File: test_raw.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (370 lines) | stat: -rw-r--r-- 17,452 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# Authors: Mark Wronkiewicz <wronk@uw.edu>
#          Yousra Bekhti <yousra.bekhti@gmail.com>
#          Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)

import os.path as op
from copy import deepcopy

import numpy as np
from numpy.testing import assert_allclose, assert_array_equal
import pytest

from mne import (read_source_spaces, pick_types, read_trans, read_cov,
                 make_sphere_model, create_info, setup_volume_source_space,
                 find_events, Epochs, fit_dipole, transform_surface_to,
                 make_ad_hoc_cov, SourceEstimate, setup_source_space,
                 read_bem_solution, make_forward_solution,
                 convert_forward_solution)
from mne.chpi import _calculate_chpi_positions, read_head_pos, _get_hpi_info
from mne.tests.test_chpi import _assert_quats
from mne.datasets import testing
from mne.simulation import simulate_sparse_stc, simulate_raw
from mne.source_space import _compare_source_spaces
from mne.io import read_raw_fif, RawArray
from mne.time_frequency import psd_welch
from mne.utils import _TempDir, run_tests_if_main


data_path = testing.data_path(download=False)
raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
cov_fname = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-cov.fif')
trans_fname = op.join(data_path, 'MEG', 'sample',
                      'sample_audvis_trunc-trans.fif')
subjects_dir = op.join(data_path, 'subjects')
bem_path = op.join(subjects_dir, 'sample', 'bem')
src_fname = op.join(bem_path, 'sample-oct-2-src.fif')
bem_fname = op.join(bem_path, 'sample-320-320-320-bem-sol.fif')
bem_1_fname = op.join(bem_path, 'sample-320-bem-sol.fif')

raw_chpi_fname = op.join(data_path, 'SSS', 'test_move_anon_raw.fif')
pos_fname = op.join(data_path, 'SSS', 'test_move_anon_raw_subsampled.pos')


def _make_stc(raw, src):
    """Make a STC."""
    seed = 42
    sfreq = raw.info['sfreq']  # Hz
    tstep = 1. / sfreq
    n_samples = len(raw.times) // 10
    times = np.arange(0, n_samples) * tstep
    stc = simulate_sparse_stc(src, 10, times, random_state=seed)
    return stc


def _get_data():
    """Get some starting data."""
    # raw with ECG channel
    raw = read_raw_fif(raw_fname).crop(0., 5.0).load_data()
    data_picks = pick_types(raw.info, meg=True, eeg=True)
    other_picks = pick_types(raw.info, meg=False, stim=True, eog=True)
    picks = np.sort(np.concatenate((data_picks[::16], other_picks)))
    raw = raw.pick_channels([raw.ch_names[p] for p in picks])
    raw.info.normalize_proj()
    ecg = RawArray(np.zeros((1, len(raw.times))),
                   create_info(['ECG 063'], raw.info['sfreq'], 'ecg'))
    for key in ('dev_head_t', 'highpass', 'lowpass', 'dig'):
        ecg.info[key] = raw.info[key]
    raw.add_channels([ecg])

    src = read_source_spaces(src_fname)
    trans = read_trans(trans_fname)
    sphere = make_sphere_model('auto', 'auto', raw.info)
    stc = _make_stc(raw, src)
    return raw, src, stc, trans, sphere


@testing.requires_testing_data
def test_simulate_raw_sphere():
    """Test simulation of raw data with sphere model."""
    seed = 42
    raw, src, stc, trans, sphere = _get_data()
    assert len(pick_types(raw.info, meg=False, ecg=True)) == 1

    # head pos
    head_pos_sim = dict()
    # these will be at 1., 2., ... sec
    shifts = [[0.001, 0., -0.001], [-0.001, 0.001, 0.]]

    for time_key, shift in enumerate(shifts):
        # Create 4x4 matrix transform and normalize
        temp_trans = deepcopy(raw.info['dev_head_t'])
        temp_trans['trans'][:3, 3] += shift
        head_pos_sim[time_key + 1.] = temp_trans['trans']

