1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
# Authors: Alexandre Barachant <alexandre.barachant@gmail.com>
# Asish Panda <asishrocks95@gmail.com>
# Jean-Remi King <jeanremi.king@gmail.com>
#
# License: BSD (3-clause)
import numpy as np
from scipy import linalg
from .. import EvokedArray, Evoked
from ..cov import Covariance, _regularized_covariance
from ..decoding import TransformerMixin, BaseEstimator
from ..epochs import BaseEpochs
from ..io import BaseRaw
from ..io.pick import _pick_data_channels, pick_info
from ..utils import logger
from ..externals.six import iteritems, itervalues
def _construct_signal_from_epochs(epochs, events, sfreq, tmin):
"""Reconstruct pseudo continuous signal from epochs."""
n_epochs, n_channels, n_times = epochs.shape
tmax = tmin + n_times / float(sfreq)
start = (np.min(events[:, 0]) + int(tmin * sfreq))
stop = (np.max(events[:, 0]) + int(tmax * sfreq) + 1)
n_samples = stop - start
n_epochs, n_channels, n_times = epochs.shape
events_pos = events[:, 0] - events[0, 0]
raw = np.zeros((n_channels, n_samples))
for idx in range(n_epochs):
onset = events_pos[idx]
offset = onset + n_times
raw[:, onset:offset] = epochs[idx]
return raw
def _least_square_evoked(epochs_data, events, tmin, sfreq):
"""Least square estimation of evoked response from epochs data.
Parameters
----------
epochs_data : array, shape (n_channels, n_times)
The epochs data to estimate evoked.
events : array, shape (n_events, 3)
The events typically returned by the read_events function.
If some events don't match the events of interest as specified
by event_id, they will be ignored.
tmin : float
Start time before event.
sfreq : float
Sampling frequency.
Returns
-------
evokeds : array, shape (n_class, n_components, n_times)
An concatenated array of evoked data for each event type.
toeplitz : array, shape (n_class * n_components, n_channels)
An concatenated array of toeplitz matrix for each event type.
"""
n_epochs, n_channels, n_times = epochs_data.shape
tmax = tmin + n_times / float(sfreq)
# Deal with shuffled epochs
events = events.copy()
events[:, 0] -= events[0, 0] + int(tmin * sfreq)
# Construct raw signal
raw = _construct_signal_from_epochs(epochs_data, events, sfreq, tmin)
# Compute the independent evoked responses per condition, while correcting
# for event overlaps.
n_min, n_max = int(tmin * sfreq), int(tmax * sfreq)
window = n_max - n_min
n_samples = raw.shape[1]
toeplitz = list()
classes = np.unique(events[:, 2])
for ii, this_class in enumerate(classes):
# select events by type
sel = events[:, 2] == this_class
# build toeplitz matrix
trig = np.zeros((n_samples, 1))
ix_trig = (events[sel, 0]) + n_min
trig[ix_trig] = 1
toeplitz.append(linalg.toeplitz(trig[0:window], trig))
# Concatenate toeplitz
toeplitz = np.array(toeplitz)
X = np.concatenate(toeplitz)
# least square estimation
predictor = np.dot(linalg.pinv(np.dot(X, X.T)), X)
evokeds = np.dot(predictor, raw.T)
evokeds = np.transpose(np.vsplit(evokeds, len(classes)), (0, 2, 1))
return evokeds, toeplitz
def _fit_xdawn(epochs_data, y, n_components, reg=None, signal_cov=None,
events=None, tmin=0., sfreq=1., method_params=None, info=None):
"""Fit filters and coefs using Xdawn Algorithm.
Xdawn is a spatial filtering method designed to improve the signal
to signal + noise ratio (SSNR) of the event related responses. Xdawn was
originally designed for P300 evoked potential by enhancing the target
response with respect to the non-target response. This implementation is a
generalization to any type of event related response.
Parameters
----------
epochs_data : array, shape (n_epochs, n_channels, n_times)
The epochs data.
y : array, shape (n_epochs)
The epochs class.
n_components : int (default 2)
The number of components to decompose the signals signals.
reg : float | str | None (default None)
If not None (same as ``'empirical'``, default), allow
regularization for covariance estimation.
If float, shrinkage is used (0 <= shrinkage <= 1).
