1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)
from copy import deepcopy
from functools import partial
from gzip import GzipFile
import os
import os.path as op
import numpy as np
from scipy import sparse, linalg
from .io.constants import FIFF
from .io.meas_info import create_info
from .io.tree import dir_tree_find
from .io.tag import find_tag, read_tag
from .io.open import fiff_open
from .io.write import (start_block, end_block, write_int,
write_float_sparse_rcs, write_string,
write_float_matrix, write_int_matrix,
write_coord_trans, start_file, end_file, write_id)
from .bem import read_bem_surfaces, ConductorModel
from .surface import (read_surface, _create_surf_spacing, _get_ico_surface,
_tessellate_sphere_surf, _get_surf_neighbors,
_normalize_vectors, _get_solids, _triangle_neighbors,
complete_surface_info, _compute_nearest, fast_cross_3d,
mesh_dist)
from .utils import (get_subjects_dir, run_subprocess, has_freesurfer,
has_nibabel, check_fname, logger, verbose,
check_version, _get_call_line, warn, _check_fname)
from .parallel import parallel_func, check_n_jobs
from .transforms import (invert_transform, apply_trans, _print_coord_trans,
combine_transforms, _get_trans,
_coord_frame_name, Transform, _str_to_frame,
_ensure_trans, _read_fs_xfm)
from .externals.six import string_types
def _get_lut():
"""Get the FreeSurfer LUT."""
data_dir = op.join(op.dirname(__file__), 'data')
lut_fname = op.join(data_dir, 'FreeSurferColorLUT.txt')
dtype = [('id', '<i8'), ('name', 'U47'),
('R', '<i8'), ('G', '<i8'), ('B', '<i8'), ('A', '<i8')]
return np.genfromtxt(lut_fname, dtype=dtype)
def _get_lut_id(lut, label, use_lut):
"""Convert a label to a LUT ID number."""
if not use_lut:
return 1
assert isinstance(label, string_types)
mask = (lut['name'] == label)
assert mask.sum() == 1
return lut['id'][mask]
_src_kind_dict = {
'vol': 'volume',
'surf': 'surface',
'discrete': 'discrete',
}
class SourceSpaces(list):
"""Represent a list of source space.
Currently implemented as a list of dictionaries containing the source
space information
Parameters
----------
source_spaces : list
A list of dictionaries containing the source space information.
info : dict
Dictionary with information about the creation of the source space
file. Has keys 'working_dir' and 'command_line'.
Attributes
----------
info : dict
Dictionary with information about the creation of the source space
file. Has keys 'working_dir' and 'command_line'.
"""
def __init__(self, source_spaces, info=None): # noqa: D102
super(SourceSpaces, self).__init__(source_spaces)
if info is None:
self.info = dict()
else:
self.info = dict(info)
@verbose
def plot(self, head=False, brain=None, skull=None, subjects_dir=None,
trans=None, verbose=None):
"""Plot the source space.
Parameters
----------
head : bool
If True, show head surface.
brain : bool | str
If True, show the brain surfaces. Can also be a str for
surface type (e.g., 'pial', same as True). Default is None,
which means 'white' for surface source spaces and False otherwise.
skull : bool | str | list of str | list of dict | None
Whether to plot skull surface. If string, common choices would be
'inner_skull', or 'outer_skull'. Can also be a list to plot
multiple skull surfaces. If a list of dicts, each dict must
contain the complete surface info (such as you get from
:func:`mne.make_bem_model`). True is an alias of 'outer_skull'.
The subjects bem and bem/flash folders are searched for the 'surf'
files. Defaults to None, which is False for surface source spaces,
and True otherwise.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
trans : str | 'auto' | dict | None
The full path to the head<->MRI transform ``*-trans.fif`` file
produced during coregistration. If trans is None, an identity
matrix is assumed. This is only needed when the source space is in
head coordinates.
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
Returns
-------
fig : instance of mlab Figure
The figure.
"""
from .viz import plot_alignment
surfaces = list()
bem = None
if brain is None:
brain = 'white' if any(ss['type'] == 'surf'
for ss in self) else False
if isinstance(brain, string_types):
surfaces.append(brain)
elif brain:
surfaces.append('brain')
if skull is None:
skull = False if self.kind == 'surface' else True
if isinstance(skull, string_types):
surfaces.append(skull)
elif skull is True:
surfaces.append('outer_skull')
elif skull is not False: # list
if isinstance(skull[0], dict): # bem
skull_map = {FIFF.FIFFV_BEM_SURF_ID_BRAIN: 'inner_skull',
FIFF.FIFFV_BEM_SURF_ID_SKULL: 'outer_skull',
FIFF.FIFFV_BEM_SURF_ID_HEAD: 'outer_skin'}
for this_skull in skull:
surfaces.append(skull_map[this_skull['id']])
bem = skull
else: # list of str
for surf in skull:
surfaces.append(surf)
if head:
surfaces.append('head')
if self[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD:
coord_frame = 'head'
if trans is None:
raise ValueError('Source space is in head coordinates, but no '
'head<->MRI transform was given. Please '
'specify the full path to the appropriate '
'*-trans.fif file as the "trans" parameter.')
else:
coord_frame = 'mri'
info = create_info(0, 1000., 'eeg')
return plot_alignment(
info, trans=trans, subject=self[0]['subject_his_id'],
subjects_dir=subjects_dir, surfaces=surfaces,
coord_frame=coord_frame, meg=(), eeg=False, dig=False, ecog=False,
bem=bem, src=self
)
def __repr__(self): # noqa: D105
ss_repr = []
for ss in self:
ss_type = ss['type']
r = _src_kind_dict[ss_type]
if ss_type == 'vol':
if 'seg_name' in ss:
r += " (%s)" % (ss['seg_name'],)
else:
r += ", shape=%s" % (ss['shape'],)
elif ss_type == 'surf':
r += (" (%s), n_vertices=%i" % (_get_hemi(ss)[0], ss['np']))
r += (', n_used=%i, coordinate_frame=%s'
% (ss['nuse'], _coord_frame_name(int(ss['coord_frame']))))
ss_repr.append('<%s>' % r)
return "<SourceSpaces: [%s]>" % ', '.join(ss_repr)
@property
def kind(self):
"""The kind of source space (surface, volume, discrete, mixed)."""
ss_types = list(set([ss['type'] for ss in self]))
if len(ss_types) != 1:
return 'mixed'
return _src_kind_dict[ss_types[0]]
def __add__(self, other):
"""Combine source spaces."""
return SourceSpaces(list.__add__(self, other))
def copy(self):
"""Make a copy of the source spaces.
Returns
-------
src : instance of SourceSpaces
The copied source spaces.
"""
src = deepcopy(self)
return src
def save(self, fname, overwrite=False):
"""Save the source spaces to a fif file.
Parameters
----------
fname : str
File to write.
overwrite : bool
If True, the destination file (if it exists) will be overwritten.
