1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
|
# Author: Mark Wronkiewicz <wronk@uw.edu>
#
# License: BSD (3-clause)
import os.path as op
import numpy as np
from numpy.testing import assert_equal, assert_allclose, assert_array_equal
import pytest
from scipy import sparse
import mne
from mne import compute_raw_covariance, pick_types, concatenate_raws
from mne.annotations import _annotations_starts_stops
from mne.chpi import read_head_pos, filter_chpi
from mne.forward import _prep_meg_channels
from mne.cov import _estimate_rank_meeg_cov
from mne.datasets import testing
from mne.forward import use_coil_def
from mne.io import (read_raw_fif, proc_history, read_info, read_raw_bti,
read_raw_kit, BaseRaw)
from mne.preprocessing.maxwell import (
maxwell_filter, _get_n_moments, _sss_basis_basic, _sh_complex_to_real,
_sh_real_to_complex, _sh_negate, _bases_complex_to_real, _trans_sss_basis,
_bases_real_to_complex, _prep_mf_coils)
from mne.fixes import _get_sph_harm
from mne.tests.common import assert_meg_snr
from mne.utils import (_TempDir, run_tests_if_main, catch_logging,
requires_version, object_diff, buggy_mkl_svd)
data_path = testing.data_path(download=False)
sss_path = op.join(data_path, 'SSS')
pre = op.join(sss_path, 'test_move_anon_')
raw_fname = pre + 'raw.fif'
sss_std_fname = pre + 'stdOrigin_raw_sss.fif'
sss_nonstd_fname = pre + 'nonStdOrigin_raw_sss.fif'
sss_bad_recon_fname = pre + 'badRecon_raw_sss.fif'
sss_reg_in_fname = pre + 'regIn_raw_sss.fif'
sss_fine_cal_fname = pre + 'fineCal_raw_sss.fif'
sss_ctc_fname = pre + 'crossTalk_raw_sss.fif'
sss_trans_default_fname = pre + 'transDefault_raw_sss.fif'
sss_trans_sample_fname = pre + 'transSample_raw_sss.fif'
sss_st1FineCalCrossTalkRegIn_fname = \
pre + 'st1FineCalCrossTalkRegIn_raw_sss.fif'
sss_st1FineCalCrossTalkRegInTransSample_fname = \
pre + 'st1FineCalCrossTalkRegInTransSample_raw_sss.fif'
sss_movecomp_fname = pre + 'movecomp_raw_sss.fif'
sss_movecomp_reg_in_fname = pre + 'movecomp_regIn_raw_sss.fif'
sss_movecomp_reg_in_st4s_fname = pre + 'movecomp_regIn_st4s_raw_sss.fif'
skip_fname = op.join(data_path, 'misc', 'intervalrecording_raw.fif')
erm_fname = pre + 'erm_raw.fif'
sss_erm_std_fname = pre + 'erm_devOrigin_raw_sss.fif'
sss_erm_reg_in_fname = pre + 'erm_regIn_raw_sss.fif'
sss_erm_fine_cal_fname = pre + 'erm_fineCal_raw_sss.fif'
sss_erm_ctc_fname = pre + 'erm_crossTalk_raw_sss.fif'
sss_erm_st_fname = pre + 'erm_st1_raw_sss.fif'
sss_erm_st1FineCalCrossTalk_fname = pre + 'erm_st1FineCalCrossTalk_raw_sss.fif'
sss_erm_st1FineCalCrossTalkRegIn_fname = \
pre + 'erm_st1FineCalCrossTalkRegIn_raw_sss.fif'
sample_fname = op.join(data_path, 'MEG', 'sample_audvis_trunc_raw.fif')
sss_samp_reg_in_fname = op.join(data_path, 'SSS',
'sample_audvis_trunc_regIn_raw_sss.fif')
sss_samp_fname = op.join(data_path, 'SSS', 'sample_audvis_trunc_raw_sss.fif')
pos_fname = op.join(data_path, 'SSS', 'test_move_anon_raw.pos')
bases_fname = op.join(sss_path, 'sss_data.mat')
fine_cal_fname = op.join(sss_path, 'sss_cal_3053.dat')
fine_cal_fname_3d = op.join(sss_path, 'sss_cal_3053_3d.dat')
ctc_fname = op.join(sss_path, 'ct_sparse.fif')
fine_cal_mgh_fname = op.join(sss_path, 'sss_cal_mgh.dat')
ctc_mgh_fname = op.join(sss_path, 'ct_sparse_mgh.fif')
sample_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc_raw.fif')
triux_path = op.join(data_path, 'SSS', 'TRIUX')
tri_fname = op.join(triux_path, 'triux_bmlhus_erm_raw.fif')
tri_sss_fname = op.join(triux_path, 'triux_bmlhus_erm_raw_sss.fif')
tri_sss_reg_fname = op.join(triux_path, 'triux_bmlhus_erm_regIn_raw_sss.fif')
tri_sss_st4_fname = op.join(triux_path, 'triux_bmlhus_erm_st4_raw_sss.fif')
tri_sss_ctc_fname = op.join(triux_path, 'triux_bmlhus_erm_ctc_raw_sss.fif')
tri_sss_cal_fname = op.join(triux_path, 'triux_bmlhus_erm_cal_raw_sss.fif')
tri_sss_ctc_cal_fname = op.join(
triux_path, 'triux_bmlhus_erm_ctc_cal_raw_sss.fif')
tri_sss_ctc_cal_reg_in_fname = op.join(
triux_path, 'triux_bmlhus_erm_ctc_cal_regIn_raw_sss.fif')
tri_ctc_fname = op.join(triux_path, 'ct_sparse_BMLHUS.fif')
tri_cal_fname = op.join(triux_path, 'sss_cal_BMLHUS.dat')
io_dir = op.join(op.dirname(__file__), '..', '..', 'io')
fname_ctf_raw = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif')
# In some of the tests, use identical coil defs to what is used in
# MaxFilter
elekta_def_fname = op.join(op.dirname(mne.__file__), 'data',
'coil_def_Elekta.dat')
int_order, ext_order = 8, 3
mf_head_origin = (0., 0., 0.04)
mf_meg_origin = (0., 0.013, -0.006)
# otherwise we can get SVD error
requires_svd_convergence = requires_version('scipy', '0.12')
# 30 random bad MEG channels (20 grad, 10 mag) that were used in generation
bads = ['MEG0912', 'MEG1722', 'MEG2213', 'MEG0132', 'MEG1312', 'MEG0432',
'MEG2433', 'MEG1022', 'MEG0442', 'MEG2332', 'MEG0633', 'MEG1043',
'MEG1713', 'MEG0422', 'MEG0932', 'MEG1622', 'MEG1343', 'MEG0943',
'MEG0643', 'MEG0143', 'MEG2142', 'MEG0813', 'MEG2143', 'MEG1323',
'MEG0522', 'MEG1123', 'MEG0423', 'MEG2122', 'MEG2532', 'MEG0812']
def _assert_n_free(raw_sss, lower, upper=None):
"""Check the DOF."""
