1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)
import copy as cp
import numpy as np
from .. import Epochs, compute_proj_evoked, compute_proj_epochs
from ..utils import logger, verbose, warn
from .. import pick_types
from ..io import make_eeg_average_ref_proj
from .ecg import find_ecg_events
from .eog import find_eog_events
def _safe_del_key(dict_, key):
"""Aux function.
Use this function when preparing rejection parameters
instead of directly deleting keys.
"""
if key in dict_:
del dict_[key]
@verbose
def _compute_exg_proj(mode, raw, raw_event, tmin, tmax,
n_grad, n_mag, n_eeg, l_freq, h_freq,
average, filter_length, n_jobs, ch_name,
reject, flat, bads, avg_ref, no_proj, event_id,
exg_l_freq, exg_h_freq, tstart, qrs_threshold,
filter_method, iir_params, return_drop_log, copy,
verbose):
"""Compute SSP/PCA projections for ECG or EOG artifacts."""
raw = raw.copy() if copy else raw
del copy
raw.load_data() # we will filter it later
if no_proj:
projs = []
else:
projs = cp.deepcopy(raw.info['projs'])
logger.info('Including %d SSP projectors from raw file'
% len(projs))
if avg_ref:
eeg_proj = make_eeg_average_ref_proj(raw.info)
projs.append(eeg_proj)
if raw_event is None:
raw_event = raw
assert mode in ('ECG', 'EOG') # internal function
logger.info('Running %s SSP computation' % mode)
if mode == 'ECG':
events, _, _ = find_ecg_events(raw_event, ch_name=ch_name,
event_id=event_id, l_freq=exg_l_freq,
h_freq=exg_h_freq, tstart=tstart,
qrs_threshold=qrs_threshold,
filter_length=filter_length)
else: # mode == 'EOG':
events = find_eog_events(raw_event, event_id=event_id,
l_freq=exg_l_freq, h_freq=exg_h_freq,
filter_length=filter_length, ch_name=ch_name,
tstart=tstart)
# Check to make sure we actually got at least one usable event
if events.shape[0] < 1:
warn('No %s events found, returning None for projs' % mode)
return (None, events) + (([],) if return_drop_log else ())
logger.info('Computing projector')
my_info = cp.deepcopy(raw.info)
my_info['bads'] += bads
# Handler rejection parameters
if reject is not None: # make sure they didn't pass None
if len(pick_types(my_info, meg='grad', eeg=False, eog=False,
ref_meg=False, exclude='bads')) == 0:
_safe_del_key(reject, 'grad')
if len(pick_types(my_info, meg='mag', eeg=False, eog=False,
ref_meg=False, exclude='bads')) == 0:
_safe_del_key(reject, 'mag')
if len(pick_types(my_info, meg=False, eeg=True, eog=False,
ref_meg=False, exclude='bads')) == 0:
_safe_del_key(reject, 'eeg')
if len(pick_types(my_info, meg=False, eeg=False, eog=True,
ref_meg=False, exclude='bads')) == 0:
_safe_del_key(reject, 'eog')
if flat is not None: # make sure they didn't pass None
if len(pick_types(my_info, meg='grad', eeg=False, eog=False,
ref_meg=False, exclude='bads')) == 0:
_safe_del_key(flat, 'grad')
if len(pick_types(my_info, meg='mag', eeg=False, eog=False,
ref_meg=False, exclude='bads')) == 0:
_safe_del_key(flat, 'mag')
if len(pick_types(my_info, meg=False, eeg=True, eog=False,
ref_meg=False, exclude='bads')) == 0:
_safe_del_key(flat, 'eeg')
if len(pick_types(my_info, meg=False, eeg=False, eog=True,
ref_meg=False, exclude='bads')) == 0:
_safe_del_key(flat, 'eog')
# exclude bad channels from projection
# keep reference channels if compensation channels are present
ref_meg = len(my_info['comps']) > 0
picks = pick_types(my_info, meg=True, eeg=True, eog=True, ecg=True,
ref_meg=ref_meg, exclude='bads')
raw.filter(l_freq, h_freq, picks=picks, filter_length=filter_length,
n_jobs=n_jobs, method=filter_method, iir_params=iir_params,
l_trans_bandwidth=0.5, h_trans_bandwidth=0.5,
phase='zero-double', fir_design='firwin2')
epochs = Epochs(raw, events, None, tmin, tmax, baseline=None, preload=True,
picks=picks, reject=reject, flat=flat, proj=True)
drop_log = epochs.drop_log
if epochs.events.shape[0] < 1:
warn('No good epochs found, returning None for projs')
return (None, events) + ((drop_log,) if return_drop_log else ())
if average:
evoked = epochs.average()
ev_projs = compute_proj_evoked(evoked, n_grad=n_grad, n_mag=n_mag,
n_eeg=n_eeg)
else:
ev_projs = compute_proj_epochs(epochs, n_grad=n_grad, n_mag=n_mag,
n_eeg=n_eeg, n_jobs=n_jobs)
for p in ev_projs:
p['desc'] = mode + "-" + p['desc']
projs.extend(ev_projs)
logger.info('Done.')
