1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
import numpy as np
from .. utils import logger, verbose
@verbose
def peak_finder(x0, thresh=None, extrema=1, verbose=None):
"""Noise-tolerant fast peak-finding algorithm.
Parameters
----------
x0 : 1d array
A real vector from the maxima will be found (required).
thresh : float
The amount above surrounding data for a peak to be
identified (default = (max(x0)-min(x0))/4). Larger values mean
the algorithm is more selective in finding peaks.
extrema : {-1, 1}
1 if maxima are desired, -1 if minima are desired
(default = maxima, 1).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
peak_loc : array
The indices of the identified peaks in x0
peak_mag : array
The magnitude of the identified peaks
Note
----
If repeated values are found the first is identified as the peak.
Conversion from initial Matlab code from:
Nathanael C. Yoder (ncyoder@purdue.edu)
Examples
--------
>>> import numpy as np
>>> from mne.preprocessing.peak_finder import peak_finder
>>> t = np.arange(0, 3, 0.01)
>>> x = np.sin(np.pi*t) - np.sin(0.5*np.pi*t)
>>> peak_locs, peak_mags = peak_finder(x)
>>> peak_locs # doctest: +SKIP
array([36, 260]) # doctest: +SKIP
>>> peak_mags # doctest: +SKIP
array([0.36900026, 1.76007351]) # doctest: +SKIP
"""
x0 = np.asanyarray(x0)
s = x0.size
if x0.ndim >= 2 or s == 0:
raise ValueError('The input data must be a non empty 1D vector')
if thresh is None:
thresh = (np.max(x0) - np.min(x0)) / 4
assert extrema in [-1, 1]
if extrema == -1:
x0 = extrema * x0 # Make it so we are finding maxima regardless
dx0 = np.diff(x0) # Find derivative
# This is so we find the first of repeated values
dx0[dx0 == 0] = -np.finfo(float).eps
# Find where the derivative changes sign
ind = np.where(dx0[:-1:] * dx0[1::] < 0)[0] + 1
# Include endpoints in potential peaks and valleys
x = np.concatenate((x0[:1], x0[ind], x0[-1:]))
ind = np.concatenate(([0], ind, [s - 1]))
# x only has the peaks, valleys, and endpoints
length = x.size
min_mag = np.min(x)
if length > 2: # Function with peaks and valleys
# Set initial parameters for loop
temp_mag = min_mag
found_peak = False
left_min = min_mag
# Deal with first point a little differently since tacked it on
# Calculate the sign of the derivative since we taked the first point
# on it does not necessarily alternate like the rest.
signDx = np.sign(np.diff(x[:3]))
if signDx[0] <= 0: # The first point is larger or equal to the second
ii = -1
if signDx[0] == signDx[1]: # Want alternating signs
x = np.concatenate((x[:1], x[2:]))
ind = np.concatenate((ind[:1], ind[2:]))
length -= 1
else: # First point is smaller than the second
ii = 0
if signDx[0] == signDx[1]: # Want alternating signs
x = x[1:]
ind = ind[1:]
length -= 1
# Preallocate max number of maxima
maxPeaks = int(np.ceil(length / 2.0))
peak_loc = np.zeros(maxPeaks, dtype=np.int)
peak_mag = np.zeros(maxPeaks)
c_ind = 0
# Loop through extrema which should be peaks and then valleys
while ii < (length - 1):
ii += 1 # This is a peak
# Reset peak finding if we had a peak and the next peak is bigger
# than the last or the left min was small enough to reset.
if found_peak and ((x[ii] > peak_mag[-1]) or
(left_min < peak_mag[-1] - thresh)):
temp_mag = min_mag
found_peak = False
# Make sure we don't iterate past the length of our vector
if ii == length - 1:
break # We assign the last point differently out of the loop
# Found new peak that was lager than temp mag and threshold larger
# than the minimum to its left.
if (x[ii] > temp_mag) and (x[ii] > left_min + thresh):
temp_loc = ii
temp_mag = x[ii]
ii += 1 # Move onto the valley
# Come down at least thresh from peak
if not found_peak and (temp_mag > (thresh + x[ii])):
found_peak = True # We have found a peak
left_min = x[ii]
peak_loc[c_ind] = temp_loc # Add peak to index
peak_mag[c_ind] = temp_mag
c_ind += 1
elif x[ii] < left_min: # New left minima
left_min = x[ii]
# Check end point
if (x[-1] > temp_mag) and (x[-1] > (left_min + thresh)):
peak_loc[c_ind] = length - 1
peak_mag[c_ind] = x[-1]
c_ind += 1
elif not found_peak and temp_mag > min_mag:
# Check if we still need to add the last point
peak_loc[c_ind] = temp_loc
peak_mag[c_ind] = temp_mag
c_ind += 1
# Create output
peak_inds = ind[peak_loc[:c_ind]]
peak_mags = peak_mag[:c_ind]
else: # This is a monotone function where an endpoint is the only peak
x_ind = np.argmax(x)
peak_mags = x[x_ind]
if peak_mags > (min_mag + thresh):
peak_inds = ind[x_ind]
else:
peak_mags = []
peak_inds = []
# Change sign of data if was finding minima
if extrema < 0:
peak_mags *= -1.0
x0 = -x0
# ensure output type array
if not isinstance(peak_inds, np.ndarray):
peak_inds = np.atleast_1d(peak_inds).astype('int64')
if not isinstance(peak_mags, np.ndarray):
peak_mags = np.atleast_1d(peak_mags).astype('float64')
# Plot if no output desired
if len(peak_inds) == 0:
logger.info('No significant peaks found')
return peak_inds, peak_mags
|