upper = lower if upper is None else upper
n_free = raw_sss.info['proc_history'][0]['max_info']['sss_info']['nfree']
assert lower <= n_free <= upper, \
'nfree fail: %s <= %s <= %s' % (lower, n_free, upper)
def read_crop(fname, lims=(0, None)):
"""Read and crop."""
return read_raw_fif(fname, allow_maxshield='yes').crop(*lims)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_movement_compensation():
"""Test movement compensation."""
temp_dir = _TempDir()
lims = (0, 4)
raw = read_crop(raw_fname, lims).load_data()
head_pos = read_head_pos(pos_fname)
#
# Movement compensation, no regularization, no tSSS
#
raw_sss = maxwell_filter(raw, head_pos=head_pos, origin=mf_head_origin,
regularize=None, bad_condition='ignore')
assert_meg_snr(raw_sss, read_crop(sss_movecomp_fname, lims),
4.6, 12.4, chpi_med_tol=58)
# IO
temp_fname = op.join(temp_dir, 'test_raw_sss.fif')
raw_sss.save(temp_fname)
raw_sss = read_crop(temp_fname)
assert_meg_snr(raw_sss, read_crop(sss_movecomp_fname, lims),
4.6, 12.4, chpi_med_tol=58)
#
# Movement compensation, regularization, no tSSS
#
raw_sss = maxwell_filter(raw, head_pos=head_pos, origin=mf_head_origin)
assert_meg_snr(raw_sss, read_crop(sss_movecomp_reg_in_fname, lims),
0.5, 1.9, chpi_med_tol=121)
#
# Movement compensation, regularization, tSSS at the end
#
raw_nohpi = filter_chpi(raw.copy())
with pytest.warns(RuntimeWarning, match='untested'):
raw_sss_mv = maxwell_filter(raw_nohpi, head_pos=head_pos,
st_duration=4., origin=mf_head_origin,
st_fixed=False)
# Neither match is particularly good because our algorithm actually differs
assert_meg_snr(raw_sss_mv, read_crop(sss_movecomp_reg_in_st4s_fname, lims),
0.6, 1.3)
tSSS_fname = op.join(sss_path, 'test_move_anon_st4s_raw_sss.fif')
assert_meg_snr(raw_sss_mv, read_crop(tSSS_fname, lims),
0.6, 1.0, chpi_med_tol=None)
assert_meg_snr(read_crop(sss_movecomp_reg_in_st4s_fname),
read_crop(tSSS_fname), 0.8, 1.0, chpi_med_tol=None)
#
# Movement compensation, regularization, tSSS at the beginning
#
raw_sss_mc = maxwell_filter(raw_nohpi, head_pos=head_pos, st_duration=4.,
origin=mf_head_origin)
assert_meg_snr(raw_sss_mc, read_crop(tSSS_fname, lims),
0.6, 1.0, chpi_med_tol=None)
assert_meg_snr(raw_sss_mc, raw_sss_mv, 0.6, 1.4)
# some degenerate cases
raw_erm = read_crop(erm_fname)
pytest.raises(ValueError, maxwell_filter, raw_erm, coord_frame='meg',
head_pos=head_pos) # can't do ERM file
pytest.raises(ValueError, maxwell_filter, raw,
head_pos=head_pos[:, :9]) # bad shape
pytest.raises(TypeError, maxwell_filter, raw, head_pos='foo') # bad type
pytest.raises(ValueError, maxwell_filter, raw, head_pos=head_pos[::-1])
head_pos_bad = head_pos.copy()
head_pos_bad[0, 0] = raw._first_time - 1e-2
pytest.raises(ValueError, maxwell_filter, raw, head_pos=head_pos_bad)
head_pos_bad = head_pos.copy()
head_pos_bad[0, 4] = 1. # off by more than 1 m
with pytest.warns(RuntimeWarning, match='greater than 1 m'):
maxwell_filter(raw.copy().crop(0, 0.1), head_pos=head_pos_bad,
bad_condition='ignore')
# make sure numerical error doesn't screw it up, though
head_pos_bad = head_pos.copy()
head_pos_bad[0, 0] = raw._first_time - 5e-4
raw_sss_tweak = maxwell_filter(
raw.copy().crop(0, 0.05), head_pos=head_pos_bad, origin=mf_head_origin)
assert_meg_snr(raw_sss_tweak, raw_sss.copy().crop(0, 0.05), 1.4, 8.,
chpi_med_tol=5)
@pytest.mark.slowtest
def test_other_systems():
"""Test Maxwell filtering on KIT, BTI, and CTF files."""
