File: test_infomax.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (192 lines) | stat: -rw-r--r-- 5,884 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Authors: Denis A. Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)

# Parts of this code are taken from scikit-learn

import numpy as np
from numpy.testing import assert_almost_equal

from scipy import stats
from scipy import linalg

from mne.preprocessing.infomax_ import infomax
from mne.utils import requires_sklearn, run_tests_if_main, check_version


def center_and_norm(x, axis=-1):
    """Center and norm x in place.

    Parameters
    ----------
    x: ndarray
        Array with an axis of observations (statistical units) measured on
        random variables.
    axis: int, optional
        Axis along which the mean and variance are calculated.
    """
    x = np.rollaxis(x, axis)
    x -= x.mean(axis=0)
    x /= x.std(axis=0)


@requires_sklearn
def test_infomax_blowup():
    """Test the infomax algorithm blowup condition."""
    # scipy.stats uses the global RNG:
    np.random.seed(0)
    n_samples = 100
    # Generate two sources:
    s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1
    s2 = stats.t.rvs(1, size=n_samples)
    s = np.c_[s1, s2].T
    center_and_norm(s)
    s1, s2 = s

    # Mixing angle
    phi = 0.6
    mixing = np.array([[np.cos(phi),  np.sin(phi)],
                       [np.sin(phi), -np.cos(phi)]])
    m = np.dot(mixing, s)

    center_and_norm(m)

    X = _get_pca().fit_transform(m.T)
    k_ = infomax(X, extended=True, l_rate=0.1)
    s_ = np.dot(k_, X.T)

    center_and_norm(s_)
    s1_, s2_ = s_
    # Check to see if the sources have been estimated
    # in the wrong order
    if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
        s2_, s1_ = s_
    s1_ *= np.sign(np.dot(s1_, s1))
    s2_ *= np.sign(np.dot(s2_, s2))

    # Check that we have estimated the original sources
    assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2)
    assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2)


@requires_sklearn
def test_infomax_simple():
    """Test the infomax algorithm on very simple data."""
    rng = np.random.RandomState(0)
    # scipy.stats uses the global RNG:
    np.random.seed(0)
    n_samples = 500
    # Generate two sources:
    s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1
    s2 = stats.t.rvs(1, size=n_samples)
    s = np.c_[s1, s2].T
    center_and_norm(s)
    s1, s2 = s

    # Mixing angle
    phi = 0.6
    mixing = np.array([[np.cos(phi),  np.sin(phi)],
                       [np.sin(phi), -np.cos(phi)]])
    for add_noise in (False, True):
        m = np.dot(mixing, s)
        if add_noise:
            m += 0.1 * rng.randn(2, n_samples)
        center_and_norm(m)

        algos = [True, False]
        for algo in algos:
            X = _get_pca().fit_transform(m.T)
            k_ = infomax(X, extended=algo)
            s_ = np.dot(k_, X.T)

            center_and_norm(s_)
            s1_, s2_ = s_
            # Check to see if the sources have been estimated
            # in the wrong order
            if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
                s2_, s1_ = s_
            s1_ *= np.sign(np.dot(s1_, s1))
            s2_ *= np.sign(np.dot(s2_, s2))

            # Check that we have estimated the original sources
            if not add_noise:
                assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2)
                assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2)
            else:
                assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1)
                assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1)


def test_infomax_weights_ini():
    """Test the infomax algorithm w/initial weights matrix."""
    X = np.random.random((3, 100))
    weights = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64)

    w1 = infomax(X, max_iter=0, weights=weights, extended=True)
    w2 = infomax(X, max_iter=0, weights=weights, extended=False)

    assert_almost_equal(w1, weights)
    assert_almost_equal(w2, weights)


@requires_sklearn
def test_non_square_infomax():
    """Test non-square infomax."""
    rng = np.random.RandomState(0)

    n_samples = 200
    # Generate two sources:
    t = np.linspace(0, 100, n_samples)
    s1 = np.sin(t)
    s2 = np.ceil(np.sin(np.pi * t))
    s = np.c_[s1, s2].T
    center_and_norm(s)
    s1, s2 = s

    # Mixing matrix
    n_observed = 6
    mixing = rng.randn(n_observed, 2)
    for add_noise in (False, True):
        m = np.dot(mixing, s)

        if add_noise:
            m += 0.1 * rng.randn(n_observed, n_samples)

        center_and_norm(m)
        m = m.T
        m = _get_pca(rng).fit_transform(m)
        # we need extended since input signals are sub-gaussian
        unmixing_ = infomax(m, random_state=rng, extended=True)
        s_ = np.dot(unmixing_, m.T)
        # Check that the mixing model described in the docstring holds:
        mixing_ = linalg.pinv(unmixing_.T)

        assert_almost_equal(m, s_.T.dot(mixing_))

        center_and_norm(s_)
        s1_, s2_ = s_
        # Check to see if the sources have been estimated
        # in the wrong order
        if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
            s2_, s1_ = s_
        s1_ *= np.sign(np.dot(s1_, s1))
        s2_ *= np.sign(np.dot(s2_, s2))

        # Check that we have estimated the original sources
        if not add_noise:
            assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2)
            assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2)


def _get_pca(rng=None):
    if not check_version('sklearn', '0.18'):
        from sklearn.decomposition import RandomizedPCA
        return RandomizedPCA(n_components=2, whiten=True,
                             random_state=rng)
    else:
        from sklearn.decomposition import PCA
        return PCA(n_components=2, whiten=True, svd_solver='randomized',
                   random_state=rng)


run_tests_if_main()