return (projs, events) + ((drop_log,) if return_drop_log else ())
@verbose
def compute_proj_ecg(raw, raw_event=None, tmin=-0.2, tmax=0.4,
n_grad=2, n_mag=2, n_eeg=2, l_freq=1.0, h_freq=35.0,
average=True, filter_length='10s', n_jobs=1,
ch_name=None, reject=dict(grad=2000e-13, mag=3000e-15,
eeg=50e-6, eog=250e-6),
flat=None, bads=[], avg_ref=False,
no_proj=False, event_id=999, ecg_l_freq=5, ecg_h_freq=35,
tstart=0., qrs_threshold='auto', filter_method='fir',
iir_params=None, copy=True, return_drop_log=False,
verbose=None):
"""Compute SSP/PCA projections for ECG artifacts.
.. note:: raw data will be loaded if it is not already.
Parameters
----------
raw : mne.io.Raw
Raw input file.
raw_event : mne.io.Raw or None
Raw file to use for event detection (if None, raw is used).
tmin : float
Time before event in seconds.
tmax : float
Time after event in seconds.
n_grad : int
Number of SSP vectors for gradiometers.
n_mag : int
Number of SSP vectors for magnetometers.
n_eeg : int
Number of SSP vectors for EEG.
l_freq : float | None
Filter low cut-off frequency for the data channels in Hz.
h_freq : float | None
Filter high cut-off frequency for the data channels in Hz.
average : bool
Compute SSP after averaging. Default is True.
filter_length : str | int | None
Number of taps to use for filtering.
n_jobs : int
Number of jobs to run in parallel.
ch_name : string (or None)
Channel to use for ECG detection (Required if no ECG found).
reject : dict | None
Epoch rejection configuration (see Epochs).
flat : dict | None
Epoch flat configuration (see Epochs).
bads : list
List with (additional) bad channels.
avg_ref : bool
Add EEG average reference proj.
no_proj : bool
Exclude the SSP projectors currently in the fiff file.
event_id : int
ID to use for events.
ecg_l_freq : float
Low pass frequency applied to the ECG channel for event detection.
ecg_h_freq : float
High pass frequency applied to the ECG channel for event detection.
tstart : float
Start artifact detection after tstart seconds.
qrs_threshold : float | str
Between 0 and 1. qrs detection threshold. Can also be "auto" to
automatically choose the threshold that generates a reasonable
number of heartbeats (40-160 beats / min).
filter_method : str
Method for filtering ('iir' or 'fir').
iir_params : dict | None
Dictionary of parameters to use for IIR filtering.
See mne.filter.construct_iir_filter for details. If iir_params
is None and method="iir", 4th order Butterworth will be used.
copy : bool
If False, filtering raw data is done in place. Defaults to True.
return_drop_log : bool
If True, return the drop log.
.. versionadded:: 0.15
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
proj : list
Computed SSP projectors.
ecg_events : ndarray
Detected ECG events.
drop_log : list
The drop log, if requested.