# KIT
kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
sqd_path = op.join(kit_dir, 'test.sqd')
mrk_path = op.join(kit_dir, 'test_mrk.sqd')
elp_path = op.join(kit_dir, 'test_elp.txt')
hsp_path = op.join(kit_dir, 'test_hsp.txt')
raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
with pytest.warns(RuntimeWarning, match='fit'):
pytest.raises(RuntimeError, maxwell_filter, raw_kit)
with catch_logging() as log:
raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
ignore_ref=True, verbose=True)
assert '12/15 out' in log.getvalue() # homogeneous fields removed
_assert_n_free(raw_sss, 65, 65)
raw_sss_auto = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
ignore_ref=True, mag_scale='auto')
assert_allclose(raw_sss._data, raw_sss_auto._data)
# XXX this KIT origin fit is terrible! Eventually we should get a
# corrected HSP file with proper coverage
with pytest.warns(RuntimeWarning, match='more than 20 mm'):
with catch_logging() as log:
pytest.raises(RuntimeError, maxwell_filter, raw_kit,
ignore_ref=True, regularize=None) # bad condition
raw_sss = maxwell_filter(raw_kit, origin='auto',
ignore_ref=True, bad_condition='info',
verbose=True)
log = log.getvalue()
assert 'badly conditioned' in log
assert 'more than 20 mm from' in log
# fits can differ slightly based on scipy version, so be lenient here
_assert_n_free(raw_sss, 28, 34) # bad origin == brutal reg
# Let's set the origin
with catch_logging() as log:
raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
ignore_ref=True, bad_condition='info',
regularize=None, verbose=True)
log = log.getvalue()
assert 'badly conditioned' in log
assert '80/80 in, 12/15 out' in log
_assert_n_free(raw_sss, 80)
# Now with reg
with catch_logging() as log:
raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
ignore_ref=True, verbose=True)
log = log.getvalue()
assert 'badly conditioned' not in log
assert '12/15 out' in log
_assert_n_free(raw_sss, 65)
# BTi
bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
bti_pdf = op.join(bti_dir, 'test_pdf_linux')
bti_config = op.join(bti_dir, 'test_config_linux')
bti_hs = op.join(bti_dir, 'test_hs_linux')
raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
picks = pick_types(raw_bti.info, meg='mag', exclude=())
power = np.sqrt(np.sum(raw_bti[picks][0] ** 2))
raw_sss = maxwell_filter(raw_bti)
_assert_n_free(raw_sss, 70)
_assert_shielding(raw_sss, power, 0.5)
raw_sss_auto = maxwell_filter(raw_bti, mag_scale='auto', verbose=True)
_assert_shielding(raw_sss_auto, power, 0.7)
# CTF
raw_ctf = read_crop(fname_ctf_raw)
assert_equal(raw_ctf.compensation_grade, 3)
pytest.raises(RuntimeError, maxwell_filter, raw_ctf) # compensated
raw_ctf.apply_gradient_compensation(0)
pytest.raises(ValueError, maxwell_filter, raw_ctf) # cannot fit headshape
raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
_assert_n_free(raw_sss, 68)
_assert_shielding(raw_sss, raw_ctf, 1.8)
with catch_logging() as log:
raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04),
ignore_ref=True, verbose=True)
assert ', 12/15 out' in log.getvalue() # homogeneous fields removed
_assert_n_free(raw_sss, 70)
_assert_shielding(raw_sss, raw_ctf, 12)
raw_sss_auto = maxwell_filter(raw_ctf, origin=(0., 0., 0.04),
ignore_ref=True, mag_scale='auto')
assert_allclose(raw_sss._data, raw_sss_auto._data)
with catch_logging() as log:
maxwell_filter(raw_ctf, origin=(0., 0., 0.04), regularize=None,
ignore_ref=True, verbose=True)
assert '80/80 in, 12/15 out' in log.getvalue() # homogeneous fields
def test_spherical_conversions():
"""Test spherical harmonic conversions."""
# Test our real<->complex conversion functions
az, pol = np.meshgrid(np.linspace(0, 2 * np.pi, 30),
np.linspace(0, np.pi, 20))
for degree in range(1, int_order):
for order in range(0, degree + 1):
sph = _get_sph_harm()(order, degree, az, pol)
# ensure that we satisfy the conjugation property
assert_allclose(_sh_negate(sph, order),
_get_sph_harm()(-order, degree, az, pol))
# ensure our conversion functions work
sph_real_pos = _sh_complex_to_real(sph, order)
sph_real_neg = _sh_complex_to_real(sph, -order)
sph_2 = _sh_real_to_complex([sph_real_pos, sph_real_neg], order)
assert_allclose(sph, sph_2, atol=1e-7)
@testing.requires_testing_data
def test_multipolar_bases():
"""Test multipolar moment basis calculation using sensor information."""
from scipy.io import loadmat
# Test our basis calculations
info = read_info(raw_fname)
with use_coil_def(elekta_def_fname):
coils = _prep_meg_channels(info, accurate=True, do_es=True)[0]
# Check against a known benchmark
sss_data = loadmat(bases_fname)
exp = dict(int_order=int_order, ext_order=ext_order)
for origin in ((0, 0, 0.04), (0, 0.02, 0.02)):
o_str = ''.join('%d' % (1000 * n) for n in origin)
exp.update(origin=origin)
S_tot = _sss_basis_basic(exp, coils, method='alternative')
# Test our real<->complex conversion functions
S_tot_complex = _bases_real_to_complex(S_tot, int_order, ext_order)
S_tot_round = _bases_complex_to_real(S_tot_complex,
int_order, ext_order)
assert_allclose(S_tot, S_tot_round, atol=1e-7)
S_tot_mat = np.concatenate([sss_data['Sin' + o_str],
sss_data['Sout' + o_str]], axis=1)
S_tot_mat_real = _bases_complex_to_real(S_tot_mat,
int_order, ext_order)
S_tot_mat_round = _bases_real_to_complex(S_tot_mat_real,
int_order, ext_order)
assert_allclose(S_tot_mat, S_tot_mat_round, atol=1e-7)
assert_allclose(S_tot_complex, S_tot_mat, rtol=1e-4, atol=1e-8)
assert_allclose(S_tot, S_tot_mat_real, rtol=1e-4, atol=1e-8)
# Now normalize our columns
S_tot /= np.sqrt(np.sum(S_tot * S_tot, axis=0))[np.newaxis]
S_tot_complex /= np.sqrt(np.sum(
(S_tot_complex * S_tot_complex.conj()).real, axis=0))[np.newaxis]
# Check against a known benchmark
S_tot_mat = np.concatenate([sss_data['SNin' + o_str],
sss_data['SNout' + o_str]], axis=1)
# Check this roundtrip
S_tot_mat_real = _bases_complex_to_real(S_tot_mat,
int_order, ext_order)
S_tot_mat_round = _bases_real_to_complex(S_tot_mat_real,
int_order, ext_order)
assert_allclose(S_tot_mat, S_tot_mat_round, atol=1e-7)
assert_allclose(S_tot_complex, S_tot_mat, rtol=1e-4, atol=1e-8)
# Now test our optimized version
S_tot = _sss_basis_basic(exp, coils)
with use_coil_def(elekta_def_fname):
S_tot_fast = _trans_sss_basis(
exp, all_coils=_prep_mf_coils(info), trans=info['dev_head_t'])
# there are some sign differences for columns (order/degrees)
# in here, likely due to Condon-Shortley. Here we use a
# Magnetometer channel to figure out the flips because the
# gradiometer channels have effectively zero values for first three
# external components (i.e., S_tot[grad_picks, 80:83])
flips = (np.sign(S_tot_fast[2]) != np.sign(S_tot[2]))
flips = 1 - 2 * flips
assert_allclose(S_tot, S_tot_fast * flips, atol=1e-16)
@testing.requires_testing_data
def test_basic():
"""Test Maxwell filter basic version."""
