.copy())
if regularize is not None or n_use_out != n_out:
logger.info(' Using %s/%s harmonic components for %s '
'(%s/%s in, %s/%s out)'
% (n_use_in + n_use_out, n_in + n_out, t_str,
n_use_in, n_in, n_use_out, n_out))
return S_decomp, pS_decomp, sing, reg_moments, n_use_in
def _get_mf_picks(info, int_order, ext_order, ignore_ref=False):
"""Pick types for Maxwell filtering."""
# Check for T1/T2 mag types
mag_inds_T1T2 = _get_T1T2_mag_inds(info)
if len(mag_inds_T1T2) > 0:
warn('%d T1/T2 magnetometer channel types found. If using SSS, it is '
'advised to replace coil types using "fix_mag_coil_types".'
% len(mag_inds_T1T2))
# Get indices of channels to use in multipolar moment calculation
ref = not ignore_ref
meg_picks = pick_types(info, meg=True, ref_meg=ref, exclude=[])
meg_info = pick_info(_simplify_info(info), meg_picks)
del info
good_picks = pick_types(meg_info, meg=True, ref_meg=ref, exclude='bads')
n_bases = _get_n_moments([int_order, ext_order]).sum()
if n_bases > len(good_picks):
raise ValueError('Number of requested bases (%s) exceeds number of '
'good sensors (%s)' % (str(n_bases), len(good_picks)))
recons = [ch for ch in meg_info['bads']]
if len(recons) > 0:
logger.info(' Bad MEG channels being reconstructed: %s' % recons)
else:
logger.info(' No bad MEG channels')
ref_meg = False if ignore_ref else 'mag'
mag_picks = pick_types(meg_info, meg='mag', ref_meg=ref_meg, exclude=[])
ref_meg = False if ignore_ref else 'grad'
grad_picks = pick_types(meg_info, meg='grad', ref_meg=ref_meg, exclude=[])
assert len(mag_picks) + len(grad_picks) == len(meg_info['ch_names'])
# Determine which are magnetometers for external basis purposes
mag_or_fine = np.zeros(len(meg_picks), bool)
mag_or_fine[mag_picks] = True
# KIT gradiometers are marked as having units T, not T/M (argh)
# We need a separate variable for this because KIT grads should be
# treated mostly like magnetometers (e.g., scaled by 100) for reg
coil_types = np.array([ch['coil_type'] for ch in meg_info['chs']])
mag_or_fine[(coil_types & 0xFFFF) == FIFF.FIFFV_COIL_KIT_GRAD] = False
# The same thing goes for CTF gradiometers...
ctf_grads = [FIFF.FIFFV_COIL_CTF_GRAD,
FIFF.FIFFV_COIL_CTF_REF_GRAD,
FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD]
mag_or_fine[np.in1d(coil_types, ctf_grads)] = False
msg = (' Processing %s gradiometers and %s magnetometers'
% (len(grad_picks), len(mag_picks)))
n_kit = len(mag_picks) - mag_or_fine.sum()
if n_kit > 0:
msg += ' (of which %s are actually KIT gradiometers)' % n_kit
logger.info(msg)
return meg_picks, mag_picks, grad_picks, good_picks, mag_or_fine
def _check_regularize(regularize):
"""Ensure regularize is valid."""
if not (regularize is None or (isinstance(regularize, string_types) and
regularize in ('in',))):
raise ValueError('regularize must be None or "in"')
def _check_usable(inst):
"""Ensure our data are clean."""
if inst.proj:
raise RuntimeError('Projectors cannot be applied to data during '
'Maxwell filtering.')
current_comp = inst.compensation_grade
if current_comp not in (0, None):
raise RuntimeError('Maxwell filter cannot be done on compensated '
'channels, but data have been compensated with '
'grade %s.' % current_comp)
def _col_norm_pinv(x):
"""Compute the pinv with column-normalization to stabilize calculation.
Note: will modify/overwrite x.
"""
norm = np.sqrt(np.sum(x * x, axis=0))
x /= norm
u, s, v = _safe_svd(x, full_matrices=False, **check_disable)
v /= norm
return np.dot(v.T * 1. / s, u.T), s
def _sq(x):
"""Square quickly."""
return x * x
def _check_finite(data):
"""Ensure data is finite."""
if not np.isfinite(data).all():
raise RuntimeError('data contains non-finite numbers')
def _sph_harm_norm(order, degree):
"""Compute normalization factor for spherical harmonics."""
