1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de>
#
# License: BSD (3-clause)
import numpy as np
from ..source_estimate import SourceEstimate, VolSourceEstimate
from ..source_space import _ensure_src
from ..utils import check_random_state, warn
from ..externals.six import string_types
from ..externals.six.moves import zip
def select_source_in_label(src, label, random_state=None, location='random',
subject=None, subjects_dir=None, surf='sphere'):
"""Select source positions using a label.
Parameters
----------
src : list of dict
The source space
label : Label
the label (read with mne.read_label)
random_state : None | int | np.random.RandomState
To specify the random generator state.
location : str
The label location to choose. Can be 'random' (default) or 'center'
to use :func:`mne.Label.center_of_mass` (restricting to vertices
both in the label and in the source space). Note that for 'center'
mode the label values are used as weights.
.. versionadded:: 0.13
subject : string | None
The subject the label is defined for.
Only used with ``location='center'``.
.. versionadded:: 0.13
subjects_dir : str, or None
Path to the SUBJECTS_DIR. If None, the path is obtained by using
the environment variable SUBJECTS_DIR.
Only used with ``location='center'``.
.. versionadded:: 0.13
surf : str
The surface to use for Euclidean distance center of mass
finding. The default here is "sphere", which finds the center
of mass on the spherical surface to help avoid potential issues
with cortical folding.
.. versionadded:: 0.13
Returns
-------
lh_vertno : list
selected source coefficients on the left hemisphere
rh_vertno : list
selected source coefficients on the right hemisphere
"""
lh_vertno = list()
rh_vertno = list()
if not isinstance(location, string_types) or \
location not in ('random', 'center'):
raise ValueError('location must be "random" or "center", got %s'
% (location,))
rng = check_random_state(random_state)
if label.hemi == 'lh':
vertno = lh_vertno
hemi_idx = 0
else:
vertno = rh_vertno
hemi_idx = 1
src_sel = np.intersect1d(src[hemi_idx]['vertno'], label.vertices)
if location == 'random':
idx = src_sel[rng.randint(0, len(src_sel), 1)[0]]
else: # 'center'
idx = label.center_of_mass(
subject, restrict_vertices=src_sel, subjects_dir=subjects_dir,
surf=surf)
vertno.append(idx)
return lh_vertno, rh_vertno
def simulate_sparse_stc(src, n_dipoles, times,
data_fun=lambda t: 1e-7 * np.sin(20 * np.pi * t),
labels=None, random_state=None, location='random',
subject=None, subjects_dir=None, surf='sphere'):
"""Generate sparse (n_dipoles) sources time courses from data_fun.
This function randomly selects ``n_dipoles`` vertices in the whole
cortex or one single vertex (randomly in or in the center of) each
label if ``labels is not None``. It uses ``data_fun`` to generate
waveforms for each vertex.
Parameters
----------
src : instance of SourceSpaces
The source space.
n_dipoles : int
Number of dipoles to simulate.
times : array
Time array
data_fun : callable
Function to generate the waveforms. The default is a 100 nAm, 10 Hz
sinusoid as ``1e-7 * np.sin(20 * pi * t)``. The function should take
as input the array of time samples in seconds and return an array of
the same length containing the time courses.
labels : None | list of Labels
The labels. The default is None, otherwise its size must be n_dipoles.
random_state : None | int | np.random.RandomState
To specify the random generator state.
location : str
The label location to choose. Can be 'random' (default) or 'center'
to use :func:`mne.Label.center_of_mass`. Note that for 'center'
mode the label values are used as weights.
.. versionadded:: 0.13
subject : string | None
The subject the label is defined for.
Only used with ``location='center'``.
.. versionadded:: 0.13
subjects_dir : str, or None
Path to the SUBJECTS_DIR. If None, the path is obtained by using
the environment variable SUBJECTS_DIR.
Only used with ``location='center'``.
.. versionadded:: 0.13
surf : str
The surface to use for Euclidean distance center of mass
finding. The default here is "sphere", which finds the center
of mass on the spherical surface to help avoid potential issues
with cortical folding.
.. versionadded:: 0.13
Returns
-------
stc : SourceEstimate
The generated source time courses.