# Load testing data (raw, SSS std origin, SSS non-standard origin)
raw = read_crop(raw_fname, (0., 1.))
raw_err = read_crop(raw_fname).apply_proj()
raw_erm = read_crop(erm_fname)
pytest.raises(RuntimeError, maxwell_filter, raw_err)
pytest.raises(TypeError, maxwell_filter, 1.) # not a raw
pytest.raises(ValueError, maxwell_filter, raw, int_order=20) # too many
n_int_bases = int_order ** 2 + 2 * int_order
n_ext_bases = ext_order ** 2 + 2 * ext_order
nbases = n_int_bases + n_ext_bases
# Check number of bases computed correctly
assert_equal(_get_n_moments([int_order, ext_order]).sum(), nbases)
# Test SSS computation at the standard head origin
assert_equal(len(raw.info['projs']), 12) # 11 MEG projs + 1 AVG EEG
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None,
bad_condition='ignore')
assert_equal(len(raw_sss.info['projs']), 1) # avg EEG
assert_equal(raw_sss.info['projs'][0]['desc'], 'Average EEG reference')
assert_meg_snr(raw_sss, read_crop(sss_std_fname), 200., 1000.)
py_cal = raw_sss.info['proc_history'][0]['max_info']['sss_cal']
assert_equal(len(py_cal), 0)
py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
assert_equal(len(py_ctc), 0)
py_st = raw_sss.info['proc_history'][0]['max_info']['max_st']
assert_equal(len(py_st), 0)
pytest.raises(RuntimeError, maxwell_filter, raw_sss)
# Test SSS computation at non-standard head origin
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(raw, origin=[0., 0.02, 0.02], regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss, read_crop(sss_nonstd_fname), 250., 700.)
# Test SSS computation at device origin
sss_erm_std = read_crop(sss_erm_std_fname)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg',
origin=mf_meg_origin, regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss, sss_erm_std, 70., 260.)
for key in ('job', 'frame'):
vals = [x.info['proc_history'][0]['max_info']['sss_info'][key]
for x in [raw_sss, sss_erm_std]]
assert_equal(vals[0], vals[1])
# Two equivalent things: at device origin in device coords (0., 0., 0.)
# and at device origin at head coords info['dev_head_t'][:3, 3]
raw_sss_meg = maxwell_filter(
raw, coord_frame='meg', origin=(0., 0., 0.))
raw_sss_head = maxwell_filter(
raw, origin=raw.info['dev_head_t']['trans'][:3, 3])
assert_meg_snr(raw_sss_meg, raw_sss_head, 100., 900.)
# Check against SSS functions from proc_history
sss_info = raw_sss.info['proc_history'][0]['max_info']
assert_equal(_get_n_moments(int_order),
proc_history._get_sss_rank(sss_info))
# Degenerate cases
pytest.raises(ValueError, maxwell_filter, raw, coord_frame='foo')
pytest.raises(ValueError, maxwell_filter, raw, origin='foo')
pytest.raises(ValueError, maxwell_filter, raw, origin=[0] * 4)
pytest.raises(ValueError, maxwell_filter, raw, mag_scale='foo')
raw_missing = raw.copy().load_data()
raw_missing.info['bads'] = ['MEG0111']
raw_missing.pick_types(meg=True) # will be missing the bad
maxwell_filter(raw_missing)
with pytest.warns(RuntimeWarning, match='not in data'):
maxwell_filter(raw_missing, calibration=fine_cal_fname)
@testing.requires_testing_data
def test_maxwell_filter_additional():
"""Test processing of Maxwell filtered data."""
# TODO: Future tests integrate with mne/io/tests/test_proc_history
# Load testing data (raw, SSS std origin, SSS non-standard origin)
data_path = op.join(testing.data_path(download=False))
file_name = 'test_move_anon'
raw_fname = op.join(data_path, 'SSS', file_name + '_raw.fif')
# Use 2.0 seconds of data to get stable cov. estimate
raw = read_crop(raw_fname, (0., 2.))
# Get MEG channels, compute Maxwell filtered data
raw.load_data()
raw.pick_types(meg=True, eeg=False)
int_order = 8
raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None,
bad_condition='ignore')
# Test io on processed data
tempdir = _TempDir()
test_outname = op.join(tempdir, 'test_raw_sss.fif')
raw_sss.save(test_outname)
raw_sss_loaded = read_crop(test_outname).load_data()
# Some numerical imprecision since save uses 'single' fmt
assert_allclose(raw_sss_loaded[:][0], raw_sss[:][0],
rtol=1e-6, atol=1e-20)
# Test rank of covariance matrices for raw and SSS processed data
cov_raw = compute_raw_covariance(raw)
cov_sss = compute_raw_covariance(raw_sss)
scalings = None
cov_raw_rank = _estimate_rank_meeg_cov(cov_raw['data'], raw.info, scalings)
cov_sss_rank = _estimate_rank_meeg_cov(cov_sss['data'], raw_sss.info,
scalings)
assert_equal(cov_raw_rank, raw.info['nchan'])
assert_equal(cov_sss_rank, _get_n_moments(int_order))
@pytest.mark.slowtest
@testing.requires_testing_data
def test_bads_reconstruction():
"""Test Maxwell filter reconstruction of bad channels."""
raw = read_crop(raw_fname, (0., 1.))
raw.info['bads'] = bads
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss, read_crop(sss_bad_recon_fname), 300.)
@buggy_mkl_svd
@requires_svd_convergence
@testing.requires_testing_data
def test_spatiotemporal():
"""Test Maxwell filter (tSSS) spatiotemporal processing."""