# we could use scipy.special.poch(degree + order + 1, -2 * order)
# here, but it's slower for our fairly small degree
norm = np.sqrt((2 * degree + 1.) / (4 * np.pi))
if order != 0:
norm *= np.sqrt(factorial(degree - order) /
float(factorial(degree + order)))
return norm
def _concatenate_sph_coils(coils):
"""Concatenate MEG coil parameters for spherical harmoncs."""
rs = np.concatenate([coil['r0_exey'] for coil in coils])
wcoils = np.concatenate([coil['w'] for coil in coils])
ezs = np.concatenate([np.tile(coil['ez'][np.newaxis, :],
(len(coil['rmag']), 1))
for coil in coils])
bins = np.repeat(np.arange(len(coils)),
[len(coil['rmag']) for coil in coils])
return rs, wcoils, ezs, bins
_mu_0 = 4e-7 * np.pi # magnetic permeability
def _get_mag_mask(coils):
"""Get the coil_scale for Maxwell filtering."""
return np.array([coil['coil_class'] == FWD.COILC_MAG for coil in coils])
def _sss_basis_basic(exp, coils, mag_scale=100., method='standard'):
"""Compute SSS basis using non-optimized (but more readable) algorithms."""
int_order, ext_order = exp['int_order'], exp['ext_order']
origin = exp['origin']
# Compute vector between origin and coil, convert to spherical coords
if method == 'standard':
# Get position, normal, weights, and number of integration pts.
rmags, cosmags, ws, bins = _concatenate_coils(coils)
rmags -= origin
# Convert points to spherical coordinates
rad, az, pol = _cart_to_sph(rmags).T
cosmags *= ws[:, np.newaxis]
del rmags, ws
out_type = np.float64
else: # testing equivalence method
rs, wcoils, ezs, bins = _concatenate_sph_coils(coils)
rs -= origin
rad, az, pol = _cart_to_sph(rs).T
ezs *= wcoils[:, np.newaxis]
del rs, wcoils
out_type = np.complex128
del origin
# Set up output matrices
n_in, n_out = _get_n_moments([int_order, ext_order])
S_tot = np.empty((len(coils), n_in + n_out), out_type)
S_in = S_tot[:, :n_in]
S_out = S_tot[:, n_in:]
coil_scale = np.ones((len(coils), 1))
coil_scale[_get_mag_mask(coils)] = mag_scale
# Compute internal/external basis vectors (exclude degree 0; L/RHS Eq. 5)
for degree in range(1, max(int_order, ext_order) + 1):
# Only loop over positive orders, negative orders are handled
# for efficiency within
for order in range(degree + 1):
S_in_out = list()
grads_in_out = list()
# Same spherical harmonic is used for both internal and external
sph = _get_sph_harm()(order, degree, az, pol)
sph_norm = _sph_harm_norm(order, degree)
# Compute complex gradient for all integration points
# in spherical coordinates (Eq. 6). The gradient for rad, az, pol
# is obtained by taking the partial derivative of Eq. 4 w.r.t. each
# coordinate.
az_factor = 1j * order * sph / np.sin(np.maximum(pol, 1e-16))
pol_factor = (-sph_norm * np.sin(pol) * np.exp(1j * order * az) *
_alegendre_deriv(order, degree, np.cos(pol)))
if degree <= int_order:
S_in_out.append(S_in)
in_norm = _mu_0 * rad ** -(degree + 2)
g_rad = in_norm * (-(degree + 1.) * sph)
g_az = in_norm * az_factor
g_pol = in_norm * pol_factor
grads_in_out.append(_sph_to_cart_partials(az, pol,
g_rad, g_az, g_pol))
if degree <= ext_order:
S_in_out.append(S_out)
out_norm = _mu_0 * rad ** (degree - 1)
g_rad = out_norm * degree * sph
g_az = out_norm * az_factor
g_pol = out_norm * pol_factor
grads_in_out.append(_sph_to_cart_partials(az, pol,
g_rad, g_az, g_pol))
for spc, grads in zip(S_in_out, grads_in_out):
# We could convert to real at the end, but it's more efficient
# to do it now
if method == 'standard':
grads_pos_neg = [_sh_complex_to_real(grads, order)]
orders_pos_neg = [order]
# Deal with the negative orders
if order > 0:
# it's faster to use the conjugation property for
# our normalized spherical harmonics than recalculate
grads_pos_neg.append(_sh_complex_to_real(
_sh_negate(grads, order), -order))
orders_pos_neg.append(-order)
for gr, oo in zip(grads_pos_neg, orders_pos_neg):
# Gradients dotted w/integration point weighted normals
gr = einsum('ij,ij->i', gr, cosmags)
vals = np.bincount(bins, gr, len(coils))
spc[:, _deg_ord_idx(degree, oo)] = -vals
else:
grads = einsum('ij,ij->i', grads, ezs)
v = (np.bincount(bins, grads.real, len(coils)) +
1j * np.bincount(bins, grads.imag, len(coils)))
spc[:, _deg_ord_idx(degree, order)] = -v
if order > 0:
spc[:, _deg_ord_idx(degree, -order)] = \
-_sh_negate(v, order)
# Scale magnetometers
S_tot *= coil_scale
if method != 'standard':
# Eventually we could probably refactor this for 2x mem (and maybe CPU)
# savings by changing how spc/S_tot is assigned above (real only)
S_tot = _bases_complex_to_real(S_tot, int_order, ext_order)
return S_tot
def _sss_basis(exp, all_coils):
"""Compute SSS basis for given conditions.