    #
    # Test raw simulation with basic parameters
    #
    raw_sim = simulate_raw(raw, stc, trans, src, sphere, read_cov(cov_fname),
                           head_pos=head_pos_sim,
                           blink=True, ecg=True, random_state=seed,
                           use_cps=True)
    raw_sim_2 = simulate_raw(raw, stc, trans_fname, src_fname, sphere,
                             cov_fname, head_pos=head_pos_sim,
                             blink=True, ecg=True, random_state=seed,
                             use_cps=True)
    assert_array_equal(raw_sim_2[:][0], raw_sim[:][0])
    std = dict(grad=2e-13, mag=10e-15, eeg=0.1e-6)
    raw_sim = simulate_raw(raw, stc, trans, src, sphere,
                           make_ad_hoc_cov(raw.info, std=std),
                           head_pos=head_pos_sim, blink=True, ecg=True,
                           random_state=seed, use_cps=True)
    raw_sim_2 = simulate_raw(raw, stc, trans_fname, src_fname, sphere,
                             cov=std, head_pos=head_pos_sim, blink=True,
                             ecg=True, random_state=seed, use_cps=True)
    assert_array_equal(raw_sim_2[:][0], raw_sim[:][0])
    sphere_norad = make_sphere_model('auto', None, raw.info)
    raw_meg = raw.copy().pick_types()
    raw_sim = simulate_raw(raw_meg, stc, trans, src, sphere_norad,
                           make_ad_hoc_cov(raw.info, std=None),
                           head_pos=head_pos_sim, blink=True, ecg=True,
                           random_state=seed, use_cps=True)
    raw_sim_2 = simulate_raw(raw_meg, stc, trans_fname, src_fname,
                             sphere_norad,
                             cov='simple', head_pos=head_pos_sim, blink=True,
                             ecg=True, random_state=seed, use_cps=True)
    assert_array_equal(raw_sim_2[:][0], raw_sim[:][0])
    # Test IO on processed data
    tempdir = _TempDir()
    test_outname = op.join(tempdir, 'sim_test_raw.fif')
    raw_sim.save(test_outname)

    raw_sim_loaded = read_raw_fif(test_outname, preload=True)
    assert_allclose(raw_sim_loaded[:][0], raw_sim[:][0], rtol=1e-6, atol=1e-20)
    del raw_sim, raw_sim_2
    # with no cov (no noise) but with artifacts, most time periods should match
    # but the EOG/ECG channels should not
    for ecg, eog in ((True, False), (False, True), (True, True)):
        raw_sim_3 = simulate_raw(raw, stc, trans, src, sphere,
                                 cov=None, head_pos=head_pos_sim,
                                 blink=eog, ecg=ecg, random_state=seed,
                                 use_cps=True)
        raw_sim_4 = simulate_raw(raw, stc, trans, src, sphere,
                                 cov=None, head_pos=head_pos_sim,
                                 blink=False, ecg=False, random_state=seed,
                                 use_cps=True)
        picks = np.arange(len(raw.ch_names))
        diff_picks = pick_types(raw.info, meg=False, ecg=ecg, eog=eog)
        these_picks = np.setdiff1d(picks, diff_picks)
        close = np.isclose(raw_sim_3[these_picks][0],
                           raw_sim_4[these_picks][0], atol=1e-20)
        assert np.mean(close) > 0.7
        far = ~np.isclose(raw_sim_3[diff_picks][0],
                          raw_sim_4[diff_picks][0], atol=1e-20)
        assert np.mean(far) > 0.99
    del raw_sim_3, raw_sim_4

    # make sure it works with EEG-only and MEG-only
    raw_sim_meg = simulate_raw(raw.copy().pick_types(meg=True, eeg=False),
                               stc, trans, src, sphere, cov=None,
                               ecg=True, blink=True, random_state=seed,
                               use_cps=True)
    raw_sim_eeg = simulate_raw(raw.copy().pick_types(meg=False, eeg=True),
                               stc, trans, src, sphere, cov=None,
                               ecg=True, blink=True, random_state=seed,
                               use_cps=True)
    raw_sim_meeg = simulate_raw(raw.copy().pick_types(meg=True, eeg=True),
                                stc, trans, src, sphere, cov=None,
                                ecg=True, blink=True, random_state=seed,
                                use_cps=True)
    assert_allclose(np.concatenate((raw_sim_meg[:][0], raw_sim_eeg[:][0])),
                    raw_sim_meeg[:][0], rtol=1e-7, atol=1e-20)
    del raw_sim_meg, raw_sim_eeg, raw_sim_meeg

    # check that different interpolations are similar given small movements
    raw_sim = simulate_raw(raw, stc, trans, src, sphere, cov=None,
                           head_pos=head_pos_sim, interp='linear',
                           use_cps=True)
    raw_sim_hann = simulate_raw(raw, stc, trans, src, sphere, cov=None,
                                head_pos=head_pos_sim, interp='hann',
                                use_cps=True)
    assert_allclose(raw_sim[:][0], raw_sim_hann[:][0], rtol=1e-1, atol=1e-14)
    del raw_sim, raw_sim_hann