# Load raw testing data
raw = read_crop(raw_fname)
# Test that window is less than length of data
with pytest.raises(ValueError, match='duration'):
maxwell_filter(raw, st_duration=1000.)
# We could check both 4 and 10 seconds because Elekta handles them
# differently (to ensure that std/non-std tSSS windows are correctly
# handled), but the 4-sec case should hopefully be sufficient.
st_durations = [4.] # , 10.]
tols = [(80, 100)] # , 200.]
kwargs = dict(origin=mf_head_origin, regularize=None,
bad_condition='ignore')
for st_duration, tol in zip(st_durations, tols):
# Load tSSS data depending on st_duration and get data
tSSS_fname = op.join(sss_path,
'test_move_anon_st%0ds_raw_sss.fif' % st_duration)
tsss_bench = read_crop(tSSS_fname)
# Because Elekta's tSSS sometimes(!) lumps the tail window of data
# onto the previous buffer if it's shorter than st_duration, we have to
# crop the data here to compensate for Elekta's tSSS behavior.
# if st_duration == 10.:
# tsss_bench.crop(0, st_duration)
# raw.crop(0, st_duration)
# Test sss computation at the standard head origin. Same cropping issue
# as mentioned above.
raw_tsss = maxwell_filter(
raw, st_duration=st_duration, **kwargs)
assert_equal(raw_tsss.estimate_rank(), 140)
assert_meg_snr(raw_tsss, tsss_bench, *tol)
py_st = raw_tsss.info['proc_history'][0]['max_info']['max_st']
assert (len(py_st) > 0)
assert_equal(py_st['buflen'], st_duration)
assert_equal(py_st['subspcorr'], 0.98)
# Degenerate cases
pytest.raises(ValueError, maxwell_filter, raw, st_duration=10.,
st_correlation=0.)
@pytest.mark.slowtest
@requires_svd_convergence
@testing.requires_testing_data
def test_spatiotemporal_only():
"""Test tSSS-only processing."""
# Load raw testing data
tmax = 0.5
raw = read_crop(raw_fname, (0, tmax)).load_data()
picks = pick_types(raw.info, meg=True, exclude='bads')[::2]
raw.pick_channels([raw.ch_names[pick] for pick in picks])
mag_picks = pick_types(raw.info, meg='mag', exclude=())
power = np.sqrt(np.sum(raw[mag_picks][0] ** 2))
# basics
raw_tsss = maxwell_filter(raw, st_duration=tmax / 2., st_only=True)
assert_equal(len(raw.info['projs']), len(raw_tsss.info['projs']))
assert_equal(raw_tsss.estimate_rank(), len(picks))
_assert_shielding(raw_tsss, power, 9)
# with movement
head_pos = read_head_pos(pos_fname)
raw_tsss = maxwell_filter(raw, st_duration=tmax / 2., st_only=True,
head_pos=head_pos)
assert_equal(raw_tsss.estimate_rank(), len(picks))
_assert_shielding(raw_tsss, power, 9)
with pytest.warns(RuntimeWarning, match='st_fixed'):
raw_tsss = maxwell_filter(raw, st_duration=tmax / 2., st_only=True,
head_pos=head_pos, st_fixed=False)
assert_equal(raw_tsss.estimate_rank(), len(picks))
_assert_shielding(raw_tsss, power, 9)
# should do nothing
raw_tsss = maxwell_filter(raw, st_duration=tmax, st_correlation=1.,
st_only=True)
assert_allclose(raw[:][0], raw_tsss[:][0])
# degenerate
pytest.raises(ValueError, maxwell_filter, raw, st_only=True) # no ST
# two-step process equivalent to single-step process
raw_tsss = maxwell_filter(raw, st_duration=tmax, st_only=True)
raw_tsss = maxwell_filter(raw_tsss)
raw_tsss_2 = maxwell_filter(raw, st_duration=tmax)
assert_meg_snr(raw_tsss, raw_tsss_2, 1e5)
# now also with head movement, and a bad MEG channel
assert_equal(len(raw.info['bads']), 0)
bads = [raw.ch_names[0]]
raw.info['bads'] = list(bads)
raw_tsss = maxwell_filter(raw, st_duration=tmax, st_only=True,
head_pos=head_pos)
assert_equal(raw.info['bads'], bads)
assert_equal(raw_tsss.info['bads'], bads) # don't reset
raw_tsss = maxwell_filter(raw_tsss, head_pos=head_pos)
assert_equal(raw_tsss.info['bads'], []) # do reset MEG bads
raw_tsss_2 = maxwell_filter(raw, st_duration=tmax, head_pos=head_pos)
assert_equal(raw_tsss_2.info['bads'], [])
assert_meg_snr(raw_tsss, raw_tsss_2, 1e5)
@testing.requires_testing_data
def test_fine_calibration():
"""Test Maxwell filter fine calibration."""
# Load testing data (raw, SSS std origin, SSS non-standard origin)
raw = read_crop(raw_fname, (0., 1.))
sss_fine_cal = read_crop(sss_fine_cal_fname)
# Test 1D SSS fine calibration
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(raw, calibration=fine_cal_fname,
origin=mf_head_origin, regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss, sss_fine_cal, 82, 611)
py_cal = raw_sss.info['proc_history'][0]['max_info']['sss_cal']
assert (py_cal is not None)
assert (len(py_cal) > 0)
mf_cal = sss_fine_cal.info['proc_history'][0]['max_info']['sss_cal']
# we identify these differently
mf_cal['cal_chans'][mf_cal['cal_chans'][:, 1] == 3022, 1] = 3024
assert_allclose(py_cal['cal_chans'], mf_cal['cal_chans'])
assert_allclose(py_cal['cal_corrs'], mf_cal['cal_corrs'],
rtol=1e-3, atol=1e-3)
# with missing channels
raw_missing = raw.copy().load_data()
raw_missing.info['bads'] = ['MEG0111', 'MEG0943'] # 1 mag, 1 grad
raw_missing.info._check_consistency()
raw_sss_bad = maxwell_filter(
raw_missing, calibration=fine_cal_fname, origin=mf_head_origin,
regularize=None, bad_condition='ignore')
raw_missing.pick_types() # actually remove bads
raw_sss_bad.pick_channels(raw_missing.ch_names) # remove them here, too
with pytest.warns(RuntimeWarning, match='cal channels not in data'):
raw_sss_missing = maxwell_filter(
raw_missing, calibration=fine_cal_fname, origin=mf_head_origin,
regularize=None, bad_condition='ignore')
assert_meg_snr(raw_sss_missing, raw_sss_bad, 1000., 10000.)