Parameters
----------
exp : dict
Must contain the following keys:
origin : ndarray, shape (3,)
Origin of the multipolar moment space in millimeters
int_order : int
Order of the internal multipolar moment space
ext_order : int
Order of the external multipolar moment space
coils : list
List of MEG coils. Each should contain coil information dict specifying
position, normals, weights, number of integration points and channel
type. All coil geometry must be in the same coordinate frame
as ``origin`` (``head`` or ``meg``).
Returns
-------
bases : ndarray, shape (n_coils, n_mult_moments)
Internal and external basis sets as a single ndarray.
Notes
-----
Does not incorporate magnetometer scaling factor or normalize spaces.
Adapted from code provided by Jukka Nenonen.
"""
rmags, cosmags, bins, n_coils = all_coils[:4]
int_order, ext_order = exp['int_order'], exp['ext_order']
n_in, n_out = _get_n_moments([int_order, ext_order])
S_tot = np.empty((n_coils, n_in + n_out), np.float64)
rmags = rmags - exp['origin']
S_in = S_tot[:, :n_in]
S_out = S_tot[:, n_in:]
# do the heavy lifting
max_order = max(int_order, ext_order)
L = _tabular_legendre(rmags, max_order)
phi = np.arctan2(rmags[:, 1], rmags[:, 0])
r_n = np.sqrt(np.sum(rmags * rmags, axis=1))
r_xy = np.sqrt(rmags[:, 0] * rmags[:, 0] + rmags[:, 1] * rmags[:, 1])
cos_pol = rmags[:, 2] / r_n # cos(theta); theta 0...pi
sin_pol = np.sqrt(1. - cos_pol * cos_pol) # sin(theta)
z_only = (r_xy <= 1e-16)
r_xy[z_only] = 1.
cos_az = rmags[:, 0] / r_xy # cos(phi)
cos_az[z_only] = 1.
sin_az = rmags[:, 1] / r_xy # sin(phi)
sin_az[z_only] = 0.
del rmags
# Appropriate vector spherical harmonics terms
# JNE 2012-02-08: modified alm -> 2*alm, blm -> -2*blm
r_nn2 = r_n.copy()
r_nn1 = 1.0 / (r_n * r_n)
for degree in range(max_order + 1):
if degree <= ext_order:
r_nn1 *= r_n # r^(l-1)
if degree <= int_order:
r_nn2 *= r_n # r^(l+2)
# mu_0*sqrt((2l+1)/4pi (l-m)!/(l+m)!)
mult = 2e-7 * np.sqrt((2 * degree + 1) * np.pi)
if degree > 0:
idx = _deg_ord_idx(degree, 0)
# alpha
if degree <= int_order:
b_r = mult * (degree + 1) * L[degree][0] / r_nn2
b_pol = -mult * L[degree][1] / r_nn2
S_in[:, idx] = _integrate_points(
cos_az, sin_az, cos_pol, sin_pol, b_r, 0., b_pol,
cosmags, bins, n_coils)
# beta
if degree <= ext_order:
b_r = -mult * degree * L[degree][0] * r_nn1
b_pol = -mult * L[degree][1] * r_nn1
S_out[:, idx] = _integrate_points(
cos_az, sin_az, cos_pol, sin_pol, b_r, 0., b_pol,
cosmags, bins, n_coils)
for order in range(1, degree + 1):
ord_phi = order * phi
sin_order = np.sin(ord_phi)
cos_order = np.cos(ord_phi)
mult /= np.sqrt((degree - order + 1) * (degree + order))
factor = mult * np.sqrt(2) # equivalence fix (Elekta uses 2.)
# Real
idx = _deg_ord_idx(degree, order)
r_fact = factor * L[degree][order] * cos_order
az_fact = factor * order * sin_order * L[degree][order]
pol_fact = -factor * (L[degree][order + 1] -
(degree + order) * (degree - order + 1) *
L[degree][order - 1]) * cos_order
# alpha
if degree <= int_order:
b_r = (degree + 1) * r_fact / r_nn2
b_az = az_fact / (sin_pol * r_nn2)
b_az[z_only] = 0.
b_pol = pol_fact / (2 * r_nn2)
S_in[:, idx] = _integrate_points(
cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol,
cosmags, bins, n_coils)
# beta
if degree <= ext_order:
b_r = -degree * r_fact * r_nn1
b_az = az_fact * r_nn1 / sin_pol
b_az[z_only] = 0.
b_pol = pol_fact * r_nn1 / 2.