If False (default), an error will be raised if the file exists.
"""
write_source_spaces(fname, self, overwrite)
@verbose
def export_volume(self, fname, include_surfaces=True,
include_discrete=True, dest='mri', trans=None,
mri_resolution=False, use_lut=True, verbose=None):
"""Export source spaces to nifti or mgz file.
Parameters
----------
fname : str
Name of nifti or mgz file to write.
include_surfaces : bool
If True, include surface source spaces.
include_discrete : bool
If True, include discrete source spaces.
dest : 'mri' | 'surf'
If 'mri' the volume is defined in the coordinate system of the
original T1 image. If 'surf' the coordinate system of the
FreeSurfer surface is used (Surface RAS).
trans : dict, str, or None
Either a transformation filename (usually made using mne_analyze)
or an info dict (usually opened using read_trans()).
If string, an ending of `.fif` or `.fif.gz` will be assumed to be
in FIF format, any other ending will be assumed to be a text file
with a 4x4 transformation matrix (like the `--trans` MNE-C option.
Must be provided if source spaces are in head coordinates and
include_surfaces and mri_resolution are True.
mri_resolution : bool
If True, the image is saved in MRI resolution
(e.g. 256 x 256 x 256).
use_lut : bool
If True, assigns a numeric value to each source space that
corresponds to a color on the freesurfer lookup table.
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
Notes
-----
This method requires nibabel.
"""
# import nibabel or raise error
try:
import nibabel as nib
except ImportError:
raise ImportError('This function requires nibabel.')
# Check coordinate frames of each source space
coord_frames = np.array([s['coord_frame'] for s in self])
# Raise error if trans is not provided when head coordinates are used
# and mri_resolution and include_surfaces are true
if (coord_frames == FIFF.FIFFV_COORD_HEAD).all():
coords = 'head' # all sources in head coordinates
if mri_resolution and include_surfaces:
if trans is None:
raise ValueError('trans containing mri to head transform '
'must be provided if mri_resolution and '
'include_surfaces are true and surfaces '
'are in head coordinates')
elif trans is not None:
logger.info('trans is not needed and will not be used unless '
'include_surfaces and mri_resolution are True.')
elif (coord_frames == FIFF.FIFFV_COORD_MRI).all():
coords = 'mri' # all sources in mri coordinates
if trans is not None:
logger.info('trans is not needed and will not be used unless '
'sources are in head coordinates.')
# Raise error if all sources are not in the same space, or sources are
# not in mri or head coordinates
else:
raise ValueError('All sources must be in head coordinates or all '
'sources must be in mri coordinates.')
# use lookup table to assign values to source spaces
logger.info('Reading FreeSurfer lookup table')
# read the lookup table
lut = _get_lut()
# Setup a dictionary of source types
src_types = dict(volume=[], surface=[], discrete=[])
# Populate dictionary of source types
for src in self:
# volume sources
if src['type'] == 'vol':
src_types['volume'].append(src)
# surface sources
elif src['type'] == 'surf':
src_types['surface'].append(src)
# discrete sources
elif src['type'] == 'discrete':
src_types['discrete'].append(src)
# raise an error if dealing with source type other than volume
# surface or discrete
else:
raise ValueError('Unrecognized source type: %s.' % src['type'])
# Get shape, inuse array and interpolation matrix from volume sources
inuse = 0
for ii, vs in enumerate(src_types['volume']):
# read the lookup table value for segmented volume
if 'seg_name' not in vs:
raise ValueError('Volume sources should be segments, '
'not the entire volume.')
# find the color value for this volume
id_ = _get_lut_id(lut, vs['seg_name'], use_lut)
if ii == 0:
# get the inuse array
if mri_resolution:
# read the mri file used to generate volumes
aseg_data = nib.load(vs['mri_file']).get_data()
# get the voxel space shape
shape3d = (vs['mri_height'], vs['mri_depth'],
vs['mri_width'])
else:
# get the volume source space shape
# read the shape in reverse order
# (otherwise results are scrambled)
shape3d = vs['shape'][2::-1]
if mri_resolution:
# get the values for this volume
use = id_ * (aseg_data == id_).astype(int).ravel('F')
else:
use = id_ * vs['inuse']
inuse += use
# Raise error if there are no volume source spaces
if np.array(inuse).ndim == 0:
raise ValueError('Source spaces must contain at least one volume.')
# create 3d grid in the MRI_VOXEL coordinate frame
# len of inuse array should match shape regardless of mri_resolution
assert len(inuse) == np.prod(shape3d)
# setup the image in 3d space
img = inuse.reshape(shape3d).T
# include surface and/or discrete source spaces
if include_surfaces or include_discrete:
# setup affine transform for source spaces
if mri_resolution:
# get the MRI to MRI_VOXEL transform
affine = invert_transform(vs['vox_mri_t'])
else:
# get the MRI to SOURCE (MRI_VOXEL) transform
affine = invert_transform(vs['src_mri_t'])
# modify affine if in head coordinates
if coords == 'head':
# read mri -> head transformation
mri_head_t = _get_trans(trans)[0]
# get the HEAD to MRI transform
head_mri_t = invert_transform(mri_head_t)
# combine transforms, from HEAD to MRI_VOXEL
affine = combine_transforms(head_mri_t, affine,
'head', 'mri_voxel')
# loop through the surface source spaces
if include_surfaces:
# get the surface names (assumes left, right order. may want
# to add these names during source space generation
surf_names = ['Left-Cerebral-Cortex', 'Right-Cerebral-Cortex']
for i, surf in enumerate(src_types['surface']):
# convert vertex positions from their native space
# (either HEAD or MRI) to MRI_VOXEL space
srf_rr = apply_trans(affine['trans'], surf['rr'])
# convert to numeric indices
ix_orig, iy_orig, iz_orig = srf_rr.T.round().astype(int)
# clip indices outside of volume space
ix_clip = np.maximum(np.minimum(ix_orig, shape3d[2] - 1),
0)
iy_clip = np.maximum(np.minimum(iy_orig, shape3d[1] - 1),
0)
iz_clip = np.maximum(np.minimum(iz_orig, shape3d[0] - 1),
0)
# compare original and clipped indices
n_diff = np.array((ix_orig != ix_clip, iy_orig != iy_clip,
iz_orig != iz_clip)).any(0).sum()
# generate use warnings for clipping
if n_diff > 0:
warn('%s surface vertices lay outside of volume space.'
