1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)
from os import path
import numpy as np
from .io.meas_info import Info
from .io.pick import _pick_data_channels, pick_types
from .utils import logger, verbose, _get_stim_channel
_SELECTIONS = ['Vertex', 'Left-temporal', 'Right-temporal', 'Left-parietal',
'Right-parietal', 'Left-occipital', 'Right-occipital',
'Left-frontal', 'Right-frontal']
_EEG_SELECTIONS = ['EEG 1-32', 'EEG 33-64', 'EEG 65-96', 'EEG 97-128']
@verbose
def read_selection(name, fname=None, info=None, verbose=None):
"""Read channel selection from file.
By default, the selections used in ``mne_browse_raw`` are supported.
Additional selections can be added by specifying a selection file (e.g.
produced using ``mne_browse_raw``) using the ``fname`` parameter.
The ``name`` parameter can be a string or a list of string. The returned
selection will be the combination of all selections in the file where
(at least) one element in name is a substring of the selection name in
the file. For example, ``name=['temporal', 'Right-frontal']`` will produce
a combination of ``'Left-temporal'``, ``'Right-temporal'``, and
``'Right-frontal'``.
The included selections are:
* ``'Vertex'``
* ``'Left-temporal'``
* ``'Right-temporal'``
* ``'Left-parietal'``
* ``'Right-parietal'``
* ``'Left-occipital'``
* ``'Right-occipital'``
* ``'Left-frontal'``
* ``'Right-frontal'``
Parameters
----------
name : str or list of str
Name of the selection. If is a list, the selections are combined.
fname : str
Filename of the selection file (if None, built-in selections are used).
info : instance of Info
Measurement info file, which will be used to determine the spacing
of channel names to return, e.g. ``'MEG 0111'`` for old Neuromag
systems and ``'MEG0111'`` for new ones.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
sel : list of string
List with channel names in the selection.
"""
# convert name to list of string
if not isinstance(name, (list, tuple)):
name = [name]
if isinstance(info, Info):
picks = pick_types(info, meg=True, exclude=())
if len(picks) > 0 and ' ' not in info['ch_names'][picks[0]]:
spacing = 'new'
else:
spacing = 'old'
elif info is not None:
raise TypeError('info must be an instance of Info or None, not %s'
% (type(info),))
else: # info is None
spacing = 'old'
# use built-in selections by default
if fname is None:
fname = path.join(path.dirname(__file__), 'data', 'mne_analyze.sel')
if not path.isfile(fname):
raise ValueError('The file %s does not exist.' % fname)
# use this to make sure we find at least one match for each name
name_found = dict((n, False) for n in name)
with open(fname, 'r') as fid:
sel = []
for line in fid:
line = line.strip()
# skip blank lines and comments
if len(line) == 0 or line[0] == '#':
continue
# get the name of the selection in the file
pos = line.find(':')
if pos < 0:
logger.info('":" delimiter not found in selections file, '
'skipping line')
continue
sel_name_file = line[:pos]
# search for substring match with name provided
for n in name:
if sel_name_file.find(n) >= 0:
sel.extend(line[pos + 1:].split('|'))
name_found[n] = True
break
# make sure we found at least one match for each name
for n, found in name_found.items():
if not found:
raise ValueError('No match for selection name "%s" found' % n)
# make the selection a sorted list with unique elements
sel = list(set(sel))
sel.sort()
if spacing == 'new': # "new" or "old" by now, "old" is default
sel = [s.replace('MEG ', 'MEG') for s in sel]
return sel
def _divide_to_regions(info, add_stim=True):
"""Divide channels to regions by positions."""
from scipy.stats import zscore
picks = _pick_data_channels(info, exclude=[])
chs_in_lobe = len(picks) // 4
pos = np.array([ch['loc'][:3] for ch in info['chs']])
x, y, z = pos.T
frontal = picks[np.argsort(y[picks])[-chs_in_lobe:]]
picks = np.setdiff1d(picks, frontal)
occipital = picks[np.argsort(y[picks])[:chs_in_lobe]]
picks = np.setdiff1d(picks, occipital)
temporal = picks[np.argsort(z[picks])[:chs_in_lobe]]
picks = np.setdiff1d(picks, temporal)
lt, rt = _divide_side(temporal, x)
lf, rf = _divide_side(frontal, x)
lo, ro = _divide_side(occipital, x)
lp, rp = _divide_side(picks, x) # Parietal lobe from the remaining picks.
# Because of the way the sides are divided, there may be outliers in the
# temporal lobes. Here we switch the sides for these outliers. For other
# lobes it is not a big problem because of the vicinity of the lobes.
with np.errstate(invalid='ignore'): # invalid division, greater compare
zs = np.abs(zscore(x[rt]))
outliers = np.array(rt)[np.where(zs > 2.)[0]]
rt = list(np.setdiff1d(rt, outliers))
with np.errstate(invalid='ignore'): # invalid division, greater compare
zs = np.abs(zscore(x[lt]))
outliers = np.append(outliers, (np.array(lt)[np.where(zs > 2.)[0]]))
lt = list(np.setdiff1d(lt, outliers))
l_mean = np.mean(x[lt])
r_mean = np.mean(x[rt])
for outlier in outliers:
if abs(l_mean - x[outlier]) < abs(r_mean - x[outlier]):
lt.append(outlier)
else:
rt.append(outlier)
if add_stim:
stim_ch = _get_stim_channel(None, info, raise_error=False)
if len(stim_ch) > 0:
for region in [lf, rf, lo, ro, lp, rp, lt, rt]:
region.append(info['ch_names'].index(stim_ch[0]))
return {'Left-frontal': lf, 'Right-frontal': rf, 'Left-parietal': lp,
'Right-parietal': rp, 'Left-occipital': lo, 'Right-occipital': ro,
'Left-temporal': lt, 'Right-temporal': rt}
def _divide_side(lobe, x):
"""Make a separation between left and right lobe evenly."""
lobe = np.asarray(lobe)
median = np.median(x[lobe])
left = lobe[np.where(x[lobe] < median)[0]]
right = lobe[np.where(x[lobe] > median)[0]]
medians = np.where(x[lobe] == median)[0]
left = np.sort(np.concatenate([left, lobe[medians[1::2]]]))
right = np.sort(np.concatenate([right, lobe[medians[::2]]]))
return list(left), list(right)
|