S_out[:, idx] = _integrate_points(
cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol,
cosmags, bins, n_coils)
# Imaginary
idx = _deg_ord_idx(degree, -order)
r_fact = factor * L[degree][order] * sin_order
az_fact = factor * order * cos_order * L[degree][order]
pol_fact = factor * (L[degree][order + 1] -
(degree + order) * (degree - order + 1) *
L[degree][order - 1]) * sin_order
# alpha
if degree <= int_order:
b_r = -(degree + 1) * r_fact / r_nn2
b_az = az_fact / (sin_pol * r_nn2)
b_az[z_only] = 0.
b_pol = pol_fact / (2 * r_nn2)
S_in[:, idx] = _integrate_points(
cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol,
cosmags, bins, n_coils)
# beta
if degree <= ext_order:
b_r = degree * r_fact * r_nn1
b_az = az_fact * r_nn1 / sin_pol
b_az[z_only] = 0.
b_pol = pol_fact * r_nn1 / 2.
S_out[:, idx] = _integrate_points(
cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol,
cosmags, bins, n_coils)
return S_tot
def _integrate_points(cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol,
cosmags, bins, n_coils):
"""Integrate points in spherical coords."""
grads = _sp_to_cart(cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol).T
grads = einsum('ij,ij->i', grads, cosmags)
return np.bincount(bins, grads, n_coils)
def _tabular_legendre(r, nind):
"""Compute associated Legendre polynomials."""
r_n = np.sqrt(np.sum(r * r, axis=1))
x = r[:, 2] / r_n # cos(theta)
L = list()
for degree in range(nind + 1):
L.append(np.zeros((degree + 2, len(r))))
L[0][0] = 1.
pnn = 1.
fact = 1.
sx2 = np.sqrt((1. - x) * (1. + x))
for degree in range(nind + 1):
L[degree][degree] = pnn
pnn *= (-fact * sx2)
fact += 2.
if degree < nind:
L[degree + 1][degree] = x * (2 * degree + 1) * L[degree][degree]
if degree >= 2:
for order in range(degree - 1):
L[degree][order] = (x * (2 * degree - 1) *
L[degree - 1][order] -
(degree + order - 1) *
L[degree - 2][order]) / (degree - order)
return L
def _sp_to_cart(cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol):
"""Convert spherical coords to cartesian."""
return np.array([(sin_pol * cos_az * b_r +
cos_pol * cos_az * b_pol - sin_az * b_az),
(sin_pol * sin_az * b_r +
cos_pol * sin_az * b_pol + cos_az * b_az),
cos_pol * b_r - sin_pol * b_pol])
def _get_degrees_orders(order):
"""Get the set of degrees used in our basis functions."""
degrees = np.zeros(_get_n_moments(order), int)
orders = np.zeros_like(degrees)
for degree in range(1, order + 1):
# Only loop over positive orders, negative orders are handled
# for efficiency within
for order in range(degree + 1):
ii = _deg_ord_idx(degree, order)
degrees[ii] = degree
orders[ii] = order
ii = _deg_ord_idx(degree, -order)
degrees[ii] = degree
orders[ii] = -order
return degrees, orders
def _alegendre_deriv(order, degree, val):
"""Compute the derivative of the associated Legendre polynomial at a value.
Parameters
----------
order : int
Order of spherical harmonic. (Usually) corresponds to 'm'.
degree : int
Degree of spherical harmonic. (Usually) corresponds to 'l'.
val : float
Value to evaluate the derivative at.
Returns
-------
dPlm : float
Associated Legendre function derivative
"""
from scipy.special import lpmv
assert order >= 0
return (order * val * lpmv(order, degree, val) + (degree + order) *
(degree - order + 1.) * np.sqrt(1. - val * val) *
lpmv(order - 1, degree, val)) / (1. - val * val)
def _bases_complex_to_real(complex_tot, int_order, ext_order):
"""Convert complex spherical harmonics to real."""
n_in, n_out = _get_n_moments([int_order, ext_order])
complex_in = complex_tot[:, :n_in]
complex_out = complex_tot[:, n_in:]
real_tot = np.empty(complex_tot.shape, np.float64)
real_in = real_tot[:, :n_in]
real_out = real_tot[:, n_in:]
for comp, real, exp_order in zip([complex_in, complex_out],
[real_in, real_out],
[int_order, ext_order]):
for deg in range(1, exp_order + 1):
for order in range(deg + 1):
idx_pos = _deg_ord_idx(deg, order)
idx_neg = _deg_ord_idx(deg, -order)
real[:, idx_pos] = _sh_complex_to_real(comp[:, idx_pos], order)
if order != 0:
# This extra mult factor baffles me a bit, but it works
# in round-trip testing, so we'll keep it :(
mult = (-1 if order % 2 == 0 else 1)
real[:, idx_neg] = mult * _sh_complex_to_real(
comp[:, idx_neg], -order)
return real_tot
def _bases_real_to_complex(real_tot, int_order, ext_order):
"""Convert real spherical harmonics to complex."""