For str options, ``reg`` will be passed as ``method`` to
:func:`mne.compute_covariance`.
signal_cov : None | Covariance | array, shape (n_channels, n_channels)
The signal covariance used for whitening of the data.
if None, the covariance is estimated from the epochs signal.
events : array, shape (n_epochs, 3)
The epochs events, used to correct for epochs overlap.
tmin : float
Epochs starting time. Only used if events is passed to correct for
epochs overlap.
sfreq : float
Sampling frequency. Only used if events is passed to correct for
epochs overlap.
Returns
-------
filters : array, shape (n_channels, n_channels)
The Xdawn components used to decompose the data for each event type.
patterns : array, shape (n_channels, n_channels)
The Xdawn patterns used to restore the signals for each event type.
evokeds : array, shape (n_class, n_components, n_times)
The independent evoked responses per condition.
"""
n_epochs, n_channels, n_times = epochs_data.shape
classes = np.unique(y)
# XXX Eventually this could be made to deal with rank deficiency properly
# by exposing this "rank" parameter, but this will require refactoring
# the linalg.eigh call to operate in the lower-dimension
# subspace, then project back out.
# Retrieve or compute whitening covariance
if signal_cov is None:
signal_cov = _regularized_covariance(
np.hstack(epochs_data), reg, method_params, info, rank='full')
elif isinstance(signal_cov, Covariance):
signal_cov = signal_cov.data
if not isinstance(signal_cov, np.ndarray) or (
not np.array_equal(signal_cov.shape,
np.tile(epochs_data.shape[1], 2))):
raise ValueError('signal_cov must be None, a covariance instance, '
'or an array of shape (n_chans, n_chans)')
# Get prototype events
if events is not None:
evokeds, toeplitzs = _least_square_evoked(
epochs_data, events, tmin, sfreq)
else:
evokeds, toeplitzs = list(), list()
for c in classes:
# Prototyped response for each class
evokeds.append(np.mean(epochs_data[y == c, :, :], axis=0))
toeplitzs.append(1.)
filters = list()
patterns = list()
for evo, toeplitz in zip(evokeds, toeplitzs):
# Estimate covariance matrix of the prototype response
evo = np.dot(evo, toeplitz)
evo_cov = _regularized_covariance(evo, reg, method_params, info,
rank='full')
# Fit spatial filters
try:
evals, evecs = linalg.eigh(evo_cov, signal_cov)
except np.linalg.LinAlgError as exp:
raise ValueError('Could not compute eigenvalues, ensure '
'proper regularization (%s)' % (exp,))
evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors
evecs /= np.apply_along_axis(np.linalg.norm, 0, evecs)
_patterns = np.linalg.pinv(evecs.T)
filters.append(evecs[:, :n_components].T)
patterns.append(_patterns[:, :n_components].T)
filters = np.concatenate(filters, axis=0)
patterns = np.concatenate(patterns, axis=0)
evokeds = np.array(evokeds)
return filters, patterns, evokeds
class _XdawnTransformer(BaseEstimator, TransformerMixin):
"""Implementation of the Xdawn Algorithm compatible with scikit-learn.
Xdawn is a spatial filtering method designed to improve the signal
to signal + noise ratio (SSNR) of the event related responses. Xdawn was
originally designed for P300 evoked potential by enhancing the target
response with respect to the non-target response. This implementation is a
generalization to any type of event related response.
.. note:: _XdawnTransformer does not correct for epochs overlap. To correct
overlaps see ``Xdawn``.
Parameters
----------
n_components : int (default 2)
The number of components to decompose the signals.
reg : float | str | None (default None)
If not None (same as ``'empirical'``, default), allow
regularization for covariance estimation.
If float, shrinkage is used (0 <= shrinkage <= 1).
For str options, ``reg`` will be passed to ``method`` to
:func:`mne.compute_covariance`.
signal_cov : None | Covariance | array, shape (n_channels, n_channels)
The signal covariance used for whitening of the data.
if None, the covariance is estimated from the epochs signal.
method_params : dict | None
Parameters to pass to :func:`mne.compute_covariance`.
.. versionadded:: 0.16
Attributes
----------
classes_ : array, shape (n_classes)
The event indices of the classes.
filters_ : array, shape (n_channels, n_channels)
The Xdawn components used to decompose the data for each event type.
patterns_ : array, shape (n_channels, n_channels)
The Xdawn patterns used to restore the signals for each event type.
