File: test_source.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (239 lines) | stat: -rw-r--r-- 8,897 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os.path as op

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_equal)
import pytest

from mne.datasets import testing
from mne import (read_label, read_forward_solution, pick_types_forward,
                 convert_forward_solution)
from mne.label import Label
from mne.simulation.source import simulate_stc, simulate_sparse_stc
from mne.utils import run_tests_if_main


data_path = testing.data_path(download=False)
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
label_names = ['Aud-lh', 'Aud-rh', 'Vis-rh']

label_names_single_hemi = ['Aud-rh', 'Vis-rh']
subjects_dir = op.join(data_path, 'subjects')


def read_forward_solution_meg(*args, **kwargs):
    """Read forward MEG."""
    fwd = read_forward_solution(*args)
    fwd = convert_forward_solution(fwd, **kwargs)
    fwd = pick_types_forward(fwd, meg=True, eeg=False)
    return fwd


@testing.requires_testing_data
def test_simulate_stc():
    """Test generation of source estimate."""
    fwd = read_forward_solution_meg(fname_fwd, force_fixed=True, use_cps=True)
    labels = [read_label(op.join(data_path, 'MEG', 'sample', 'labels',
                         '%s.label' % label)) for label in label_names]
    mylabels = []
    for i, label in enumerate(labels):
        new_label = Label(vertices=label.vertices,
                          pos=label.pos,
                          values=2 * i * np.ones(len(label.values)),
                          hemi=label.hemi,
                          comment=label.comment)
        mylabels.append(new_label)

    n_times = 10
    tmin = 0
    tstep = 1e-3

    stc_data = np.ones((len(labels), n_times))
    stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep)
    assert_equal(stc.subject, 'sample')

    for label in labels:
        if label.hemi == 'lh':
            hemi_idx = 0
        else:
            hemi_idx = 1

        idx = np.intersect1d(stc.vertices[hemi_idx], label.vertices)
        idx = np.searchsorted(stc.vertices[hemi_idx], idx)

        if hemi_idx == 1:
            idx += len(stc.vertices[0])

        assert (np.all(stc.data[idx] == 1.0))
        assert (stc.data[idx].shape[1] == n_times)

    # test with function
    def fun(x):
        return x ** 2
    stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep, fun)

    # the first label has value 0, the second value 2, the third value 6

    for i, label in enumerate(labels):
        if label.hemi == 'lh':
            hemi_idx = 0
        else:
            hemi_idx = 1

        idx = np.intersect1d(stc.vertices[hemi_idx], label.vertices)
        idx = np.searchsorted(stc.vertices[hemi_idx], idx)

        if hemi_idx == 1:
            idx += len(stc.vertices[0])

        res = ((2. * i) ** 2.) * np.ones((len(idx), n_times))
        assert_array_almost_equal(stc.data[idx], res)

    # degenerate conditions
    label_subset = mylabels[:2]
    data_subset = stc_data[:2]
    stc = simulate_stc(fwd['src'], label_subset, data_subset, tmin, tstep, fun)
    pytest.raises(ValueError, simulate_stc, fwd['src'],
                  label_subset, data_subset[:-1], tmin, tstep, fun)
    pytest.raises(RuntimeError, simulate_stc, fwd['src'], label_subset * 2,
                  np.concatenate([data_subset] * 2, axis=0), tmin, tstep, fun)


@testing.requires_testing_data
def test_simulate_sparse_stc():
    """Test generation of sparse source estimate."""
    fwd = read_forward_solution_meg(fname_fwd, force_fixed=True, use_cps=True)
    labels = [read_label(op.join(data_path, 'MEG', 'sample', 'labels',
                         '%s.label' % label)) for label in label_names]

    n_times = 10
    tmin = 0
    tstep = 1e-3
    times = np.arange(n_times, dtype=np.float) * tstep + tmin

    pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(labels),
                  times, labels=labels, location='center', subject='sample',
                  subjects_dir=subjects_dir)  # no non-zero values
    for label in labels:
        label.values.fill(1.)
    for location in ('random', 'center'):
        random_state = 0 if location == 'random' else None
        stc_1 = simulate_sparse_stc(fwd['src'], len(labels), times,
                                    labels=labels, random_state=random_state,
                                    location=location,
                                    subjects_dir=subjects_dir)
        assert_equal(stc_1.subject, 'sample')

        assert (stc_1.data.shape[0] == len(labels))
        assert (stc_1.data.shape[1] == n_times)