' Consider using a larger volume space.' % n_diff)
# get surface id or use default value
i = _get_lut_id(lut, surf_names[i], use_lut)
# update image to include surface voxels
img[ix_clip, iy_clip, iz_clip] = i
# loop through discrete source spaces
if include_discrete:
for i, disc in enumerate(src_types['discrete']):
# convert vertex positions from their native space
# (either HEAD or MRI) to MRI_VOXEL space
disc_rr = apply_trans(affine['trans'], disc['rr'])
# convert to numeric indices
ix_orig, iy_orig, iz_orig = disc_rr.T.astype(int)
# clip indices outside of volume space
ix_clip = np.maximum(np.minimum(ix_orig, shape3d[2] - 1),
0)
iy_clip = np.maximum(np.minimum(iy_orig, shape3d[1] - 1),
0)
iz_clip = np.maximum(np.minimum(iz_orig, shape3d[0] - 1),
0)
# compare original and clipped indices
n_diff = np.array((ix_orig != ix_clip, iy_orig != iy_clip,
iz_orig != iz_clip)).any(0).sum()
# generate use warnings for clipping
if n_diff > 0:
warn('%s discrete vertices lay outside of volume '
'space. Consider using a larger volume space.'
% n_diff)
# set default value
img[ix_clip, iy_clip, iz_clip] = 1
if use_lut:
logger.info('Discrete sources do not have values on '
'the lookup table. Defaulting to 1.')
# calculate affine transform for image (MRI_VOXEL to RAS)
if mri_resolution:
# MRI_VOXEL to MRI transform
transform = vs['vox_mri_t'].copy()
else:
# MRI_VOXEL to MRI transform
# NOTE: 'src' indicates downsampled version of MRI_VOXEL
transform = vs['src_mri_t'].copy()
if dest == 'mri':
# combine with MRI to RAS transform
transform = combine_transforms(transform, vs['mri_ras_t'],
transform['from'],
vs['mri_ras_t']['to'])
# now setup the affine for volume image
affine = transform['trans']
# make sure affine converts from m to mm
affine[:3] *= 1e3
# save volume data
# setup image for file
if fname.endswith(('.nii', '.nii.gz')): # save as nifit
# setup the nifti header
hdr = nib.Nifti1Header()
hdr.set_xyzt_units('mm')
# save the nifti image
img = nib.Nifti1Image(img, affine, header=hdr)
elif fname.endswith('.mgz'): # save as mgh
# convert to float32 (float64 not currently supported)
img = img.astype('float32')
# save the mgh image
img = nib.freesurfer.mghformat.MGHImage(img, affine)
else:
raise(ValueError('Unrecognized file extension'))
# write image to file
nib.save(img, fname)
def _add_patch_info(s):
"""Patch information in a source space.
Generate the patch information from the 'nearest' vector in
a source space. For vertex in the source space it provides
the list of neighboring vertices in the high resolution
triangulation.
Parameters
----------
s : dict
The source space.
"""
nearest = s['nearest']
if nearest is None:
s['pinfo'] = None
s['patch_inds'] = None
return
logger.info(' Computing patch statistics...')
indn = np.argsort(nearest)
nearest_sorted = nearest[indn]
steps = np.where(nearest_sorted[1:] != nearest_sorted[:-1])[0] + 1
starti = np.r_[[0], steps]
stopi = np.r_[steps, [len(nearest)]]
pinfo = list()
for start, stop in zip(starti, stopi):
pinfo.append(np.sort(indn[start:stop]))
s['pinfo'] = pinfo
# compute patch indices of the in-use source space vertices
patch_verts = nearest_sorted[steps - 1]
s['patch_inds'] = np.searchsorted(patch_verts, s['vertno'])
logger.info(' Patch information added...')
@verbose
def _read_source_spaces_from_tree(fid, tree, patch_stats=False,
verbose=None):
"""Read the source spaces from a FIF file.
Parameters
----------
fid : file descriptor
An open file descriptor.
tree : dict
The FIF tree structure if source is a file id.
patch_stats : bool, optional (default False)
Calculate and add cortical patch statistics to the surfaces.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
src : SourceSpaces
The source spaces.
"""
# Find all source spaces
spaces = dir_tree_find(tree, FIFF.FIFFB_MNE_SOURCE_SPACE)
if len(spaces) == 0:
raise ValueError('No source spaces found')
src = list()
for s in spaces:
logger.info(' Reading a source space...')
this = _read_one_source_space(fid, s)
logger.info(' [done]')
if patch_stats:
_complete_source_space_info(this)
src.append(this)
logger.info(' %d source spaces read' % len(spaces))
return SourceSpaces(src)
@verbose
def read_source_spaces(fname, patch_stats=False, verbose=None):
"""Read the source spaces from a FIF file.
Parameters
----------
fname : str
The name of the file, which should end with -src.fif or
-src.fif.gz.
patch_stats : bool, optional (default False)
Calculate and add cortical patch statistics to the surfaces.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
src : SourceSpaces
The source spaces.
See Also
--------
write_source_spaces, setup_source_space, setup_volume_source_space
"""
# be more permissive on read than write (fwd/inv can contain src)
check_fname(fname, 'source space', ('-src.fif', '-src.fif.gz',
'_src.fif', '_src.fif.gz',
'-fwd.fif', '-fwd.fif.gz',
'_fwd.fif', '_fwd.fif.gz',
'-inv.fif', '-inv.fif.gz',
'_inv.fif', '_inv.fif.gz'))
ff, tree, _ = fiff_open(fname)
with ff as fid:
src = _read_source_spaces_from_tree(fid, tree, patch_stats=patch_stats,
verbose=verbose)
src.info['fname'] = fname
node = dir_tree_find(tree, FIFF.FIFFB_MNE_ENV)
if node:
node = node[0]
for p in range(node['nent']):
kind = node['directory'][p].kind
pos = node['directory'][p].pos
tag = read_tag(fid, pos)
if kind == FIFF.FIFF_MNE_ENV_WORKING_DIR:
src.info['working_dir'] = tag.data
elif kind == FIFF.FIFF_MNE_ENV_COMMAND_LINE:
src.info['command_line'] = tag.data
return src
@verbose
def _read_one_source_space(fid, this, verbose=None):
"""Read one source space."""
FIFF_BEM_SURF_NTRI = 3104
FIFF_BEM_SURF_TRIANGLES = 3106
res = dict()
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_ID)
if tag is None:
res['id'] = int(FIFF.FIFFV_MNE_SURF_UNKNOWN)
else:
res['id'] = int(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_TYPE)
if tag is None:
raise ValueError('Unknown source space type')
else:
src_type = int(tag.data)
if src_type == FIFF.FIFFV_MNE_SPACE_SURFACE:
res['type'] = 'surf'
elif src_type == FIFF.FIFFV_MNE_SPACE_VOLUME:
res['type'] = 'vol'
elif src_type == FIFF.FIFFV_MNE_SPACE_DISCRETE:
res['type'] = 'discrete'
else:
raise ValueError('Unknown source space type (%d)' % src_type)
if res['type'] == 'vol':
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_VOXEL_DIMS)
if tag is not None:
res['shape'] = tuple(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_COORD_TRANS)
if tag is not None:
res['src_mri_t'] = tag.data
parent_mri = dir_tree_find(this, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
if len(parent_mri) == 0:
# MNE 2.7.3 (and earlier) didn't store necessary information
# about volume coordinate translations. Although there is a
# FFIF_COORD_TRANS in the higher level of the FIFF file, this
# doesn't contain all the info we need. Safer to return an
# error unless a user really wants us to add backward compat.
raise ValueError('Can not find parent MRI location. The volume '
'source space may have been made with an MNE '
'version that is too old (<= 2.7.3). Consider '
'updating and regenerating the inverse.')