See Also
--------
simulate_raw
simulate_evoked
simulate_stc
Notes
-----
.. versionadded:: 0.10.0
"""
rng = check_random_state(random_state)
src = _ensure_src(src, verbose=False)
subject_src = src[0].get('subject_his_id')
if subject is None:
subject = subject_src
elif subject_src is not None and subject != subject_src:
raise ValueError('subject argument (%s) did not match the source '
'space subject_his_id (%s)' % (subject, subject_src))
data = np.zeros((n_dipoles, len(times)))
for i_dip in range(n_dipoles):
data[i_dip, :] = data_fun(times)
if labels is None:
# can be vol or surface source space
offsets = np.linspace(0, n_dipoles, len(src) + 1).astype(int)
n_dipoles_ss = np.diff(offsets)
# don't use .choice b/c not on old numpy
vs = [s['vertno'][np.sort(rng.permutation(np.arange(s['nuse']))[:n])]
for n, s in zip(n_dipoles_ss, src)]
datas = data
else:
if n_dipoles != len(labels):
warn('The number of labels is different from the number of '
'dipoles. %s dipole(s) will be generated.'
% min(n_dipoles, len(labels)))
labels = labels[:n_dipoles] if n_dipoles < len(labels) else labels
vertno = [[], []]
lh_data = [np.empty((0, data.shape[1]))]
rh_data = [np.empty((0, data.shape[1]))]
for i, label in enumerate(labels):
lh_vertno, rh_vertno = select_source_in_label(
src, label, rng, location, subject, subjects_dir, surf)
vertno[0] += lh_vertno
vertno[1] += rh_vertno
if len(lh_vertno) != 0:
lh_data.append(data[i][np.newaxis])
elif len(rh_vertno) != 0:
rh_data.append(data[i][np.newaxis])
else:
raise ValueError('No vertno found.')
vs = [np.array(v) for v in vertno]
datas = [np.concatenate(d) for d in [lh_data, rh_data]]
# need to sort each hemi by vertex number
for ii in range(2):
order = np.argsort(vs[ii])
vs[ii] = vs[ii][order]
if len(order) > 0: # fix for old numpy
datas[ii] = datas[ii][order]
datas = np.concatenate(datas)
tmin, tstep = times[0], np.diff(times[:2])[0]
assert datas.shape == data.shape
cls = SourceEstimate if len(vs) == 2 else VolSourceEstimate
stc = cls(datas, vertices=vs, tmin=tmin, tstep=tstep, subject=subject)
return stc
def simulate_stc(src, labels, stc_data, tmin, tstep, value_fun=None):
"""Simulate sources time courses from waveforms and labels.
This function generates a source estimate with extended sources by
filling the labels with the waveforms given in stc_data.
Parameters
----------
src : instance of SourceSpaces
The source space
labels : list of Labels
The labels
stc_data : array (shape: len(labels) x n_times)
The waveforms
tmin : float
The beginning of the timeseries
tstep : float
The time step (1 / sampling frequency)
value_fun : function | None
Function to apply to the label values to obtain the waveform
scaling for each vertex in the label. If None (default), uniform
scaling is used.
Returns
-------
stc : SourceEstimate
The generated source time courses.
See Also
--------
simulate_raw
simulate_evoked
simulate_sparse_stc
"""
if len(labels) != len(stc_data):
raise ValueError('labels and stc_data must have the same length')
vertno = [[], []]
stc_data_extended = [[], []]
hemi_to_ind = {'lh': 0, 'rh': 1}
for i, label in enumerate(labels):
hemi_ind = hemi_to_ind[label.hemi]
src_sel = np.intersect1d(src[hemi_ind]['vertno'],
label.vertices)
if value_fun is not None:
idx_sel = np.searchsorted(label.vertices, src_sel)
values_sel = np.array([value_fun(v) for v in
label.values[idx_sel]])
data = np.outer(values_sel, stc_data[i])
else:
data = np.tile(stc_data[i], (len(src_sel), 1))
vertno[hemi_ind].append(src_sel)
stc_data_extended[hemi_ind].append(np.atleast_2d(data))
# format the vertno list
for idx in (0, 1):
if len(vertno[idx]) > 1:
vertno[idx] = np.concatenate(vertno[idx])
elif len(vertno[idx]) == 1:
vertno[idx] = vertno[idx][0]
vertno = [np.array(v) for v in vertno]
for v, hemi in zip(vertno, ('left', 'right')):
d = len(v) - len(np.unique(v))
if d > 0:
raise RuntimeError('Labels had %s overlaps in the %s hemisphere, '
'they must be non-overlapping' % (d, hemi))
# the data is in the order left, right
data = list()
if len(vertno[0]) != 0:
idx = np.argsort(vertno[0])
vertno[0] = vertno[0][idx]
data.append(np.concatenate(stc_data_extended[0])[idx])
if len(vertno[1]) != 0:
idx = np.argsort(vertno[1])
vertno[1] = vertno[1][idx]
data.append(np.concatenate(stc_data_extended[1])[idx])
data = np.concatenate(data)
subject = src[0].get('subject_his_id')
stc = SourceEstimate(data, vertices=vertno, tmin=tmin, tstep=tstep,
subject=subject)
return stc
|