"""
def __init__(self, n_components=2, reg=None, signal_cov=None,
method_params=None):
"""Init."""
self.n_components = n_components
self.signal_cov = signal_cov
self.reg = reg
self.method_params = method_params
def fit(self, X, y=None):
"""Fit Xdawn spatial filters.
Parameters
----------
X : array, shape (n_epochs, n_channels, n_samples)
The target data.
y : array, shape (n_epochs,) | None
The target labels. If None, Xdawn fit on the average evoked.
Returns
-------
self : Xdawn instance
The Xdawn instance.
"""
X, y = self._check_Xy(X, y)
# Main function
self.classes_ = np.unique(y)
self.filters_, self.patterns_, _ = _fit_xdawn(
X, y, n_components=self.n_components, reg=self.reg,
signal_cov=self.signal_cov, method_params=self.method_params)
return self
def transform(self, X):
"""Transform data with spatial filters.
Parameters
----------
X : array, shape (n_epochs, n_channels, n_samples)
The target data.
Returns
-------
X : array, shape (n_epochs, n_components * n_classes, n_samples)
The transformed data.
"""
X, _ = self._check_Xy(X)
# Check size
if self.filters_.shape[1] != X.shape[1]:
raise ValueError('X must have %i channels, got %i instead.' % (
self.filters_.shape[1], X.shape[1]))
# Transform
X = np.dot(self.filters_, X)
X = X.transpose((1, 0, 2))
return X
def inverse_transform(self, X):
"""Remove selected components from the signal.
Given the unmixing matrix, transform data, zero out components,
and inverse transform the data. This procedure will reconstruct
the signals from which the dynamics described by the excluded
components is subtracted.
Parameters
----------
X : array, shape (n_epochs, n_components * n_classes, n_times)
The transformed data.
Returns
-------
X : array, shape (n_epochs, n_channels * n_classes, n_times)
The inverse transform data.
"""
# Check size
X, _ = self._check_Xy(X)
n_components, n_channels = self.patterns_.shape
n_epochs, n_comp, n_times = X.shape
if n_comp != (self.n_components * len(self.classes_)):
raise ValueError('X must have %i components, got %i instead' % (
self.n_components * len(self.classes_), n_comp))
# Transform
return np.dot(self.patterns_.T, X).transpose(1, 0, 2)
def _check_Xy(self, X, y=None):
"""Check X and y types and dimensions."""
# Check data
if not isinstance(X, np.ndarray) or X.ndim != 3:
raise ValueError('X must be an array of shape (n_epochs, '
'n_channels, n_samples).')
if y is None:
y = np.ones(len(X))
y = np.asarray(y)
if len(X) != len(y):
raise ValueError('X and y must have the same length')
return X, y
class Xdawn(_XdawnTransformer):
"""Implementation of the Xdawn Algorithm.
Xdawn [1]_ [2]_ is a spatial filtering method designed to improve the
signal to signal + noise ratio (SSNR) of the ERP responses. Xdawn was
originally designed for P300 evoked potential by enhancing the target
response with respect to the non-target response. This implementation
is a generalization to any type of ERP.
Parameters
----------
n_components : int (default 2)
The number of components to decompose the signals.
signal_cov : None | Covariance | ndarray, shape (n_channels, n_channels)
(default None). The signal covariance used for whitening of the data.
if None, the covariance is estimated from the epochs signal.
correct_overlap : 'auto' or bool (default 'auto')
Compute the independent evoked responses per condition, while
correcting for event overlaps if any. If 'auto', then
overlapp_correction = True if the events do overlap.
reg : float | str | None (default None)
If not None (same as ``'empirical'``, default), allow
regularization for covariance estimation.
If float, shrinkage is used (0 <= shrinkage <= 1).
For str options, ``reg`` will be passed as ``method`` to
:func:`mne.compute_covariance`.
Attributes
----------
filters_ : dict of ndarray
If fit, the Xdawn components used to decompose the data for each event
type, else empty.
patterns_ : dict of ndarray
If fit, the Xdawn patterns used to restore the signals for each event
type, else empty.
evokeds_ : dict of evoked instance
If fit, the evoked response for each event type.
event_id_ : dict of event id
The event id.
correct_overlap_ : bool
Whether overlap correction was applied.