mri = parent_mri[0]
for d in mri['directory']:
if d.kind == FIFF.FIFF_COORD_TRANS:
tag = read_tag(fid, d.pos)
trans = tag.data
if trans['from'] == FIFF.FIFFV_MNE_COORD_MRI_VOXEL:
res['vox_mri_t'] = tag.data
if trans['to'] == FIFF.FIFFV_MNE_COORD_RAS:
res['mri_ras_t'] = tag.data
tag = find_tag(fid, mri, FIFF.FIFF_MNE_SOURCE_SPACE_INTERPOLATOR)
if tag is not None:
res['interpolator'] = tag.data
else:
logger.info("Interpolation matrix for MRI not found.")
tag = find_tag(fid, mri, FIFF.FIFF_MNE_SOURCE_SPACE_MRI_FILE)
if tag is not None:
res['mri_file'] = tag.data
tag = find_tag(fid, mri, FIFF.FIFF_MRI_WIDTH)
if tag is not None:
res['mri_width'] = int(tag.data)
tag = find_tag(fid, mri, FIFF.FIFF_MRI_HEIGHT)
if tag is not None:
res['mri_height'] = int(tag.data)
tag = find_tag(fid, mri, FIFF.FIFF_MRI_DEPTH)
if tag is not None:
res['mri_depth'] = int(tag.data)
tag = find_tag(fid, mri, FIFF.FIFF_MNE_FILE_NAME)
if tag is not None:
res['mri_volume_name'] = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NNEIGHBORS)
if tag is not None:
nneighbors = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEIGHBORS)
offset = 0
neighbors = []
for n in nneighbors:
neighbors.append(tag.data[offset:offset + n])
offset += n
res['neighbor_vert'] = neighbors
tag = find_tag(fid, this, FIFF.FIFF_COMMENT)
if tag is not None:
res['seg_name'] = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS)
if tag is None:
raise ValueError('Number of vertices not found')
res['np'] = int(tag.data)
tag = find_tag(fid, this, FIFF_BEM_SURF_NTRI)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NTRI)
if tag is None:
res['ntri'] = 0
else:
res['ntri'] = int(tag.data)
else:
res['ntri'] = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_COORD_FRAME)
if tag is None:
raise ValueError('Coordinate frame information not found')
res['coord_frame'] = tag.data[0]
# Vertices, normals, and triangles
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_POINTS)
if tag is None:
raise ValueError('Vertex data not found')
res['rr'] = tag.data.astype(np.float) # double precision for mayavi
if res['rr'].shape[0] != res['np']:
raise ValueError('Vertex information is incorrect')
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS)
if tag is None:
raise ValueError('Vertex normals not found')
res['nn'] = tag.data.copy()
if res['nn'].shape[0] != res['np']:
raise ValueError('Vertex normal information is incorrect')
if res['ntri'] > 0:
tag = find_tag(fid, this, FIFF_BEM_SURF_TRIANGLES)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_TRIANGLES)
if tag is None:
raise ValueError('Triangulation not found')
else:
res['tris'] = tag.data - 1 # index start at 0 in Python
else:
res['tris'] = tag.data - 1 # index start at 0 in Python
if res['tris'].shape[0] != res['ntri']:
raise ValueError('Triangulation information is incorrect')
else:
res['tris'] = None
# Which vertices are active
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE)
if tag is None:
res['nuse'] = 0
res['inuse'] = np.zeros(res['nuse'], dtype=np.int)
res['vertno'] = None
else:
res['nuse'] = int(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_SELECTION)
if tag is None:
raise ValueError('Source selection information missing')
res['inuse'] = tag.data.astype(np.int).T
if len(res['inuse']) != res['np']:
raise ValueError('Incorrect number of entries in source space '
'selection')
res['vertno'] = np.where(res['inuse'])[0]
# Use triangulation
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE_TRI)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_USE_TRIANGLES)
if tag1 is None or tag2 is None:
res['nuse_tri'] = 0
res['use_tris'] = None
else:
res['nuse_tri'] = tag1.data
res['use_tris'] = tag2.data - 1 # index start at 0 in Python
# Patch-related information
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST_DIST)
if tag1 is None or tag2 is None:
res['nearest'] = None
res['nearest_dist'] = None
else:
res['nearest'] = tag1.data
res['nearest_dist'] = tag2.data.T
_add_patch_info(res)
# Distances
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_DIST)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_DIST_LIMIT)
if tag1 is None or tag2 is None:
res['dist'] = None
res['dist_limit'] = None
else:
res['dist'] = tag1.data
res['dist_limit'] = tag2.data
# Add the upper triangle
res['dist'] = res['dist'] + res['dist'].T
if (res['dist'] is not None):
logger.info(' Distance information added...')
tag = find_tag(fid, this, FIFF.FIFF_SUBJ_HIS_ID)
if tag is None:
res['subject_his_id'] = None
else:
res['subject_his_id'] = tag.data
return res
@verbose
def _complete_source_space_info(this, verbose=None):
"""Add more info on surface."""
# Main triangulation
logger.info(' Completing triangulation info...')
this['tri_area'] = np.zeros(this['ntri'])
r1 = this['rr'][this['tris'][:, 0], :]
r2 = this['rr'][this['tris'][:, 1], :]
r3 = this['rr'][this['tris'][:, 2], :]
this['tri_cent'] = (r1 + r2 + r3) / 3.0
this['tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))
this['tri_area'] = _normalize_vectors(this['tri_nn']) / 2.0
logger.info('[done]')
# Selected triangles
logger.info(' Completing selection triangulation info...')
if this['nuse_tri'] > 0:
r1 = this['rr'][this['use_tris'][:, 0], :]
r2 = this['rr'][this['use_tris'][:, 1], :]
r3 = this['rr'][this['use_tris'][:, 2], :]
this['use_tri_cent'] = (r1 + r2 + r3) / 3.0
this['use_tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))
this['use_tri_area'] = np.linalg.norm(this['use_tri_nn'], axis=1) / 2.
logger.info('[done]')
def find_source_space_hemi(src):
"""Return the hemisphere id for a source space.
Parameters
----------
src : dict
The source space to investigate
Returns
-------
hemi : int
Deduced hemisphere id
"""
xave = src['rr'][:, 0].sum()
if xave < 0:
hemi = int(FIFF.FIFFV_MNE_SURF_LEFT_HEMI)
else:
hemi = int(FIFF.FIFFV_MNE_SURF_RIGHT_HEMI)
return hemi
def label_src_vertno_sel(label, src):
"""Find vertex numbers and indices from label.