        # make sure we get the same result when using the same seed
        stc_2 = simulate_sparse_stc(fwd['src'], len(labels), times,
                                    labels=labels, random_state=random_state,
                                    location=location,
                                    subjects_dir=subjects_dir)

        assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
        assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)
    # Degenerate cases
    pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(labels),
                  times, labels=labels, location='center', subject='foo',
                  subjects_dir=subjects_dir)  # wrong subject
    del fwd['src'][0]['subject_his_id']
    pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(labels),
                  times, labels=labels, location='center',
                  subjects_dir=subjects_dir)  # no subject
    pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(labels),
                  times, labels=labels, location='foo')  # bad location


@testing.requires_testing_data
def test_generate_stc_single_hemi():
    """Test generation of source estimate, single hemi."""
    fwd = read_forward_solution_meg(fname_fwd, force_fixed=True, use_cps=True)
    labels_single_hemi = [read_label(op.join(data_path, 'MEG', 'sample',
                                             'labels', '%s.label' % label))
                          for label in label_names_single_hemi]
    mylabels = []
    for i, label in enumerate(labels_single_hemi):
        new_label = Label(vertices=label.vertices,
                          pos=label.pos,
                          values=2 * i * np.ones(len(label.values)),
                          hemi=label.hemi,
                          comment=label.comment)
        mylabels.append(new_label)

    n_times = 10
    tmin = 0
    tstep = 1e-3

    stc_data = np.ones((len(labels_single_hemi), n_times))
    stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep)

    for label in labels_single_hemi:
        if label.hemi == 'lh':
            hemi_idx = 0
        else:
            hemi_idx = 1

        idx = np.intersect1d(stc.vertices[hemi_idx], label.vertices)
        idx = np.searchsorted(stc.vertices[hemi_idx], idx)

        if hemi_idx == 1:
            idx += len(stc.vertices[0])

        assert (np.all(stc.data[idx] == 1.0))
        assert (stc.data[idx].shape[1] == n_times)

    # test with function
    def fun(x):
        return x ** 2
    stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep, fun)

    # the first label has value 0, the second value 2, the third value 6

    for i, label in enumerate(labels_single_hemi):
        if label.hemi == 'lh':
            hemi_idx = 0
        else:
            hemi_idx = 1

        idx = np.intersect1d(stc.vertices[hemi_idx], label.vertices)
        idx = np.searchsorted(stc.vertices[hemi_idx], idx)

        if hemi_idx == 1:
            idx += len(stc.vertices[0])

        res = ((2. * i) ** 2.) * np.ones((len(idx), n_times))
        assert_array_almost_equal(stc.data[idx], res)


@testing.requires_testing_data
def test_simulate_sparse_stc_single_hemi():
    """Test generation of sparse source estimate."""
    fwd = read_forward_solution_meg(fname_fwd, force_fixed=True, use_cps=True)
    n_times = 10
    tmin = 0
    tstep = 1e-3
    times = np.arange(n_times, dtype=np.float) * tstep + tmin

    labels_single_hemi = [read_label(op.join(data_path, 'MEG', 'sample',
                                             'labels', '%s.label' % label))
                          for label in label_names_single_hemi]

    stc_1 = simulate_sparse_stc(fwd['src'], len(labels_single_hemi), times,
                                labels=labels_single_hemi, random_state=0)

    assert (stc_1.data.shape[0] == len(labels_single_hemi))
    assert (stc_1.data.shape[1] == n_times)

    # make sure we get the same result when using the same seed
    stc_2 = simulate_sparse_stc(fwd['src'], len(labels_single_hemi), times,
                                labels=labels_single_hemi, random_state=0)

    assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
    assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)


run_tests_if_main()