# Test 3D SSS fine calibration (no equivalent func in MaxFilter yet!)
# very low SNR as proc differs, eventually we should add a better test
raw_sss_3D = maxwell_filter(raw, calibration=fine_cal_fname_3d,
origin=mf_head_origin, regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss_3D, sss_fine_cal, 1.0, 6.)
raw_ctf = read_crop(fname_ctf_raw).apply_gradient_compensation(0)
pytest.raises(RuntimeError, maxwell_filter, raw_ctf, origin=(0., 0., 0.04),
calibration=fine_cal_fname)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_regularization():
"""Test Maxwell filter regularization."""
# Load testing data (raw, SSS std origin, SSS non-standard origin)
min_tols = (20., 2.6, 1.0)
med_tols = (200., 21., 3.7)
origins = ((0., 0., 0.04), (0.,) * 3, (0., 0.02, 0.02))
coord_frames = ('head', 'meg', 'head')
raw_fnames = (raw_fname, erm_fname, sample_fname)
sss_fnames = (sss_reg_in_fname, sss_erm_reg_in_fname,
sss_samp_reg_in_fname)
comp_tols = [0, 1, 4]
for ii, rf in enumerate(raw_fnames):
raw = read_crop(rf, (0., 1.))
sss_reg_in = read_crop(sss_fnames[ii])
# Test "in" regularization
raw_sss = maxwell_filter(raw, coord_frame=coord_frames[ii],
origin=origins[ii])
assert_meg_snr(raw_sss, sss_reg_in, min_tols[ii], med_tols[ii], msg=rf)
# check components match
_check_reg_match(raw_sss, sss_reg_in, comp_tols[ii])
def _check_reg_match(sss_py, sss_mf, comp_tol):
"""Check regularization."""
info_py = sss_py.info['proc_history'][0]['max_info']['sss_info']
assert (info_py is not None)
assert (len(info_py) > 0)
info_mf = sss_mf.info['proc_history'][0]['max_info']['sss_info']
n_in = None
for inf in (info_py, info_mf):
if n_in is None:
n_in = _get_n_moments(inf['in_order'])
else:
assert_equal(n_in, _get_n_moments(inf['in_order']))
assert_equal(inf['components'][:n_in].sum(), inf['nfree'])
assert_allclose(info_py['nfree'], info_mf['nfree'],
atol=comp_tol, err_msg=sss_py._filenames[0])
@testing.requires_testing_data
def test_cross_talk():
"""Test Maxwell filter cross-talk cancellation."""
raw = read_crop(raw_fname, (0., 1.))
raw.info['bads'] = bads
sss_ctc = read_crop(sss_ctc_fname)
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(raw, cross_talk=ctc_fname,
origin=mf_head_origin, regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss, sss_ctc, 275.)
py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
assert (len(py_ctc) > 0)
pytest.raises(ValueError, maxwell_filter, raw, cross_talk=raw)
pytest.raises(ValueError, maxwell_filter, raw, cross_talk=raw_fname)
mf_ctc = sss_ctc.info['proc_history'][0]['max_info']['sss_ctc']
del mf_ctc['block_id'] # we don't write this
assert isinstance(py_ctc['decoupler'], sparse.csc_matrix)
assert isinstance(mf_ctc['decoupler'], sparse.csc_matrix)
assert_array_equal(py_ctc['decoupler'].toarray(),
mf_ctc['decoupler'].toarray())
# I/O roundtrip
tempdir = _TempDir()
fname = op.join(tempdir, 'test_sss_raw.fif')
sss_ctc.save(fname)
sss_ctc_read = read_raw_fif(fname)
mf_ctc_read = sss_ctc_read.info['proc_history'][0]['max_info']['sss_ctc']
assert isinstance(mf_ctc_read['decoupler'], sparse.csc_matrix)
assert_array_equal(mf_ctc_read['decoupler'].toarray(),
mf_ctc['decoupler'].toarray())
assert_equal(object_diff(py_ctc, mf_ctc), '')
raw_ctf = read_crop(fname_ctf_raw).apply_gradient_compensation(0)
pytest.raises(ValueError, maxwell_filter, raw_ctf) # cannot fit headshape
raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
_assert_n_free(raw_sss, 68)
raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True)
_assert_n_free(raw_sss, 70)
raw_missing = raw.copy().crop(0, 0.1).load_data().pick_channels(
[raw.ch_names[pi] for pi in pick_types(raw.info, meg=True,
exclude=())[3:]])
with pytest.warns(RuntimeWarning, match='Not all cross-talk channels'):
maxwell_filter(raw_missing, cross_talk=ctc_fname)
# MEG channels not in cross-talk
pytest.raises(RuntimeError, maxwell_filter, raw_ctf, origin=(0., 0., 0.04),
cross_talk=ctc_fname)
@testing.requires_testing_data
def test_head_translation():
"""Test Maxwell filter head translation."""
raw = read_crop(raw_fname, (0., 1.))
# First try with an unchanged destination
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(raw, destination=raw_fname,
origin=mf_head_origin, regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss, read_crop(sss_std_fname, (0., 1.)), 200.)