Notes
-----
.. versionadded:: 0.10
See Also
--------
mne.decoding.CSP, mne.decoding.SPoC
References
----------
.. [1] Rivet, B., Souloumiac, A., Attina, V., & Gibert, G. (2009). xDAWN
algorithm to enhance evoked potentials: application to
brain-computer interface. Biomedical Engineering, IEEE Transactions
on, 56(8), 2035-2043.
.. [2] Rivet, B., Cecotti, H., Souloumiac, A., Maby, E., & Mattout, J.
(2011, August). Theoretical analysis of xDAWN algorithm:
application to an efficient sensor selection in a P300 BCI. In
Signal Processing Conference, 2011 19th European (pp. 1382-1386).
IEEE.
"""
def __init__(self, n_components=2, signal_cov=None, correct_overlap='auto',
reg=None):
"""Init."""
super(Xdawn, self).__init__(n_components=n_components,
signal_cov=signal_cov, reg=reg)
if correct_overlap not in ['auto', True, False]:
raise ValueError('correct_overlap must be a bool or "auto"')
self.correct_overlap = correct_overlap
def fit(self, epochs, y=None):
"""Fit Xdawn from epochs.
Parameters
----------
epochs : Epochs object
An instance of Epoch on which Xdawn filters will be fitted.
y : ndarray | None (default None)
If None, used epochs.events[:, 2].
Returns
-------
self : Xdawn instance
The Xdawn instance.
"""
# Check data
if not isinstance(epochs, BaseEpochs):
raise ValueError('epochs must be an Epochs object.')
picks = _pick_data_channels(epochs.info)
use_info = pick_info(epochs.info, picks)
X = epochs.get_data()[:, picks, :]
y = epochs.events[:, 2] if y is None else y
self.event_id_ = epochs.event_id
# Check that no baseline was applied with correct overlap
correct_overlap = self.correct_overlap
if correct_overlap == 'auto':
# Events are overlapped if the minimal inter-stimulus
# interval is smaller than the time window.
isi = np.diff(np.sort(epochs.events[:, 0]))
window = int((epochs.tmax - epochs.tmin) * epochs.info['sfreq'])
correct_overlap = isi.min() < window
if epochs.baseline and correct_overlap:
raise ValueError('Cannot apply correct_overlap if epochs'
' were baselined.')
events, tmin, sfreq = None, 0., 1.
if correct_overlap:
events = epochs.events
tmin = epochs.tmin
sfreq = epochs.info['sfreq']
self.correct_overlap_ = correct_overlap
# Note: In this original version of Xdawn we compute and keep all
# components. The selection comes at transform().
n_components = X.shape[1]
# Main fitting function
filters, patterns, evokeds = _fit_xdawn(
X, y, n_components=n_components, reg=self.reg,
signal_cov=self.signal_cov, events=events, tmin=tmin, sfreq=sfreq,
method_params=self.method_params, info=use_info)
# Re-order filters and patterns according to event_id
filters = filters.reshape(-1, n_components, filters.shape[-1])
patterns = patterns.reshape(-1, n_components, patterns.shape[-1])
self.filters_, self.patterns_, self.evokeds_ = dict(), dict(), dict()
idx = np.argsort([value for _, value in iteritems(epochs.event_id)])
for eid, this_filter, this_pattern, this_evo in zip(
epochs.event_id, filters[idx], patterns[idx], evokeds[idx]):
self.filters_[eid] = this_filter.T
self.patterns_[eid] = this_pattern.T
n_events = len(epochs[eid])
evoked = EvokedArray(this_evo, use_info, tmin=epochs.tmin,
comment=eid, nave=n_events)
self.evokeds_[eid] = evoked
return self
def transform(self, inst):
"""Apply Xdawn dim reduction.
Parameters
----------
inst : Epochs | Evoked | ndarray, shape ([n_epochs, ]n_channels, n_times)
Data on which Xdawn filters will be applied.
Returns
-------
X : ndarray, shape ([n_epochs, ]n_components * n_event_types, n_times)
Spatially filtered signals.
""" # noqa: E501
if isinstance(inst, BaseEpochs):
X = inst.get_data()
elif isinstance(inst, Evoked):
X = inst.data
elif isinstance(inst, np.ndarray):
X = inst
if X.ndim not in (2, 3):
raise ValueError('X must be 2D or 3D, got %s' % (X.ndim,))
else:
raise ValueError('Data input must be of Epoch type or numpy array')
filters = [filt[:self.n_components]
for filt in itervalues(self.filters_)]
filters = np.concatenate(filters, axis=0)
X = np.dot(filters, X)
if X.ndim == 3:
X = X.transpose((1, 0, 2))
return X
def apply(self, inst, event_id=None, include=None, exclude=None):
"""Remove selected components from the signal.