    # Make impossible transform (translate up into helmet) and ensure failure
    head_pos_sim_err = deepcopy(head_pos_sim)
    head_pos_sim_err[1.][2, 3] -= 0.1  # z trans upward 10cm
    pytest.raises(RuntimeError, simulate_raw, raw, stc, trans, src, sphere,
                  ecg=False, blink=False, head_pos=head_pos_sim_err,
                  use_cps=True)
    pytest.raises(RuntimeError, simulate_raw, raw, stc, trans, src,
                  bem_fname, ecg=False, blink=False,
                  head_pos=head_pos_sim_err, use_cps=True)
    # other degenerate conditions
    pytest.raises(TypeError, simulate_raw, 'foo', stc, trans, src, sphere,
                  use_cps=True)
    pytest.raises(TypeError, simulate_raw, raw, 'foo', trans, src, sphere,
                  use_cps=True)
    pytest.raises(ValueError, simulate_raw, raw, stc.copy().crop(0, 0),
                  trans, src, sphere, use_cps=True)
    stc_bad = stc.copy()
    stc_bad.tstep += 0.1
    pytest.raises(ValueError, simulate_raw, raw, stc_bad, trans, src, sphere,
                  use_cps=True)
    pytest.raises(TypeError, simulate_raw, raw, stc, trans, src, sphere,
                  cov=0, use_cps=True)  # wrong covariance type
    pytest.raises(RuntimeError, simulate_raw, raw, stc, trans, src, sphere,
                  chpi=True, use_cps=True)  # no cHPI info
    pytest.raises(ValueError, simulate_raw, raw, stc, trans, src, sphere,
                  interp='foo', use_cps=True)
    pytest.raises(TypeError, simulate_raw, raw, stc, trans, src, sphere,
                  head_pos=1., use_cps=True)
    pytest.raises(RuntimeError, simulate_raw, raw, stc, trans, src, sphere,
                  head_pos=pos_fname, use_cps=True)  # ends up with t>t_end
    head_pos_sim_err = deepcopy(head_pos_sim)
    head_pos_sim_err[-1.] = head_pos_sim_err[1.]  # negative time
    pytest.raises(RuntimeError, simulate_raw, raw, stc, trans, src, sphere,
                  head_pos=head_pos_sim_err, use_cps=True)
    raw_bad = raw.copy()
    raw_bad.info['dig'] = None
    pytest.raises(RuntimeError, simulate_raw, raw_bad, stc, trans, src, sphere,
                  blink=True, use_cps=True)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_simulate_raw_bem():
    """Test simulation of raw data with BEM."""
    raw, src, stc, trans, sphere = _get_data()
    src = setup_source_space('sample', 'oct1', subjects_dir=subjects_dir)
    for s in src:
        s['nuse'] = 3
        s['vertno'] = src[1]['vertno'][:3]
        s['inuse'].fill(0)
        s['inuse'][s['vertno']] = 1
    # use different / more complete STC here
    vertices = [s['vertno'] for s in src]
    stc = SourceEstimate(np.eye(sum(len(v) for v in vertices)), vertices,
                         0, 1. / raw.info['sfreq'])
    raw_sim_sph = simulate_raw(raw, stc, trans, src, sphere, cov=None,
                               use_cps=True)
    raw_sim_bem = simulate_raw(raw, stc, trans, src, bem_fname, cov=None,
                               n_jobs=2, use_cps=True)
    # some components (especially radial) might not match that well,
    # so just make sure that most components have high correlation
    assert_array_equal(raw_sim_sph.ch_names, raw_sim_bem.ch_names)
    picks = pick_types(raw.info, meg=True, eeg=True)
    n_ch = len(picks)
    corr = np.corrcoef(raw_sim_sph[picks][0], raw_sim_bem[picks][0])
    assert_array_equal(corr.shape, (2 * n_ch, 2 * n_ch))
    med_corr = np.median(np.diag(corr[:n_ch, -n_ch:]))
    assert med_corr > 0.65
    # do some round-trip localization
    for s in src:
        transform_surface_to(s, 'head', trans)
    locs = np.concatenate([s['rr'][s['vertno']] for s in src])
    tmax = (len(locs) - 1) / raw.info['sfreq']
    cov = make_ad_hoc_cov(raw.info)
    # The tolerance for the BEM is surprisingly high (28) but I get the same
    # result when using MNE-C and Xfit, even when using a proper 5120 BEM :(
    for use_raw, bem, tol in ((raw_sim_sph, sphere, 2),
                              (raw_sim_bem, bem_fname, 31)):
        events = find_events(use_raw, 'STI 014')
        assert len(locs) == 6
        evoked = Epochs(use_raw, events, 1, 0, tmax, baseline=None).average()
        assert len(evoked.times) == len(locs)
        fits = fit_dipole(evoked, cov, bem, trans, min_dist=1.)[0].pos
        diffs = np.sqrt(np.sum((locs - fits) ** 2, axis=-1)) * 1000
        med_diff = np.median(diffs)
        assert med_diff < tol, '%s: %s' % (bem, med_diff)