n_in, n_out = _get_n_moments([int_order, ext_order])
real_in = real_tot[:, :n_in]
real_out = real_tot[:, n_in:]
comp_tot = np.empty(real_tot.shape, np.complex128)
comp_in = comp_tot[:, :n_in]
comp_out = comp_tot[:, n_in:]
for real, comp, exp_order in zip([real_in, real_out],
[comp_in, comp_out],
[int_order, ext_order]):
for deg in range(1, exp_order + 1):
# only loop over positive orders, figure out neg from pos
for order in range(deg + 1):
idx_pos = _deg_ord_idx(deg, order)
idx_neg = _deg_ord_idx(deg, -order)
this_comp = _sh_real_to_complex([real[:, idx_pos],
real[:, idx_neg]], order)
comp[:, idx_pos] = this_comp
comp[:, idx_neg] = _sh_negate(this_comp, order)
return comp_tot
def _check_info(info, sss=True, tsss=True, calibration=True, ctc=True):
"""Ensure that Maxwell filtering has not been applied yet."""
for ent in info['proc_history']:
for msg, key, doing in (('SSS', 'sss_info', sss),
('tSSS', 'max_st', tsss),
('fine calibration', 'sss_cal', calibration),
('cross-talk cancellation', 'sss_ctc', ctc)):
if not doing:
continue
if len(ent['max_info'][key]) > 0:
raise RuntimeError('Maxwell filtering %s step has already '
'been applied, cannot reapply' % msg)
def _update_sss_info(raw, origin, int_order, ext_order, nchan, coord_frame,
sss_ctc, sss_cal, max_st, reg_moments, st_only):
"""Update info inplace after Maxwell filtering.
Parameters
----------
raw : instance of mne.io.Raw
Data to be filtered
origin : array-like, shape (3,)
Origin of internal and external multipolar moment space in head coords
and in millimeters
int_order : int
Order of internal component of spherical expansion
ext_order : int
Order of external component of spherical expansion
nchan : int
Number of sensors
sss_ctc : dict
The cross talk information.
sss_cal : dict
The calibration information.
max_st : dict
The tSSS information.
reg_moments : ndarray | slice
The moments that were used.
st_only : bool
Whether tSSS only was performed.
"""
n_in, n_out = _get_n_moments([int_order, ext_order])
raw.info['maxshield'] = False
components = np.zeros(n_in + n_out).astype('int32')
components[reg_moments] = 1
sss_info_dict = dict(in_order=int_order, out_order=ext_order,
nchan=nchan, origin=origin.astype('float32'),
job=FIFF.FIFFV_SSS_JOB_FILTER,
nfree=np.sum(components[:n_in]),
frame=_str_to_frame[coord_frame],
components=components)
max_info_dict = dict(max_st=max_st)
if st_only:
max_info_dict.update(sss_info=dict(), sss_cal=dict(), sss_ctc=dict())
else:
max_info_dict.update(sss_info=sss_info_dict, sss_cal=sss_cal,
sss_ctc=sss_ctc)
# Reset 'bads' for any MEG channels since they've been reconstructed
_reset_meg_bads(raw.info)
block_id = _generate_meas_id()
raw.info['proc_history'].insert(0, dict(
max_info=max_info_dict, block_id=block_id, date=DATE_NONE,
creator='mne-python v%s' % __version__, experimenter=''))
def _reset_meg_bads(info):
"""Reset MEG bads."""
meg_picks = pick_types(info, meg=True, exclude=[])
info['bads'] = [bad for bad in info['bads']
if info['ch_names'].index(bad) not in meg_picks]
check_disable = dict() # not available on really old versions of SciPy
if 'check_finite' in _get_args(linalg.svd):
check_disable['check_finite'] = False
def _orth_overwrite(A):
"""Create a slightly more efficient 'orth'."""
# adapted from scipy/linalg/decomp_svd.py
u, s = _safe_svd(A, full_matrices=False, **check_disable)[:2]
M, N = A.shape
eps = np.finfo(float).eps
tol = max(M, N) * np.amax(s) * eps
num = np.sum(s > tol, dtype=int)
return u[:, :num]
def _overlap_projector(data_int, data_res, corr):
"""Calculate projector for removal of subspace intersection in tSSS."""