# Now with default
with use_coil_def(elekta_def_fname):
with pytest.warns(RuntimeWarning, match='over 25 mm'):
raw_sss = maxwell_filter(raw, destination=mf_head_origin,
origin=mf_head_origin, regularize=None,
bad_condition='ignore', verbose=True)
assert_meg_snr(raw_sss, read_crop(sss_trans_default_fname), 125.)
destination = np.eye(4)
destination[2, 3] = 0.04
assert_allclose(raw_sss.info['dev_head_t']['trans'], destination)
# Now to sample's head pos
with pytest.warns(RuntimeWarning, match='= 25.6 mm'):
raw_sss = maxwell_filter(raw, destination=sample_fname,
origin=mf_head_origin, regularize=None,
bad_condition='ignore', verbose=True)
assert_meg_snr(raw_sss, read_crop(sss_trans_sample_fname), 13., 100.)
assert_allclose(raw_sss.info['dev_head_t']['trans'],
read_info(sample_fname)['dev_head_t']['trans'])
# Degenerate cases
pytest.raises(RuntimeError, maxwell_filter, raw,
destination=mf_head_origin, coord_frame='meg')
pytest.raises(ValueError, maxwell_filter, raw, destination=[0.] * 4)
# TODO: Eventually add simulation tests mirroring Taulu's original paper
# that calculates the localization error:
# http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1495874
def _assert_shielding(raw_sss, erm_power, shielding_factor, meg='mag'):
"""Assert a minimum shielding factor using empty-room power."""
picks = pick_types(raw_sss.info, meg=meg, ref_meg=False)
if isinstance(erm_power, BaseRaw):
picks_erm = pick_types(raw_sss.info, meg=meg, ref_meg=False)
assert_allclose(picks, picks_erm)
erm_power = np.sqrt((erm_power[picks_erm][0] ** 2).sum())
sss_power = raw_sss[picks][0].ravel()
sss_power = np.sqrt(np.sum(sss_power * sss_power))
factor = erm_power / sss_power
assert factor >= shielding_factor, \
'Shielding factor %0.3f < %0.3f' % (factor, shielding_factor)
@buggy_mkl_svd
@pytest.mark.slowtest
@requires_svd_convergence
@testing.requires_testing_data
def test_shielding_factor():
"""Test Maxwell filter shielding factor using empty room."""
raw_erm = read_crop(erm_fname).load_data().pick_types(meg=True)
erm_power = raw_erm[pick_types(raw_erm.info, meg='mag')][0]
erm_power = np.sqrt(np.sum(erm_power * erm_power))
erm_power_grad = raw_erm[pick_types(raw_erm.info, meg='grad')][0]
erm_power_grad = np.sqrt(np.sum(erm_power * erm_power))
# Vanilla SSS (second value would be for meg=True instead of meg='mag')
_assert_shielding(read_crop(sss_erm_std_fname), erm_power, 10) # 1.5)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None)
_assert_shielding(raw_sss, erm_power, 12) # 1.5)
_assert_shielding(raw_sss, erm_power_grad, 0.45, 'grad') # 1.5)
# Using different mag_scale values
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
mag_scale='auto')
_assert_shielding(raw_sss, erm_power, 12)
_assert_shielding(raw_sss, erm_power_grad, 0.48, 'grad')
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
mag_scale=1.) # not a good choice
_assert_shielding(raw_sss, erm_power, 7.3)
_assert_shielding(raw_sss, erm_power_grad, 0.2, 'grad')
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
mag_scale=1000., bad_condition='ignore')
_assert_shielding(raw_sss, erm_power, 4.0)
_assert_shielding(raw_sss, erm_power_grad, 0.1, 'grad')
# Fine cal
_assert_shielding(read_crop(sss_erm_fine_cal_fname), erm_power, 12) # 2.0)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
origin=mf_meg_origin,
calibration=fine_cal_fname)
_assert_shielding(raw_sss, erm_power, 12) # 2.0)
# Crosstalk
_assert_shielding(read_crop(sss_erm_ctc_fname), erm_power, 12) # 2.1)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
origin=mf_meg_origin,
cross_talk=ctc_fname)
_assert_shielding(raw_sss, erm_power, 12) # 2.1)
# Fine cal + Crosstalk
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin,
cross_talk=ctc_fname)
_assert_shielding(raw_sss, erm_power, 13) # 2.2)
# tSSS
_assert_shielding(read_crop(sss_erm_st_fname), erm_power, 37) # 5.8)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
origin=mf_meg_origin, st_duration=1.)
_assert_shielding(raw_sss, erm_power, 37) # 5.8)
# Crosstalk + tSSS
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
cross_talk=ctc_fname, origin=mf_meg_origin,
st_duration=1.)
_assert_shielding(raw_sss, erm_power, 38) # 5.91)
# Fine cal + tSSS
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin, st_duration=1.)
_assert_shielding(raw_sss, erm_power, 38) # 5.98)
# Fine cal + Crosstalk + tSSS
_assert_shielding(read_crop(sss_erm_st1FineCalCrossTalk_fname),
erm_power, 39) # 6.07)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
calibration=fine_cal_fname, origin=mf_meg_origin,
cross_talk=ctc_fname, st_duration=1.)
_assert_shielding(raw_sss, erm_power, 39) # 6.05)
# Fine cal + Crosstalk + tSSS + Reg-in
_assert_shielding(read_crop(sss_erm_st1FineCalCrossTalkRegIn_fname),
erm_power, 57) # 6.97)
raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname,
cross_talk=ctc_fname, st_duration=1.,
origin=mf_meg_origin,
coord_frame='meg', regularize='in')
_assert_shielding(raw_sss, erm_power, 53) # 6.64)
raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname,
cross_talk=ctc_fname, st_duration=1.,
coord_frame='meg', regularize='in')
_assert_shielding(raw_sss, erm_power, 58) # 7.0)
_assert_shielding(raw_sss, erm_power_grad, 1.6, 'grad')
raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname,
cross_talk=ctc_fname, st_duration=1.,
coord_frame='meg', regularize='in',
mag_scale='auto')
_assert_shielding(raw_sss, erm_power, 51)
_assert_shielding(raw_sss, erm_power_grad, 1.5, 'grad')
raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname_3d,
cross_talk=ctc_fname, st_duration=1.,
coord_frame='meg', regularize='in')
# Our 3D cal has worse defaults for this ERM than the 1D file
_assert_shielding(raw_sss, erm_power, 54)
# Show it by rewriting the 3D as 1D and testing it
temp_dir = _TempDir()
temp_fname = op.join(temp_dir, 'test_cal.dat')
with open(fine_cal_fname_3d, 'r') as fid:
with open(temp_fname, 'w') as fid_out:
for line in fid:
fid_out.write(' '.join(line.strip().split(' ')[:14]) + '\n')
raw_sss = maxwell_filter(raw_erm, calibration=temp_fname,
cross_talk=ctc_fname, st_duration=1.,
coord_frame='meg', regularize='in')
# Our 3D cal has worse defaults for this ERM than the 1D file
_assert_shielding(raw_sss, erm_power, 44)
@pytest.mark.slowtest
@requires_svd_convergence
@testing.requires_testing_data
def test_all():
"""Test maxwell filter using all options."""