Parameters
----------
label : Label
Source space label
src : dict
Source space
Returns
-------
vertices : list of length 2
Vertex numbers for lh and rh
src_sel : array of int (len(idx) = len(vertices[0]) + len(vertices[1]))
Indices of the selected vertices in sourse space
"""
if src[0]['type'] != 'surf':
return Exception('Labels are only supported with surface source '
'spaces')
vertno = [src[0]['vertno'], src[1]['vertno']]
if label.hemi == 'lh':
vertno_sel = np.intersect1d(vertno[0], label.vertices)
src_sel = np.searchsorted(vertno[0], vertno_sel)
vertno[0] = vertno_sel
vertno[1] = np.array([], int)
elif label.hemi == 'rh':
vertno_sel = np.intersect1d(vertno[1], label.vertices)
src_sel = np.searchsorted(vertno[1], vertno_sel) + len(vertno[0])
vertno[0] = np.array([], int)
vertno[1] = vertno_sel
elif label.hemi == 'both':
vertno_sel_lh = np.intersect1d(vertno[0], label.lh.vertices)
src_sel_lh = np.searchsorted(vertno[0], vertno_sel_lh)
vertno_sel_rh = np.intersect1d(vertno[1], label.rh.vertices)
src_sel_rh = np.searchsorted(vertno[1], vertno_sel_rh) + len(vertno[0])
src_sel = np.hstack((src_sel_lh, src_sel_rh))
vertno = [vertno_sel_lh, vertno_sel_rh]
else:
raise Exception("Unknown hemisphere type")
return vertno, src_sel
def _get_vertno(src):
return [s['vertno'] for s in src]
###############################################################################
# Write routines
@verbose
def _write_source_spaces_to_fid(fid, src, verbose=None):
"""Write the source spaces to a FIF file.
Parameters
----------
fid : file descriptor
An open file descriptor.
src : list
The list of source spaces.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
"""
for s in src:
logger.info(' Write a source space...')
start_block(fid, FIFF.FIFFB_MNE_SOURCE_SPACE)
_write_one_source_space(fid, s, verbose)
end_block(fid, FIFF.FIFFB_MNE_SOURCE_SPACE)
logger.info(' [done]')
logger.info(' %d source spaces written' % len(src))
@verbose
def write_source_spaces(fname, src, overwrite=False, verbose=None):
"""Write source spaces to a file.
Parameters
----------
fname : str
The name of the file, which should end with -src.fif or
-src.fif.gz.
src : SourceSpaces
The source spaces (as returned by read_source_spaces).
overwrite : bool
If True, the destination file (if it exists) will be overwritten.
If False (default), an error will be raised if the file exists.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
See Also
--------
read_source_spaces
"""
check_fname(fname, 'source space', ('-src.fif', '-src.fif.gz',
'_src.fif', '_src.fif.gz'))
_check_fname(fname, overwrite=overwrite)
fid = start_file(fname)
start_block(fid, FIFF.FIFFB_MNE)
if src.info:
start_block(fid, FIFF.FIFFB_MNE_ENV)
write_id(fid, FIFF.FIFF_BLOCK_ID)
data = src.info.get('working_dir', None)
if data:
write_string(fid, FIFF.FIFF_MNE_ENV_WORKING_DIR, data)
data = src.info.get('command_line', None)
if data:
write_string(fid, FIFF.FIFF_MNE_ENV_COMMAND_LINE, data)
end_block(fid, FIFF.FIFFB_MNE_ENV)
_write_source_spaces_to_fid(fid, src, verbose)
end_block(fid, FIFF.FIFFB_MNE)
end_file(fid)
def _write_one_source_space(fid, this, verbose=None):
"""Write one source space."""
if this['type'] == 'surf':
src_type = FIFF.FIFFV_MNE_SPACE_SURFACE
elif this['type'] == 'vol':
src_type = FIFF.FIFFV_MNE_SPACE_VOLUME
elif this['type'] == 'discrete':
src_type = FIFF.FIFFV_MNE_SPACE_DISCRETE
else:
raise ValueError('Unknown source space type (%s)' % this['type'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_TYPE, src_type)
if this['id'] >= 0:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_ID, this['id'])
data = this.get('subject_his_id', None)
if data:
write_string(fid, FIFF.FIFF_SUBJ_HIS_ID, data)
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, this['coord_frame'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, this['np'])
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_POINTS, this['rr'])
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS, this['nn'])
# Which vertices are active
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_SELECTION, this['inuse'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE, this['nuse'])
if this['ntri'] > 0:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NTRI, this['ntri'])
write_int_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_TRIANGLES,
this['tris'] + 1)
if this['type'] != 'vol' and this['use_tris'] is not None:
# Use triangulation
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE_TRI, this['nuse_tri'])
write_int_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_USE_TRIANGLES,
this['use_tris'] + 1)
if this['type'] == 'vol':
neighbor_vert = this.get('neighbor_vert', None)
if neighbor_vert is not None:
nneighbors = np.array([len(n) for n in neighbor_vert])
neighbors = np.concatenate(neighbor_vert)
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NNEIGHBORS, nneighbors)
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEIGHBORS, neighbors)
write_coord_trans(fid, this['src_mri_t'])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_VOXEL_DIMS, this['shape'])
start_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
write_coord_trans(fid, this['mri_ras_t'])
write_coord_trans(fid, this['vox_mri_t'])
mri_volume_name = this.get('mri_volume_name', None)
if mri_volume_name is not None:
write_string(fid, FIFF.FIFF_MNE_FILE_NAME, mri_volume_name)
write_float_sparse_rcs(fid, FIFF.FIFF_MNE_SOURCE_SPACE_INTERPOLATOR,
this['interpolator'])
if 'mri_file' in this and this['mri_file'] is not None:
write_string(fid, FIFF.FIFF_MNE_SOURCE_SPACE_MRI_FILE,
this['mri_file'])
write_int(fid, FIFF.FIFF_MRI_WIDTH, this['mri_width'])
write_int(fid, FIFF.FIFF_MRI_HEIGHT, this['mri_height'])
write_int(fid, FIFF.FIFF_MRI_DEPTH, this['mri_depth'])
end_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
# Patch-related information
if this['nearest'] is not None:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST, this['nearest'])
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST_DIST,
this['nearest_dist'])
# Distances
if this['dist'] is not None:
# Save only upper triangular portion of the matrix
dists = this['dist'].copy()
dists = sparse.triu(dists, format=dists.format)
write_float_sparse_rcs(fid, FIFF.FIFF_MNE_SOURCE_SPACE_DIST, dists)
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_DIST_LIMIT,
this['dist_limit'])
# Segmentation data
if this['type'] == 'vol' and ('seg_name' in this):
# Save the name of the segment
write_string(fid, FIFF.FIFF_COMMENT, this['seg_name'])
##############################################################################
# Head to MRI volume conversion
@verbose
def head_to_mri(pos, subject, mri_head_t, subjects_dir=None,
verbose=None):
"""Convert pos from head coordinate system to MRI ones.
