File: test_evoked.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (83 lines) | stat: -rw-r--r-- 3,220 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)

import os.path as op

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_equal)
import pytest

from mne import (read_cov, read_forward_solution, convert_forward_solution,
                 pick_types_forward, read_evokeds)
from mne.datasets import testing
from mne.simulation import simulate_sparse_stc, simulate_evoked
from mne.io import read_raw_fif
from mne.cov import regularize
from mne.utils import run_tests_if_main

data_path = testing.data_path(download=False)
fwd_fname = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
raw_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
                    'data', 'test_raw.fif')
ave_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
                    'data', 'test-ave.fif')
cov_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
                    'data', 'test-cov.fif')


@testing.requires_testing_data
def test_simulate_evoked():
    """Test simulation of evoked data."""
    raw = read_raw_fif(raw_fname)
    fwd = read_forward_solution(fwd_fname)
    fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=False)
    fwd = pick_types_forward(fwd, meg=True, eeg=True, exclude=raw.info['bads'])
    cov = read_cov(cov_fname)

    evoked_template = read_evokeds(ave_fname, condition=0, baseline=None)
    evoked_template.pick_types(meg=True, eeg=True, exclude=raw.info['bads'])

    with pytest.deprecated_call(match='full'):  # this won't depend on rank
        cov = regularize(cov, evoked_template.info)
    nave = evoked_template.nave

    tmin = -0.1
    sfreq = 1000.  # Hz
    tstep = 1. / sfreq
    n_samples = 600
    times = np.linspace(tmin, tmin + n_samples * tstep, n_samples)

    # Generate times series for 2 dipoles
    stc = simulate_sparse_stc(fwd['src'], n_dipoles=2, times=times,
                              random_state=42)

    # Generate noisy evoked data
    iir_filter = [1, -0.9]
    evoked = simulate_evoked(fwd, stc, evoked_template.info, cov,
                             iir_filter=iir_filter, nave=nave)
    assert_array_almost_equal(evoked.times, stc.times)
    assert len(evoked.data) == len(fwd['sol']['data'])
    assert_equal(evoked.nave, nave)

    # make a vertex that doesn't exist in fwd, should throw error
    stc_bad = stc.copy()
    mv = np.max(fwd['src'][0]['vertno'][fwd['src'][0]['inuse']])
    stc_bad.vertices[0][0] = mv + 1

    pytest.raises(RuntimeError, simulate_evoked, fwd, stc_bad,
                  evoked_template.info, cov)
    evoked_1 = simulate_evoked(fwd, stc, evoked_template.info, cov,
                               nave=np.inf)
    evoked_2 = simulate_evoked(fwd, stc, evoked_template.info, cov,
                               nave=np.inf)
    assert_array_equal(evoked_1.data, evoked_2.data)

    cov['names'] = cov.ch_names[:-2]  # Error channels are different.
    pytest.raises(ValueError, simulate_evoked, fwd, stc, evoked_template.info,
                  cov, nave=nave, iir_filter=None)


run_tests_if_main()