@testing.requires_testing_data
def test_simulate_round_trip():
    """Test simulate_raw round trip calculations."""
    # Check a diagonal round-trip
    raw, src, stc, trans, sphere = _get_data()
    raw.pick_types(meg=True, stim=True)
    bem = read_bem_solution(bem_1_fname)
    old_bem = bem.copy()
    old_src = src.copy()
    old_trans = trans.copy()
    fwd = make_forward_solution(raw.info, trans, src, bem)
    # no omissions
    assert (sum(len(s['vertno']) for s in src) ==
            sum(len(s['vertno']) for s in fwd['src']) ==
            36)
    # make sure things were not modified
    assert (old_bem['surfs'][0]['coord_frame'] ==
            bem['surfs'][0]['coord_frame'])
    assert trans == old_trans
    _compare_source_spaces(src, old_src)
    data = np.eye(fwd['nsource'])
    raw.crop(0, (len(data) - 1) / raw.info['sfreq'])
    stc = SourceEstimate(data, [s['vertno'] for s in fwd['src']],
                         0, 1. / raw.info['sfreq'])
    for use_fwd in (None, fwd):
        if use_fwd is None:
            use_trans, use_src, use_bem = trans, src, bem
        else:
            use_trans = use_src = use_bem = None
        for use_cps in (False, True):
            this_raw = simulate_raw(raw, stc, use_trans, use_src, use_bem,
                                    cov=None, use_cps=use_cps, forward=use_fwd)
            this_raw.pick_types(meg=True, eeg=True)
            assert (old_bem['surfs'][0]['coord_frame'] ==
                    bem['surfs'][0]['coord_frame'])
            assert trans == old_trans
            _compare_source_spaces(src, old_src)
            this_fwd = convert_forward_solution(fwd, force_fixed=True,
                                                use_cps=use_cps)
            assert_allclose(this_raw[:][0], this_fwd['sol']['data'],
                            atol=1e-12, rtol=1e-6)
    with pytest.raises(ValueError, match='If forward is not None then'):
        simulate_raw(raw, stc, trans, src, bem, forward=fwd)
    fwd['info']['dev_head_t']['trans'][0, 0] = 1.
    with pytest.raises(ValueError, match='dev_head_t.*does not match'):
        simulate_raw(raw, stc, None, None, None, forward=fwd)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_simulate_raw_chpi():
    """Test simulation of raw data with cHPI."""
    raw = read_raw_fif(raw_chpi_fname, allow_maxshield='yes')
    picks = np.arange(len(raw.ch_names))
    picks = np.setdiff1d(picks, pick_types(raw.info, meg=True, eeg=True)[::4])
    raw.load_data().pick_channels([raw.ch_names[pick] for pick in picks])
    raw.info.normalize_proj()
    sphere = make_sphere_model('auto', 'auto', raw.info)
    # make sparse spherical source space
    sphere_vol = tuple(sphere['r0'] * 1000.) + (sphere.radius * 1000.,)
    src = setup_volume_source_space('sample', sphere=sphere_vol, pos=70.)
    stc = _make_stc(raw, src)
    # simulate data with cHPI on
    raw_sim = simulate_raw(raw, stc, None, src, sphere, cov=None, chpi=False,
                           interp='zero', use_cps=True)
    # need to trim extra samples off this one
    raw_chpi = simulate_raw(raw, stc, None, src, sphere, cov=None, chpi=True,
                            head_pos=pos_fname, interp='zero',
                            use_cps=True)
    # test cHPI indication
    hpi_freqs, hpi_pick, hpi_ons = _get_hpi_info(raw.info)
    assert_allclose(raw_sim[hpi_pick][0], 0.)
    assert_allclose(raw_chpi[hpi_pick][0], hpi_ons.sum())
    # test that the cHPI signals make some reasonable values
    picks_meg = pick_types(raw.info, meg=True, eeg=False)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)

    for picks in [picks_meg[:3], picks_eeg[:3]]:
        psd_sim, freqs_sim = psd_welch(raw_sim, picks=picks)
        psd_chpi, freqs_chpi = psd_welch(raw_chpi, picks=picks)

        assert_array_equal(freqs_sim, freqs_chpi)
        freq_idx = np.sort([np.argmin(np.abs(freqs_sim - f))
                           for f in hpi_freqs])
        if picks is picks_meg:
            assert (psd_chpi[:, freq_idx] >
                    100 * psd_sim[:, freq_idx]).all()
        else:
            assert_allclose(psd_sim, psd_chpi, atol=1e-20)

    # test localization based on cHPI information
    quats_sim = _calculate_chpi_positions(raw_chpi, t_step_min=10.)
    quats = read_head_pos(pos_fname)
    _assert_quats(quats, quats_sim, dist_tol=5e-3, angle_tol=3.5)


run_tests_if_main()