This function converts to MRI RAS coordinates and not to surface
RAS.
Parameters
----------
pos : array, shape (n_pos, 3)
The coordinates (in m) in head coordinate system
subject : string
Name of the subject.
mri_head_t: instance of Transform
MRI<->Head coordinate transformation
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
coordinates : array, shape (n_pos, 3)
The MNI coordinates (in mm) of pos
Notes
-----
This function requires either nibabel (in Python) or Freesurfer
(with utility "mri_info") to be correctly installed.
"""
import nibabel as nib
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
t1_fname = op.join(subjects_dir, subject, 'mri', 'T1.mgz')
head_mri_t = _ensure_trans(mri_head_t, 'head', 'mri')
mri_pos = apply_trans(head_mri_t, pos) * 1e3
t1 = nib.load(t1_fname)
vox2ras_tkr = t1.header.get_vox2ras_tkr()
ras2vox_tkr = linalg.inv(vox2ras_tkr)
vox2ras = t1.header.get_vox2ras()
mri_pos = apply_trans(ras2vox_tkr, mri_pos) # in vox
mri_pos = apply_trans(vox2ras, mri_pos) # in RAS
return mri_pos
##############################################################################
# Surface to MNI conversion
@verbose
def vertex_to_mni(vertices, hemis, subject, subjects_dir=None, mode=None,
verbose=None):
"""Convert the array of vertices for a hemisphere to MNI coordinates.
Parameters
----------
vertices : int, or list of int
Vertex number(s) to convert
hemis : int, or list of int
Hemisphere(s) the vertices belong to
subject : string
Name of the subject to load surfaces from.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
mode : string | None
Either 'nibabel' or 'freesurfer' for the software to use to
obtain the transforms. If None, 'nibabel' is tried first, falling
back to 'freesurfer' if it fails. Results should be equivalent with
either option, but nibabel may be quicker (and more pythonic).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
coordinates : n_vertices x 3 array of float
The MNI coordinates (in mm) of the vertices
Notes
-----
This function requires either nibabel (in Python) or Freesurfer
(with utility "mri_info") to be correctly installed.
"""
if not has_freesurfer() and not has_nibabel():
raise RuntimeError('NiBabel (Python) or Freesurfer (Unix) must be '
'correctly installed and accessible from Python')
if not isinstance(vertices, list) and not isinstance(vertices, np.ndarray):
vertices = [vertices]
if not isinstance(hemis, list) and not isinstance(hemis, np.ndarray):
hemis = [hemis] * len(vertices)
if not len(hemis) == len(vertices):
raise ValueError('hemi and vertices must match in length')
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
surfs = [op.join(subjects_dir, subject, 'surf', '%s.white' % h)
for h in ['lh', 'rh']]
# read surface locations in MRI space
rr = [read_surface(s)[0] for s in surfs]
# take point locations in MRI space and convert to MNI coordinates
xfm = _read_talxfm(subject, subjects_dir, mode)
data = np.array([rr[h][v, :] for h, v in zip(hemis, vertices)])
return apply_trans(xfm['trans'], data)
##############################################################################
# Volume to MNI conversion
@verbose
def head_to_mni(pos, subject, mri_head_t, subjects_dir=None,
verbose=None):
"""Convert pos from head coordinate system to MNI ones.
Parameters
----------
pos : array, shape (n_pos, 3)
The coordinates (in m) in head coordinate system
subject : string
Name of the subject.
mri_head_t: instance of Transform
MRI<->Head coordinate transformation
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
coordinates : array, shape (n_pos, 3)
The MNI coordinates (in mm) of pos
Notes
-----
This function requires either nibabel (in Python) or Freesurfer
(with utility "mri_info") to be correctly installed.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
# before we go from head to MRI (surface RAS)
head_mri_t = _ensure_trans(mri_head_t, 'head', 'mri')
coo_MRI_RAS = apply_trans(head_mri_t, pos)
# convert to MNI coordinates
xfm = _read_talxfm(subject, subjects_dir)
return apply_trans(xfm['trans'], coo_MRI_RAS * 1000)
@verbose
def _read_talxfm(subject, subjects_dir, mode=None, verbose=None):
"""Read MNI transform from FreeSurfer talairach.xfm file.
Adapted from freesurfer m-files. Altered to deal with Norig
and Torig correctly.
"""
if mode is not None and mode not in ['nibabel', 'freesurfer']:
raise ValueError('mode must be "nibabel" or "freesurfer"')
fname = op.join(subjects_dir, subject, 'mri', 'transforms',
'talairach.xfm')
# Setup the RAS to MNI transform
ras_mni_t = Transform('ras', 'mni_tal', _read_fs_xfm(fname)[0])
# We want to get from Freesurfer surface RAS ('mri') to MNI ('mni_tal').
# This file only gives us RAS (non-zero origin) ('ras') to MNI ('mni_tal').
# Se we need to get the ras->mri transform from the MRI headers.
# To do this, we get Norig and Torig
# (i.e. vox_ras_t and vox_mri_t, respectively)
path = op.join(subjects_dir, subject, 'mri', 'orig.mgz')
if not op.isfile(path):
path = op.join(subjects_dir, subject, 'mri', 'T1.mgz')
if not op.isfile(path):
raise IOError('mri not found: %s' % path)
if has_nibabel():
use_nibabel = True
else:
use_nibabel = False
if mode == 'nibabel':
raise ImportError('Tried to import nibabel but failed, try using '
'mode=None or mode=Freesurfer')
# note that if mode == None, then we default to using nibabel
if use_nibabel is True and mode == 'freesurfer':
use_nibabel = False
if use_nibabel:
hdr = _get_mri_header(path)
n_orig = hdr.get_vox2ras()
t_orig = hdr.get_vox2ras_tkr()
else:
nt_orig = list()
for conv in ['--vox2ras', '--vox2ras-tkr']:
stdout, stderr = run_subprocess(['mri_info', conv, path])
stdout = np.fromstring(stdout, sep=' ').astype(float)
if not stdout.size == 16:
raise ValueError('Could not parse Freesurfer mri_info output')
nt_orig.append(stdout.reshape(4, 4))
n_orig, t_orig = nt_orig
# extract the MRI_VOXEL to RAS (non-zero origin) transform
vox_ras_t = Transform('mri_voxel', 'ras', n_orig)
# extract the MRI_VOXEL to MRI transform
vox_mri_t = Transform('mri_voxel', 'mri', t_orig)
# construct the MRI to RAS (non-zero origin) transform
mri_ras_t = combine_transforms(
invert_transform(vox_mri_t), vox_ras_t, 'mri', 'ras')
# construct the MRI to MNI transform
mri_mni_t = combine_transforms(mri_ras_t, ras_mni_t, 'mri', 'mni_tal')
return mri_mni_t
###############################################################################
# Creation and decimation
@verbose
def _check_spacing(spacing, verbose=None):
"""Check spacing parameter."""
