1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)
import numpy as np
from scipy import linalg
from . import io, Epochs
from .utils import check_fname, logger, verbose
from .io.pick import pick_types, pick_types_forward
from .io.proj import Projection, _has_eeg_average_ref_proj
from .event import make_fixed_length_events
from .parallel import parallel_func
from .cov import _check_n_samples
from .forward import (is_fixed_orient, _subject_from_forward,
convert_forward_solution)
from .source_estimate import SourceEstimate, VolSourceEstimate
from .io.proj import make_projector, make_eeg_average_ref_proj
def read_proj(fname):
"""Read projections from a FIF file.
Parameters
----------
fname : string
The name of file containing the projections vectors. It should end with
-proj.fif or -proj.fif.gz.
Returns
-------
projs : list
The list of projection vectors.
See Also
--------
write_proj
"""
check_fname(fname, 'projection', ('-proj.fif', '-proj.fif.gz',
'_proj.fif', '_proj.fif.gz'))
ff, tree, _ = io.fiff_open(fname)
with ff as fid:
projs = io.proj._read_proj(fid, tree)
return projs
def write_proj(fname, projs):
"""Write projections to a FIF file.
Parameters
----------
fname : string
The name of file containing the projections vectors. It should end with
-proj.fif or -proj.fif.gz.
projs : list
The list of projection vectors.
See Also
--------
read_proj
"""
check_fname(fname, 'projection', ('-proj.fif', '-proj.fif.gz',
'_proj.fif', '_proj.fif.gz'))
fid = io.write.start_file(fname)
io.proj._write_proj(fid, projs)
io.write.end_file(fid)
@verbose
def _compute_proj(data, info, n_grad, n_mag, n_eeg, desc_prefix, verbose=None):
mag_ind = pick_types(info, meg='mag', ref_meg=False, exclude='bads')
grad_ind = pick_types(info, meg='grad', ref_meg=False, exclude='bads')
eeg_ind = pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude='bads')
if (n_grad > 0) and len(grad_ind) == 0:
logger.info("No gradiometers found. Forcing n_grad to 0")
n_grad = 0
if (n_mag > 0) and len(mag_ind) == 0:
logger.info("No magnetometers found. Forcing n_mag to 0")
n_mag = 0
if (n_eeg > 0) and len(eeg_ind) == 0:
logger.info("No EEG channels found. Forcing n_eeg to 0")
n_eeg = 0
ch_names = info['ch_names']
grad_names, mag_names, eeg_names = ([ch_names[k] for k in ind]
for ind in [grad_ind, mag_ind,
eeg_ind])
projs = []
for n, ind, names, desc in zip([n_grad, n_mag, n_eeg],
[grad_ind, mag_ind, eeg_ind],
[grad_names, mag_names, eeg_names],
['planar', 'axial', 'eeg']):
if n == 0:
continue
data_ind = data[ind][:, ind]
# data is the covariance matrix: U * S**2 * Ut
U, Sexp2, _ = linalg.svd(data_ind, full_matrices=False,
overwrite_a=True)
U = U[:, :n]
exp_var = Sexp2 / Sexp2.sum()
exp_var = exp_var[:n]
for k, (u, var) in enumerate(zip(U.T, exp_var)):
proj_data = dict(col_names=names, row_names=None,
data=u[np.newaxis, :], nrow=1, ncol=u.size)
this_desc = "%s-%s-PCA-%02d" % (desc, desc_prefix, k + 1)
logger.info("Adding projection: %s" % this_desc)
proj = Projection(active=False, data=proj_data,
desc=this_desc, kind=1, explained_var=var)
projs.append(proj)
return projs
@verbose
def compute_proj_epochs(epochs, n_grad=2, n_mag=2, n_eeg=2, n_jobs=1,
desc_prefix=None, verbose=None):
"""Compute SSP (spatial space projection) vectors on Epochs.