# corr necessary to deal with noise when finding identical signal
# directions in the subspace. See the end of the Results section in [2]_
# Note that the procedure here is an updated version of [2]_ (and used in
# Elekta's tSSS) that uses residuals instead of internal/external spaces
# directly. This provides more degrees of freedom when analyzing for
# intersections between internal and external spaces.
# Normalize data, then compute orth to get temporal bases. Matrices
# must have shape (n_samps x effective_rank) when passed into svd
# computation
# we use np.linalg.norm instead of sp.linalg.norm here: ~2x faster!
n = np.linalg.norm(data_int)
n = 1. if n == 0 else n # all-zero data should gracefully continue
data_int = _orth_overwrite((data_int / n).T)
n = np.linalg.norm(data_res)
n = 1. if n == 0 else n
data_res = _orth_overwrite((data_res / n).T)
if data_int.shape[1] == 0 or data_res.shape[1] == 0:
return np.empty((data_int.shape[0], 0))
Q_int = linalg.qr(data_int,
overwrite_a=True, mode='economic', **check_disable)[0].T
Q_res = linalg.qr(data_res,
overwrite_a=True, mode='economic', **check_disable)[0]
C_mat = np.dot(Q_int, Q_res)
del Q_int
# Compute angles between subspace and which bases to keep
S_intersect, Vh_intersect = _safe_svd(C_mat, full_matrices=False,
**check_disable)[1:]
del C_mat
intersect_mask = (S_intersect >= corr)
del S_intersect
# Compute projection operator as (I-LL_T) Eq. 12 in [2]_
# V_principal should be shape (n_time_pts x n_retained_inds)
Vh_intersect = Vh_intersect[intersect_mask].T
V_principal = np.dot(Q_res, Vh_intersect)
return V_principal
def _update_sensor_geometry(info, fine_cal, ignore_ref):
"""Replace sensor geometry information and reorder cal_chs."""
from ._fine_cal import read_fine_calibration
logger.info(' Using fine calibration %s' % op.basename(fine_cal))
fine_cal = read_fine_calibration(fine_cal) # filename -> dict
ch_names = _clean_names(info['ch_names'], remove_whitespace=True)
info_to_cal = dict()
missing = list()
for ci, name in enumerate(fine_cal['ch_names']):
if name not in ch_names:
missing.append(name)
else:
oi = ch_names.index(name)
info_to_cal[oi] = ci
meg_picks = pick_types(info, meg=True, exclude=[])
if len(info_to_cal) != len(meg_picks):
raise RuntimeError(
'Not all MEG channels found in fine calibration file, missing:\n%s'
% sorted(list(set(ch_names[pick] for pick in meg_picks) -
set(fine_cal['ch_names']))))
if len(missing):
warn('Found cal channel%s not in data: %s' % (_pl(missing), missing))
grad_picks = pick_types(info, meg='grad', exclude=())
mag_picks = pick_types(info, meg='mag', exclude=())
# Determine gradiometer imbalances and magnetometer calibrations
grad_imbalances = np.array([fine_cal['imb_cals'][info_to_cal[gi]]
for gi in grad_picks]).T
if grad_imbalances.shape[0] not in [1, 3]:
raise ValueError('Must have 1 (x) or 3 (x, y, z) point-like ' +
'magnetometers. Currently have %i' %
grad_imbalances.shape[0])
mag_cals = np.array([fine_cal['imb_cals'][info_to_cal[mi]]
for mi in mag_picks])
# Now let's actually construct our point-like adjustment coils for grads
grad_coilsets = _get_grad_point_coilsets(
info, n_types=len(grad_imbalances), ignore_ref=ignore_ref)
calibration = dict(grad_imbalances=grad_imbalances,
grad_coilsets=grad_coilsets, mag_cals=mag_cals)
# Replace sensor locations (and track differences) for fine calibration
ang_shift = np.zeros((len(fine_cal['ch_names']), 3))
used = np.zeros(len(info['chs']), bool)
cal_corrs = list()
cal_chans = list()
adjust_logged = False
for oi, ci in info_to_cal.items():
assert ch_names[oi] == fine_cal['ch_names'][ci]
assert not used[oi]
used[oi] = True
info_ch = info['chs'][oi]
ch_num = int(fine_cal['ch_names'][ci].lstrip('MEG').lstrip('0'))
cal_chans.append([ch_num, info_ch['coil_type']])
# Some .dat files might only rotate EZ, so we must check first that
# EX and EY are orthogonal to EZ. If not, we find the rotation between
# the original and fine-cal ez, and rotate EX and EY accordingly:
ch_coil_rot = _loc_to_coil_trans(info_ch['loc'])[:3, :3]
cal_loc = fine_cal['locs'][ci].copy()
cal_coil_rot = _loc_to_coil_trans(cal_loc)[:3, :3]
if np.max([np.abs(np.dot(cal_coil_rot[:, ii], cal_coil_rot[:, 2]))
for ii in range(2)]) > 1e-6: # X or Y not orthogonal
if not adjust_logged:
logger.info(' Adjusting non-orthogonal EX and EY')
adjust_logged = True
# find the rotation matrix that goes from one to the other
this_trans = _find_vector_rotation(ch_coil_rot[:, 2],
cal_coil_rot[:, 2])
cal_loc[3:] = np.dot(this_trans, ch_coil_rot).T.ravel()
# calculate shift angle
v1 = _loc_to_coil_trans(cal_loc)[:3, :3]
_normalize_vectors(v1)
v2 = _loc_to_coil_trans(info_ch['loc'])[:3, :3]
_normalize_vectors(v2)
ang_shift[ci] = np.sum(v1 * v2, axis=0)
if oi in grad_picks:
extra = [1., fine_cal['imb_cals'][ci][0]]
else:
extra = [fine_cal['imb_cals'][ci][0], 0.]