# check to make sure our parameters are good, parse 'spacing'
space_err = ('"spacing" must be a string with values '
'"ico#", "oct#", or "all", and "ico" and "oct"'
'numbers must be integers')
if not isinstance(spacing, string_types) or len(spacing) < 3:
raise ValueError(space_err)
if spacing == 'all':
stype = 'all'
sval = ''
elif spacing[:3] == 'ico':
stype = 'ico'
sval = spacing[3:]
elif spacing[:3] == 'oct':
stype = 'oct'
sval = spacing[3:]
else:
raise ValueError(space_err)
try:
if stype in ['ico', 'oct']:
sval = int(sval)
elif stype == 'spacing': # spacing
sval = float(sval)
except Exception:
raise ValueError(space_err)
if stype == 'all':
logger.info('Include all vertices')
ico_surf = None
src_type_str = 'all'
else:
src_type_str = '%s = %s' % (stype, sval)
if stype == 'ico':
logger.info('Icosahedron subdivision grade %s' % sval)
ico_surf = _get_ico_surface(sval)
elif stype == 'oct':
logger.info('Octahedron subdivision grade %s' % sval)
ico_surf = _tessellate_sphere_surf(sval)
return stype, sval, ico_surf, src_type_str
@verbose
def setup_source_space(subject, spacing='oct6', surface='white',
subjects_dir=None, add_dist=True, n_jobs=1,
verbose=None):
"""Set up bilateral hemisphere surface-based source space with subsampling.
Parameters
----------
subject : str
Subject to process.
spacing : str
The spacing to use. Can be ``'ico#'`` for a recursively subdivided
icosahedron, ``'oct#'`` for a recursively subdivided octahedron,
or ``'all'`` for all points.
surface : str
The surface to use.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
add_dist : bool
Add distance and patch information to the source space. This takes some
time so precomputing it is recommended.
n_jobs : int
Number of jobs to run in parallel. Will use at most 2 jobs
(one for each hemisphere).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
src : SourceSpaces
The source space for each hemisphere.
See Also
--------
setup_volume_source_space
"""
cmd = ('setup_source_space(%s, spacing=%s, surface=%s, '
'subjects_dir=%s, add_dist=%s, verbose=%s)'
% (subject, spacing, surface, subjects_dir, add_dist, verbose))
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
surfs = [op.join(subjects_dir, subject, 'surf', hemi + surface)
for hemi in ['lh.', 'rh.']]
for surf, hemi in zip(surfs, ['LH', 'RH']):
if surf is not None and not op.isfile(surf):
raise IOError('Could not find the %s surface %s'
% (hemi, surf))
logger.info('Setting up the source space with the following parameters:\n')
logger.info('SUBJECTS_DIR = %s' % subjects_dir)
logger.info('Subject = %s' % subject)
logger.info('Surface = %s' % surface)
stype, sval, ico_surf, src_type_str = _check_spacing(spacing)
logger.info('')
del spacing
logger.info('>>> 1. Creating the source space...\n')
# mne_make_source_space ... actually make the source spaces
src = []
# pre-load ico/oct surf (once) for speed, if necessary
if stype != 'all':
logger.info('Doing the %shedral vertex picking...'
% (dict(ico='icosa', oct='octa')[stype],))
for hemi, surf in zip(['lh', 'rh'], surfs):
logger.info('Loading %s...' % surf)
# Setup the surface spacing in the MRI coord frame
if stype != 'all':
logger.info('Mapping %s %s -> %s (%d) ...'
% (hemi, subject, stype, sval))
s = _create_surf_spacing(surf, hemi, subject, stype, ico_surf,
subjects_dir)
logger.info('loaded %s %d/%d selected to source space (%s)'
% (op.split(surf)[1], s['nuse'], s['np'], src_type_str))
src.append(s)
logger.info('') # newline after both subject types are run
# Fill in source space info
hemi_ids = [FIFF.FIFFV_MNE_SURF_LEFT_HEMI, FIFF.FIFFV_MNE_SURF_RIGHT_HEMI]
for s, s_id in zip(src, hemi_ids):
# Add missing fields
s.update(dict(dist=None, dist_limit=None, nearest=None, type='surf',
nearest_dist=None, pinfo=None, patch_inds=None, id=s_id,
coord_frame=FIFF.FIFFV_COORD_MRI))
s['rr'] /= 1000.0
del s['tri_area']
del s['tri_cent']
del s['tri_nn']
del s['neighbor_tri']
# upconvert to object format from lists
src = SourceSpaces(src, dict(working_dir=os.getcwd(), command_line=cmd))
if add_dist:
add_source_space_distances(src, n_jobs=n_jobs, verbose=verbose)
# write out if requested, then return the data
logger.info('You are now one step closer to computing the gain matrix')
return src
@verbose
def setup_volume_source_space(subject=None, pos=5.0, mri=None,
sphere=(0.0, 0.0, 0.0, 90.0), bem=None,
surface=None, mindist=5.0, exclude=0.0,
subjects_dir=None, volume_label=None,
add_interpolator=True, verbose=None):
"""Set up a volume source space with grid spacing or discrete source space.
Parameters
----------
subject : str | None
Subject to process. If None, the path to the mri volume must be
absolute. Defaults to None.
pos : float | dict
Positions to use for sources. If float, a grid will be constructed
with the spacing given by `pos` in mm, generating a volume source
space. If dict, pos['rr'] and pos['nn'] will be used as the source
space locations (in meters) and normals, respectively, creating a
discrete source space. NOTE: For a discrete source space (`pos` is
a dict), `mri` must be None.
mri : str | None
The filename of an MRI volume (mgh or mgz) to create the
interpolation matrix over. Source estimates obtained in the
volume source space can then be morphed onto the MRI volume
using this interpolator. If pos is a dict, this can be None.
sphere : ndarray, shape (4,) | ConductorModel
Define spherical source space bounds using origin and radius given
by (ox, oy, oz, rad) in mm. Only used if ``bem`` and ``surface``
are both None. Can also be a spherical ConductorModel, which will
use the origin and radius.
bem : str | None
Define source space bounds using a BEM file (specifically the inner
skull surface).
surface : str | dict | None
Define source space bounds using a FreeSurfer surface file. Can
also be a dictionary with entries `'rr'` and `'tris'`, such as
those returned by :func:`mne.read_surface`.
mindist : float
Exclude points closer than this distance (mm) to the bounding surface.
exclude : float
Exclude points closer than this distance (mm) from the center of mass
of the bounding surface.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
volume_label : str | list | None
Region of interest corresponding with freesurfer lookup table.
add_interpolator : bool
If True and ``mri`` is not None, then an interpolation matrix
will be produced.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
src : SourceSpaces
A :class:`SourceSpaces` object containing one source space for each
entry of ``volume_labels``, or a single source space if
``volume_labels`` was not specified.