raw_fnames = (raw_fname, raw_fname, erm_fname, sample_fname)
sss_fnames = (sss_st1FineCalCrossTalkRegIn_fname,
sss_st1FineCalCrossTalkRegInTransSample_fname,
sss_erm_st1FineCalCrossTalkRegIn_fname,
sss_samp_fname)
fine_cals = (fine_cal_fname,
fine_cal_fname,
fine_cal_fname,
fine_cal_mgh_fname)
coord_frames = ('head', 'head', 'meg', 'head')
ctcs = (ctc_fname, ctc_fname, ctc_fname, ctc_mgh_fname)
mins = (3.5, 3.5, 1.2, 0.9)
meds = (10.8, 10.4, 3.2, 6.)
st_durs = (1., 1., 1., None)
destinations = (None, sample_fname, None, None)
origins = (mf_head_origin,
mf_head_origin,
mf_meg_origin,
mf_head_origin)
for ii, rf in enumerate(raw_fnames):
raw = read_crop(rf, (0., 1.))
with pytest.warns(None): # sometimes the fit is bad
sss_py = maxwell_filter(
raw, calibration=fine_cals[ii], cross_talk=ctcs[ii],
st_duration=st_durs[ii], coord_frame=coord_frames[ii],
destination=destinations[ii], origin=origins[ii])
sss_mf = read_crop(sss_fnames[ii])
assert_meg_snr(sss_py, sss_mf, mins[ii], meds[ii], msg=rf)
@pytest.mark.slowtest
@requires_svd_convergence
@testing.requires_testing_data
def test_triux():
"""Test TRIUX system support."""
raw = read_crop(tri_fname, (0, 0.999))
raw.fix_mag_coil_types()
# standard
with use_coil_def(elekta_def_fname):
sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None)
assert_meg_snr(sss_py, read_crop(tri_sss_fname), 37, 700)
# cross-talk
sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None,
cross_talk=tri_ctc_fname)
assert_meg_snr(sss_py, read_crop(tri_sss_ctc_fname), 31, 250)
# fine cal
sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None,
calibration=tri_cal_fname)
assert_meg_snr(sss_py, read_crop(tri_sss_cal_fname), 22, 200)
# ctc+cal
sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None,
calibration=tri_cal_fname,
cross_talk=tri_ctc_fname)
assert_meg_snr(sss_py, read_crop(tri_sss_ctc_cal_fname), 28, 200)
# regularization
sss_py = maxwell_filter(raw, coord_frame='meg', regularize='in')
sss_mf = read_crop(tri_sss_reg_fname)
assert_meg_snr(sss_py, sss_mf, 0.6, 9)
_check_reg_match(sss_py, sss_mf, 1)
# all three
sss_py = maxwell_filter(raw, coord_frame='meg', regularize='in',
calibration=tri_cal_fname,
cross_talk=tri_ctc_fname)
sss_mf = read_crop(tri_sss_ctc_cal_reg_in_fname)
assert_meg_snr(sss_py, sss_mf, 0.6, 9)
_check_reg_match(sss_py, sss_mf, 1)
# tSSS
raw = read_crop(tri_fname).fix_mag_coil_types()
with use_coil_def(elekta_def_fname):
sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None,
st_duration=4., verbose=True)
assert_meg_snr(sss_py, read_crop(tri_sss_st4_fname), 700., 1600)
@testing.requires_testing_data
def test_MGH_cross_talk():
"""Test cross-talk."""
raw = read_crop(raw_fname, (0., 1.))
raw_sss = maxwell_filter(raw, cross_talk=ctc_mgh_fname)
py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
assert (len(py_ctc) > 0)
@testing.requires_testing_data
def test_mf_skips():
"""Test processing of data with skips."""
raw = read_raw_fif(skip_fname, preload=True)
raw.fix_mag_coil_types()
raw.pick_channels(raw.ch_names[:50]) # fast and inaccurate
kwargs = dict(st_only=True, coord_frame='meg', int_order=4, ext_order=3)
# smoke test that this runs
maxwell_filter(raw, st_duration=17., skip_by_annotation=(), **kwargs)
# and this one, too, which will process some all-zero data
maxwell_filter(raw, st_duration=2., skip_by_annotation=(), **kwargs)
with pytest.raises(ValueError, match='duration'):
# skips decrease acceptable duration
maxwell_filter(raw, st_duration=17., **kwargs)
onsets, ends = _annotations_starts_stops(
raw, ('edge', 'bad_acq_skip'), 'skip_by_annotation', invert=True)
assert (ends - onsets).min() / raw.info['sfreq'] == 2.
assert (ends - onsets).max() / raw.info['sfreq'] == 3.
for st_duration in (2., 3.):
raw_sss = maxwell_filter(raw, st_duration=st_duration, **kwargs)
for start, stop in zip(onsets, ends):
orig_data = raw[:, start:stop][0]
new_data = raw_sss[:, start:stop][0]
if (stop - start) / raw.info['sfreq'] >= st_duration:
# Should be modified
assert not np.allclose(new_data, orig_data, atol=1e-20)
else:
# Should not be modified
assert_allclose(new_data, orig_data, atol=1e-20)
# Processing an individual file and concat should be equivalent to
# concat then process
raw.crop(0, 1)
raw_sss = maxwell_filter(raw, st_duration=1., **kwargs)
raw_sss_concat = concatenate_raws([raw_sss, raw_sss.copy()])
raw_concat = concatenate_raws([raw.copy(), raw.copy()])
raw_concat_sss = maxwell_filter(raw_concat, st_duration=1., **kwargs)
raw_concat_sss_bad = maxwell_filter(raw_concat, st_duration=1.,
skip_by_annotation=(), **kwargs)
data_c = raw_concat[:][0]
data_sc = raw_sss_concat[:][0]
data_cs = raw_concat_sss[:][0]
data_csb = raw_concat_sss_bad[:][0]
assert not np.allclose(data_cs, data_c, atol=1e-20)
assert not np.allclose(data_cs, data_csb, atol=1e-20)
assert_allclose(data_sc, data_cs, atol=1e-20)
run_tests_if_main()
|