Parameters
----------
epochs : instance of Epochs
The epochs containing the artifact
n_grad : int
Number of vectors for gradiometers
n_mag : int
Number of vectors for magnetometers
n_eeg : int
Number of vectors for EEG channels
n_jobs : int
Number of jobs to use to compute covariance
desc_prefix : str | None
The description prefix to use. If None, one will be created based on
the event_id, tmin, and tmax.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
projs: list
List of projection vectors
See Also
--------
compute_proj_raw, compute_proj_evoked
"""
# compute data covariance
data = _compute_cov_epochs(epochs, n_jobs)
event_id = epochs.event_id
if event_id is None or len(list(event_id.keys())) == 0:
event_id = '0'
elif len(event_id.keys()) == 1:
event_id = str(list(event_id.values())[0])
else:
event_id = 'Multiple-events'
if desc_prefix is None:
desc_prefix = "%s-%-.3f-%-.3f" % (event_id, epochs.tmin, epochs.tmax)
return _compute_proj(data, epochs.info, n_grad, n_mag, n_eeg, desc_prefix)
def _compute_cov_epochs(epochs, n_jobs):
"""Compute epochs covariance."""
parallel, p_fun, _ = parallel_func(np.dot, n_jobs)
data = parallel(p_fun(e, e.T) for e in epochs)
n_epochs = len(data)
if n_epochs == 0:
raise RuntimeError('No good epochs found')
n_chan, n_samples = epochs.info['nchan'], len(epochs.times)
_check_n_samples(n_samples * n_epochs, n_chan)
data = sum(data)
return data
@verbose
def compute_proj_evoked(evoked, n_grad=2, n_mag=2, n_eeg=2, desc_prefix=None,
verbose=None):
"""Compute SSP (spatial space projection) vectors on Evoked.
Parameters
----------
evoked : instance of Evoked
The Evoked obtained by averaging the artifact
n_grad : int
Number of vectors for gradiometers
n_mag : int
Number of vectors for magnetometers
n_eeg : int
Number of vectors for EEG channels
desc_prefix : str | None
The description prefix to use. If None, one will be created based on
tmin and tmax.
.. versionadded:: 0.17
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
projs : list
List of projection vectors
See Also
--------
compute_proj_raw, compute_proj_epochs
"""
data = np.dot(evoked.data, evoked.data.T) # compute data covariance
if desc_prefix is None:
desc_prefix = "%-.3f-%-.3f" % (evoked.times[0], evoked.times[-1])
return _compute_proj(data, evoked.info, n_grad, n_mag, n_eeg, desc_prefix)
@verbose
def compute_proj_raw(raw, start=0, stop=None, duration=1, n_grad=2, n_mag=2,
n_eeg=0, reject=None, flat=None, n_jobs=1, verbose=None):
"""Compute SSP (spatial space projection) vectors on Raw.
Parameters
----------
raw : instance of Raw
A raw object to use the data from.
start : float
Time (in sec) to start computing SSP.
stop : float
Time (in sec) to stop computing SSP.
None will go to the end of the file.
duration : float
Duration (in sec) to chunk data into for SSP
If duration is None, data will not be chunked.
n_grad : int
Number of vectors for gradiometers.
n_mag : int
Number of vectors for magnetometers.
n_eeg : int
Number of vectors for EEG channels.
reject : dict | None
Epoch rejection configuration (see Epochs).
flat : dict | None
Epoch flat configuration (see Epochs).
n_jobs : int
Number of jobs to use to compute covariance.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
projs: list
List of projection vectors
See Also
--------
compute_proj_epochs, compute_proj_evoked
"""
if duration is not None:
events = make_fixed_length_events(raw, 999, start, stop, duration)
picks = pick_types(raw.info, meg=True, eeg=True, eog=True, ecg=True,
emg=True, exclude='bads')
epochs = Epochs(raw, events, None, tmin=0., tmax=duration,
picks=picks, reject=reject, flat=flat)
data = _compute_cov_epochs(epochs, n_jobs)
info = epochs.info
if not stop:
stop = raw.n_times / raw.info['sfreq']
else:
# convert to sample indices
start = max(raw.time_as_index(start)[0], 0)
stop = raw.time_as_index(stop)[0] if stop else raw.n_times
stop = min(stop, raw.n_times)
data, times = raw[:, start:stop]
_check_n_samples(stop - start, data.shape[0])
data = np.dot(data, data.T) # compute data covariance
info = raw.info
# convert back to times
start = start / raw.info['sfreq']
stop = stop / raw.info['sfreq']
desc_prefix = "Raw-%-.3f-%-.3f" % (start, stop)
projs = _compute_proj(data, info, n_grad, n_mag, n_eeg, desc_prefix)
return projs
def sensitivity_map(fwd, projs=None, ch_type='grad', mode='fixed', exclude=[],
verbose=None):
"""Compute sensitivity map.
Such maps are used to know how much sources are visible by a type
of sensor, and how much projections shadow some sources.