cal_corrs.append(np.concatenate([extra, cal_loc]))
# Adjust channel normal orientations with those from fine calibration
# Channel positions are not changed
info_ch['loc'][3:] = cal_loc[3:]
assert (info_ch['coord_frame'] == FIFF.FIFFV_COORD_DEVICE)
assert used[meg_picks].all()
assert not used[np.setdiff1d(np.arange(len(used)), meg_picks)].any()
ang_shift = ang_shift[list(info_to_cal.values())] # subselect used ones
# This gets written to the Info struct
sss_cal = dict(cal_corrs=np.array(cal_corrs),
cal_chans=np.array(cal_chans))
# Log quantification of sensor changes
# Deal with numerical precision giving absolute vals slightly more than 1.
np.clip(ang_shift, -1., 1., ang_shift)
np.rad2deg(np.arccos(ang_shift), ang_shift) # Convert to degrees
logger.info(' Adjusted coil positions by (μ ± σ): '
'%0.1f° ± %0.1f° (max: %0.1f°)' %
(np.mean(ang_shift), np.std(ang_shift),
np.max(np.abs(ang_shift))))
return calibration, sss_cal
def _get_grad_point_coilsets(info, n_types, ignore_ref):
"""Get point-type coilsets for gradiometers."""
_rotations = dict(
x=np.array([[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1.]]),
y=np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1.]]),
z=np.eye(4))
grad_coilsets = list()
grad_info = pick_info(
_simplify_info(info), pick_types(info, meg='grad', exclude=[]))
# Coil_type values for x, y, z point magnetometers
# Note: 1D correction files only have x-direction corrections
for ch in grad_info['chs']:
ch['coil_type'] = FIFF.FIFFV_COIL_POINT_MAGNETOMETER
orig_locs = [ch['loc'].copy() for ch in grad_info['chs']]
for rot in 'xyz'[:n_types]:
# Rotate the Z magnetometer orientation to the destination orientation
for ci, ch in enumerate(grad_info['chs']):
ch['loc'][3:] = _coil_trans_to_loc(np.dot(
_loc_to_coil_trans(orig_locs[ci]),
_rotations[rot]))[3:]
grad_coilsets.append(_prep_mf_coils(grad_info, ignore_ref))
return grad_coilsets
def _sss_basis_point(exp, trans, cal, ignore_ref=False, mag_scale=100.):
"""Compute multipolar moments for point-like mags (in fine cal)."""
# Loop over all coordinate directions desired and create point mags
S_tot = 0.
# These are magnetometers, so use a uniform coil_scale of 100.
this_cs = np.array([mag_scale], float)
for imb, coils in zip(cal['grad_imbalances'], cal['grad_coilsets']):
S_add = _trans_sss_basis(exp, coils, trans, this_cs)
# Scale spaces by gradiometer imbalance
S_add *= imb[:, np.newaxis]
S_tot += S_add
# Return point-like mag bases
return S_tot
def _regularize_out(int_order, ext_order, mag_or_fine):
"""Regularize out components based on norm."""
n_in = _get_n_moments(int_order)
out_removes = list(np.arange(0 if mag_or_fine.any() else 3) + n_in)
return list(out_removes)
def _regularize_in(int_order, ext_order, S_decomp, mag_or_fine):
"""Regularize basis set using idealized SNR measure."""
n_in, n_out = _get_n_moments([int_order, ext_order])
# The "signal" terms depend only on the inner expansion order
# (i.e., not sensor geometry or head position / expansion origin)
a_lm_sq, rho_i = _compute_sphere_activation_in(
np.arange(int_order + 1))
degrees, orders = _get_degrees_orders(int_order)
a_lm_sq = a_lm_sq[degrees]
I_tots = np.zeros(n_in) # we might not traverse all, so use np.zeros
in_keepers = list(range(n_in))
out_removes = _regularize_out(int_order, ext_order, mag_or_fine)
out_keepers = list(np.setdiff1d(np.arange(n_in, n_in + n_out),
out_removes))
remove_order = []
S_decomp = S_decomp.copy()
use_norm = np.sqrt(np.sum(S_decomp * S_decomp, axis=0))
S_decomp /= use_norm
eigs = np.zeros((n_in, 2))
# plot = False # for debugging
# if plot:
# import matplotlib.pyplot as plt
# fig, axs = plt.subplots(3, figsize=[6, 12])
# plot_ord = np.empty(n_in, int)
# plot_ord.fill(-1)
# count = 0
# # Reorder plot to match MF
# for degree in range(1, int_order + 1):
# for order in range(0, degree + 1):
# assert plot_ord[count] == -1
# plot_ord[count] = _deg_ord_idx(degree, order)
# count += 1
# if order > 0:
# assert plot_ord[count] == -1
# plot_ord[count] = _deg_ord_idx(degree, -order)
# count += 1
# assert count == n_in
# assert (plot_ord >= 0).all()
# assert len(np.unique(plot_ord)) == n_in
noise_lev = 5e-13 # noise level in T/m
noise_lev *= noise_lev # effectively what would happen by earlier multiply
for ii in range(n_in):
this_S = S_decomp.take(in_keepers + out_keepers, axis=1)
u, s, v = _safe_svd(this_S, full_matrices=False, **check_disable)
del this_S
eigs[ii] = s[[0, -1]]
v = v.T[:len(in_keepers)]
v /= use_norm[in_keepers][:, np.newaxis]
eta_lm_sq = np.dot(v * 1. / s, u.T)
del u, s, v
eta_lm_sq *= eta_lm_sq
eta_lm_sq = eta_lm_sq.sum(axis=1)