See Also
--------
find_ecg_events
create_ecg_epochs
Notes
-----
Filtering is applied to the ECG channel while finding events using
``ecg_l_freq`` and ``ecg_h_freq``, and then to the ``raw`` instance
using ``l_freq`` and ``h_freq`` before creation of the epochs used to
create the projectors.
"""
return _compute_exg_proj(
'ECG', raw, raw_event, tmin, tmax, n_grad, n_mag, n_eeg,
l_freq, h_freq, average, filter_length, n_jobs, ch_name, reject, flat,
bads, avg_ref, no_proj, event_id, ecg_l_freq, ecg_h_freq, tstart,
qrs_threshold, filter_method, iir_params, return_drop_log, copy,
verbose)
@verbose
def compute_proj_eog(raw, raw_event=None, tmin=-0.2, tmax=0.2,
n_grad=2, n_mag=2, n_eeg=2, l_freq=1.0, h_freq=35.0,
average=True, filter_length='10s', n_jobs=1,
reject=dict(grad=2000e-13, mag=3000e-15, eeg=500e-6,
eog=np.inf), flat=None, bads=[],
avg_ref=False, no_proj=False, event_id=998, eog_l_freq=1,
eog_h_freq=10, tstart=0., filter_method='fir',
iir_params=None, ch_name=None, copy=True,
return_drop_log=False, verbose=None):
"""Compute SSP/PCA projections for EOG artifacts.
.. note:: raw data must be preloaded.
Parameters
----------
raw : mne.io.Raw
Raw input file.
raw_event : mne.io.Raw or None
Raw file to use for event detection (if None, raw is used).
tmin : float
Time before event in seconds.
tmax : float
Time after event in seconds.
n_grad : int
Number of SSP vectors for gradiometers.
n_mag : int
Number of SSP vectors for magnetometers.
n_eeg : int
Number of SSP vectors for EEG.
l_freq : float | None
Filter low cut-off frequency for the data channels in Hz.
h_freq : float | None
Filter high cut-off frequency for the data channels in Hz.
average : bool
Compute SSP after averaging. Default is True.
filter_length : str | int | None
Number of taps to use for filtering.
n_jobs : int
Number of jobs to run in parallel.
reject : dict | None
Epoch rejection configuration (see Epochs).
flat : dict | None
Epoch flat configuration (see Epochs).
bads : list
List with (additional) bad channels.
avg_ref : bool
Add EEG average reference proj.
no_proj : bool
Exclude the SSP projectors currently in the fiff file.
event_id : int
ID to use for events.
eog_l_freq : float
Low pass frequency applied to the E0G channel for event detection.
eog_h_freq : float
High pass frequency applied to the EOG channel for event detection.
tstart : float
Start artifact detection after tstart seconds.
filter_method : str
Method for filtering ('iir' or 'fir').
iir_params : dict | None
Dictionary of parameters to use for IIR filtering.
See mne.filter.construct_iir_filter for details. If iir_params
is None and method="iir", 4th order Butterworth will be used.
ch_name: str | None
If not None, specify EOG channel name.
copy : bool
If False, filtering raw data is done in place. Defaults to True.
return_drop_log : bool
If True, return the drop log.
.. versionadded:: 0.15
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
proj: list
Computed SSP projectors.
eog_events: ndarray
Detected EOG events.
drop_log : list
The drop log, if requested.
See Also
--------
find_eog_events
create_eog_epochs
Notes
-----
Filtering is applied to the EOG channel while finding events using
``eog_l_freq`` and ``eog_h_freq``, and then to the ``raw`` instance
using ``l_freq`` and ``h_freq`` before creation of the epochs used to
create the projectors.
"""
return _compute_exg_proj(
'EOG', raw, raw_event, tmin, tmax, n_grad, n_mag, n_eeg,
l_freq, h_freq, average, filter_length, n_jobs, ch_name, reject, flat,
bads, avg_ref, no_proj, event_id, eog_l_freq, eog_h_freq, tstart,
'auto', filter_method, iir_params, return_drop_log, copy, verbose)
|