Parameters
----------
fwd : Forward
The forward operator.
projs : list
List of projection vectors.
ch_type : 'grad' | 'mag' | 'eeg'
The type of sensors to use.
mode : str
The type of sensitivity map computed. See manual. Should be 'free',
'fixed', 'ratio', 'radiality', 'angle', 'remaining', or 'dampening'
corresponding to the argument --map 1, 2, 3, 4, 5, 6 and 7 of the
command mne_sensitivity_map.
exclude : list of string | str
List of channels to exclude. If empty do not exclude any (default).
If 'bads', exclude channels in fwd['info']['bads'].
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
stc : SourceEstimate | VolSourceEstimate
The sensitivity map as a SourceEstimate or VolSourceEstimate instance
for visualization.
"""
# check strings
if ch_type not in ['eeg', 'grad', 'mag']:
raise ValueError("ch_type should be 'eeg', 'mag' or 'grad (got %s)"
% ch_type)
if mode not in ['free', 'fixed', 'ratio', 'radiality', 'angle',
'remaining', 'dampening']:
raise ValueError('Unknown mode type (got %s)' % mode)
# check forward
if is_fixed_orient(fwd, orig=True):
raise ValueError('fwd should must be computed with free orientation')
# limit forward (this will make a copy of the data for us)
if ch_type == 'eeg':
fwd = pick_types_forward(fwd, meg=False, eeg=True, exclude=exclude)
else:
fwd = pick_types_forward(fwd, meg=ch_type, eeg=False, exclude=exclude)
convert_forward_solution(fwd, surf_ori=True, force_fixed=False,
copy=False, verbose=False)
if not fwd['surf_ori'] or is_fixed_orient(fwd):
raise RuntimeError('Error converting solution, please notify '
'mne-python developers')
gain = fwd['sol']['data']
# Make sure EEG has average
if ch_type == 'eeg':
if projs is None or not _has_eeg_average_ref_proj(projs):
eeg_ave = [make_eeg_average_ref_proj(fwd['info'])]
else:
eeg_ave = []
projs = eeg_ave if projs is None else projs + eeg_ave
# Construct the projector
residual_types = ['angle', 'remaining', 'dampening']
if projs is not None:
proj, ncomp, U = make_projector(projs, fwd['sol']['row_names'],
include_active=True)
# do projection for most types
if mode not in residual_types:
gain = np.dot(proj, gain)
elif ncomp == 0:
raise RuntimeError('No valid projectors found for channel type '
'%s, cannot compute %s' % (ch_type, mode))
# can only run the last couple methods if there are projectors
elif mode in residual_types:
raise ValueError('No projectors used, cannot compute %s' % mode)
n_sensors, n_dipoles = gain.shape
n_locations = n_dipoles // 3
sensitivity_map = np.empty(n_locations)
for k in range(n_locations):
gg = gain[:, 3 * k:3 * (k + 1)]
if mode != 'fixed':
s = linalg.svd(gg, full_matrices=False, compute_uv=False)
if mode == 'free':
sensitivity_map[k] = s[0]
else:
gz = linalg.norm(gg[:, 2]) # the normal component
if mode == 'fixed':
sensitivity_map[k] = gz
elif mode == 'ratio':
sensitivity_map[k] = gz / s[0]
elif mode == 'radiality':
sensitivity_map[k] = 1. - (gz / s[0])
else:
if mode == 'angle':
co = linalg.norm(np.dot(gg[:, 2], U))
sensitivity_map[k] = co / gz
else:
p = linalg.norm(np.dot(proj, gg[:, 2]))
if mode == 'remaining':
sensitivity_map[k] = p / gz
elif mode == 'dampening':
sensitivity_map[k] = 1. - p / gz
else:
raise ValueError('Unknown mode type (got %s)' % mode)
# only normalize fixed and free methods
if mode in ['fixed', 'free']:
sensitivity_map /= np.max(sensitivity_map)
subject = _subject_from_forward(fwd)
if fwd['src'][0]['type'] == 'vol': # volume source space
vertices = fwd['src'][0]['vertno']
SEClass = VolSourceEstimate
else:
vertices = [fwd['src'][0]['vertno'], fwd['src'][1]['vertno']]
SEClass = SourceEstimate
stc = SEClass(sensitivity_map[:, np.newaxis], vertices=vertices, tmin=0,
tstep=1, subject=subject)
return stc
|