eta_lm_sq *= noise_lev
# Mysterious scale factors to match Elekta, likely due to differences
# in the basis normalizations...
eta_lm_sq[orders[in_keepers] == 0] *= 2
eta_lm_sq *= 0.0025
snr = a_lm_sq[in_keepers] / eta_lm_sq
I_tots[ii] = 0.5 * np.log2(snr + 1.).sum()
remove_order.append(in_keepers[np.argmin(snr)])
in_keepers.pop(in_keepers.index(remove_order[-1]))
# heuristic to quit if we're past the peak to save cycles
if ii > 10 and (I_tots[ii - 1:ii + 1] < 0.95 * I_tots.max()).all():
break
# if plot and ii == 0:
# axs[0].semilogy(snr[plot_ord[in_keepers]], color='k')
# if plot:
# axs[0].set(ylabel='SNR', ylim=[0.1, 500], xlabel='Component')
# axs[1].plot(I_tots)
# axs[1].set(ylabel='Information', xlabel='Iteration')
# axs[2].plot(eigs[:, 0] / eigs[:, 1])
# axs[2].set(ylabel='Condition', xlabel='Iteration')
# Pick the components that give at least 98% of max info
# This is done because the curves can be quite flat, and we err on the
# side of including rather than excluding components
max_info = np.max(I_tots)
lim_idx = np.where(I_tots >= 0.98 * max_info)[0][0]
in_removes = remove_order[:lim_idx]
for ii, ri in enumerate(in_removes):
logger.debug(' Condition %0.3f/%0.3f = %03.1f, '
'Removing in component %s: l=%s, m=%+0.0f'
% (tuple(eigs[ii]) + (eigs[ii, 0] / eigs[ii, 1],
ri, degrees[ri], orders[ri])))
logger.debug(' Resulting information: %0.1f bits/sample '
'(%0.1f%% of peak %0.1f)'
% (I_tots[lim_idx], 100 * I_tots[lim_idx] / max_info,
max_info))
return in_removes, out_removes
def _compute_sphere_activation_in(degrees):
u"""Compute the "in" power from random currents in a sphere.
Parameters
----------
degrees : ndarray
The degrees to evaluate.
Returns
-------
a_power : ndarray
The a_lm associated for the associated degrees (see [1]_).
rho_i : float
The current density.
References
----------
.. [1] A 122-channel whole-cortex SQUID system for measuring the brain’s
magnetic fields. Knuutila et al. IEEE Transactions on Magnetics,
Vol 29 No 6, Nov 1993.
"""
r_in = 0.080 # radius of the randomly-activated sphere
# set the observation point r=r_s, az=el=0, so we can just look at m=0 term
# compute the resulting current density rho_i
# This is the "surface" version of the equation:
# b_r_in = 100e-15 # fixed radial field amplitude at distance r_s = 100 fT
# r_s = 0.13 # 5 cm from the surface
# rho_degrees = np.arange(1, 100)
# in_sum = (rho_degrees * (rho_degrees + 1.) /
# ((2. * rho_degrees + 1.)) *
# (r_in / r_s) ** (2 * rho_degrees + 2)).sum() * 4. * np.pi
# rho_i = b_r_in * 1e7 / np.sqrt(in_sum)
# rho_i = 5.21334885574e-07 # value for r_s = 0.125
rho_i = 5.91107375632e-07 # deterministic from above, so just store it
a_power = _sq(rho_i) * (degrees * r_in ** (2 * degrees + 4) /
(_sq(2. * degrees + 1.) *
(degrees + 1.)))
return a_power, rho_i
def _trans_sss_basis(exp, all_coils, trans=None, coil_scale=100.):
"""Compute SSS basis (optionally) using a dev<->head trans."""
if trans is not None:
if not isinstance(trans, Transform):
trans = Transform('meg', 'head', trans)
assert not np.isnan(trans['trans']).any()
all_coils = (apply_trans(trans, all_coils[0]),
apply_trans(trans, all_coils[1], move=False),
) + all_coils[2:]
if not isinstance(coil_scale, np.ndarray):
# Scale all magnetometers (with `coil_class` == 1.0) by `mag_scale`
cs = coil_scale
coil_scale = np.ones((all_coils[3], 1))
coil_scale[all_coils[4]] = cs
S_tot = _sss_basis(exp, all_coils)
S_tot *= coil_scale
return S_tot
|