Given the unmixing matrix, transform data,
zero out components, and inverse transform the data.
This procedure will reconstruct the signals from which
the dynamics described by the excluded components is subtracted.
Parameters
----------
inst : instance of Raw | Epochs | Evoked
The data to be processed.
event_id : dict | list of str | None (default None)
The kind of event to apply. if None, a dict of inst will be return
one for each type of event xdawn has been fitted.
include : array_like of int | None (default None)
The indices referring to columns in the ummixing matrix. The
components to be kept. If None, the first n_components (as defined
in the Xdawn constructor) will be kept.
exclude : array_like of int | None (default None)
The indices referring to columns in the ummixing matrix. The
components to be zeroed out. If None, all the components except the
first n_components will be exclude.
Returns
-------
out : dict of instance
A dict of instance (from the same type as inst input) for each
event type in event_id.
"""
if event_id is None:
event_id = self.event_id_
if not isinstance(inst, (BaseRaw, BaseEpochs, Evoked)):
raise ValueError('Data input must be Raw, Epochs or Evoked type')
picks = _pick_data_channels(inst.info)
# Define the components to keep
default_exclude = list(range(self.n_components, len(inst.ch_names)))
if exclude is None:
exclude = default_exclude
else:
exclude = list(set(list(default_exclude) + list(exclude)))
if isinstance(inst, BaseRaw):
out = self._apply_raw(raw=inst, include=include, exclude=exclude,
event_id=event_id, picks=picks)
elif isinstance(inst, BaseEpochs):
out = self._apply_epochs(epochs=inst, include=include, picks=picks,
exclude=exclude, event_id=event_id)
elif isinstance(inst, Evoked):
out = self._apply_evoked(evoked=inst, include=include, picks=picks,
exclude=exclude, event_id=event_id)
return out
def _apply_raw(self, raw, include, exclude, event_id, picks):
"""Aux method."""
if not raw.preload:
raise ValueError('Raw data must be preloaded to apply Xdawn')
raws = dict()
for eid in event_id:
data = raw[picks, :][0]
data = self._pick_sources(data, include, exclude, eid)
raw_r = raw.copy()
raw_r[picks, :] = data
raws[eid] = raw_r
return raws
def _apply_epochs(self, epochs, include, exclude, event_id, picks):
"""Aux method."""
if not epochs.preload:
raise ValueError('Epochs must be preloaded to apply Xdawn')
# special case where epochs come picked but fit was 'unpicked'.
epochs_dict = dict()
data = np.hstack(epochs.get_data()[:, picks])
for eid in event_id:
data_r = self._pick_sources(data, include, exclude, eid)
data_r = np.array(np.split(data_r, len(epochs.events), 1))
epochs_r = epochs.copy().load_data()
epochs_r._data[:, picks, :] = data_r
epochs_dict[eid] = epochs_r
return epochs_dict
def _apply_evoked(self, evoked, include, exclude, event_id, picks):
"""Aux method."""
data = evoked.data[picks]
evokeds = dict()
for eid in event_id:
data_r = self._pick_sources(data, include, exclude, eid)
evokeds[eid] = evoked.copy()
# restore evoked
evokeds[eid].data[picks] = data_r
return evokeds
def _pick_sources(self, data, include, exclude, eid):
"""Aux method."""
logger.info('Transforming to Xdawn space')
# Apply unmixing
sources = np.dot(self.filters_[eid].T, data)
if include not in (None, list()):
mask = np.ones(len(sources), dtype=np.bool)
mask[np.unique(include)] = False
sources[mask] = 0.
logger.info('Zeroing out %i Xdawn components' % mask.sum())
elif exclude not in (None, list()):
exclude_ = np.unique(exclude)
sources[exclude_] = 0.
logger.info('Zeroing out %i Xdawn components' % len(exclude_))
logger.info('Inverse transforming to sensor space')
data = np.dot(self.patterns_[eid], sources)
return data
def inverse_transform(self):
"""Not implemented, see Xdawn.apply() instead."""
# Exists because of _XdawnTransformer
raise NotImplementedError('See Xdawn.apply()')
|