See Also
--------
setup_source_space
Notes
-----
To create a discrete source space, `pos` must be a dict, 'mri' must be
None, and 'volume_label' must be None. To create a whole brain volume
source space, `pos` must be a float and 'mri' must be provided. To create
a volume source space from label, 'pos' must be a float, 'volume_label'
must be provided, and 'mri' must refer to a .mgh or .mgz file with values
corresponding to the freesurfer lookup-table (typically aseg.mgz).
"""
subjects_dir = get_subjects_dir(subjects_dir)
if bem is not None and surface is not None:
raise ValueError('Only one of "bem" and "surface" should be '
'specified')
if mri is not None:
if not op.isfile(mri):
if subject is None:
raise IOError('mri file "%s" not found' % mri)
mri = op.join(subjects_dir, subject, 'mri', mri)
if not op.isfile(mri):
raise IOError('mri file "%s" not found' % mri)
if isinstance(pos, dict):
raise ValueError('Cannot create interpolation matrix for '
'discrete source space, mri must be None if '
'pos is a dict')
if volume_label is not None:
if mri is None:
raise RuntimeError('"mri" must be provided if "volume_label" is '
'not None')
if not isinstance(volume_label, list):
volume_label = [volume_label]
# Check that volume label is found in .mgz file
volume_labels = get_volume_labels_from_aseg(mri)
for label in volume_label:
if label not in volume_labels:
raise ValueError('Volume %s not found in file %s. Double '
'check freesurfer lookup table.'
% (label, mri))
if isinstance(sphere, ConductorModel):
if not sphere['is_sphere'] or len(sphere['layers']) == 0:
raise ValueError('sphere, if a ConductorModel, must be spherical '
'with multiple layers, not a BEM or single-layer '
'sphere (got %s)' % (sphere,))
sphere = tuple(1000 * sphere['r0']) + (1000 *
sphere['layers'][0]['rad'],)
sphere = np.asarray(sphere, dtype=float)
if sphere.size != 4:
raise ValueError('"sphere" must be array_like with 4 elements, got: %s'
% (sphere,))
# triage bounding argument
if bem is not None:
logger.info('BEM file : %s', bem)
elif surface is not None:
if isinstance(surface, dict):
if not all(key in surface for key in ['rr', 'tris']):
raise KeyError('surface, if dict, must have entries "rr" '
'and "tris"')
# let's make sure we have geom info
complete_surface_info(surface, copy=False, verbose=False)
surf_extra = 'dict()'
elif isinstance(surface, string_types):
if not op.isfile(surface):
raise IOError('surface file "%s" not found' % surface)
surf_extra = surface
logger.info('Boundary surface file : %s', surf_extra)
else:
logger.info('Sphere : origin at (%.1f %.1f %.1f) mm'
% (sphere[0], sphere[1], sphere[2]))
logger.info(' radius : %.1f mm' % sphere[3])
# triage pos argument
if isinstance(pos, dict):
if not all(key in pos for key in ['rr', 'nn']):
raise KeyError('pos, if dict, must contain "rr" and "nn"')
pos_extra = 'dict()'
else: # pos should be float-like
try:
pos = float(pos)
except (TypeError, ValueError):
raise ValueError('pos must be a dict, or something that can be '
'cast to float()')
if not isinstance(pos, float):
logger.info('Source location file : %s', pos_extra)
logger.info('Assuming input in millimeters')
logger.info('Assuming input in MRI coordinates')
if isinstance(pos, float):
logger.info('grid : %.1f mm' % pos)
logger.info('mindist : %.1f mm' % mindist)
pos /= 1000.0 # convert pos from m to mm
if exclude > 0.0:
logger.info('Exclude : %.1f mm' % exclude)
if mri is not None:
logger.info('MRI volume : %s' % mri)
exclude /= 1000.0 # convert exclude from m to mm
logger.info('')
# Explicit list of points
if not isinstance(pos, float):
# Make the grid of sources
sp = _make_discrete_source_space(pos)
else:
# Load the brain surface as a template
if bem is not None:
# read bem surface in the MRI coordinate frame
surf = read_bem_surfaces(bem, s_id=FIFF.FIFFV_BEM_SURF_ID_BRAIN,
verbose=False)
logger.info('Loaded inner skull from %s (%d nodes)'
% (bem, surf['np']))
elif surface is not None:
if isinstance(surface, string_types):
# read the surface in the MRI coordinate frame
surf = read_surface(surface, return_dict=True)[-1]
else:
surf = surface
logger.info('Loaded bounding surface from %s (%d nodes)'
% (surface, surf['np']))
surf = deepcopy(surf)
surf['rr'] *= 1e-3 # must be converted to meters
else: # Load an icosahedron and use that as the surface
logger.info('Setting up the sphere...')
surf = dict(R=sphere[3] / 1000., r0=sphere[:3] / 1000.)
# Make the grid of sources in MRI space
if volume_label is not None:
sp = []
for label in volume_label:
vol_sp = _make_volume_source_space(surf, pos, exclude, mindist,
mri, label)
sp.append(vol_sp)
else:
sp = _make_volume_source_space(surf, pos, exclude, mindist, mri,
volume_label)
# Compute an interpolation matrix to show data in MRI_VOXEL coord frame
if not isinstance(sp, list):
sp = [sp]
if mri is not None:
for s in sp:
_add_interpolator(s, mri, add_interpolator)
elif sp[0]['type'] == 'vol':
# If there is no interpolator, it's actually a discrete source space
sp[0]['type'] = 'discrete'
for s in sp:
if 'vol_dims' in s:
del s['vol_dims']
# Save it
for s in sp:
s.update(dict(nearest=None, dist=None, use_tris=None, patch_inds=None,
dist_limit=None, pinfo=None, ntri=0, nearest_dist=None,
nuse_tri=0, tris=None, subject_his_id=subject))
sp = SourceSpaces(sp, dict(working_dir=os.getcwd(), command_line='None'))
return sp
def _make_voxel_ras_trans(move, ras, voxel_size):
"""Make a transformation from MRI_VOXEL to MRI surface RAS (i.e. MRI)."""
assert voxel_size.ndim == 1
assert voxel_size.size == 3
rot = ras.T * voxel_size[np.newaxis, :]
assert rot.ndim == 2
assert rot.shape[0] == 3
assert rot.shape[1] == 3
trans = np.c_[np.r_[rot, np.zeros((1, 3))], np.r_[move, 1.0]]
t = Transform('mri_voxel', 'mri', trans)
return t
def _make_discrete_source_space(pos, coord_frame='mri'):
"""Use a discrete set of source locs/oris to make src space.
Parameters
----------
pos : dict
Must have entries "rr" and "nn". Data should be in meters.
coord_frame : str
The coordinate frame in which the positions are given; default: 'mri'.
The frame must be one defined in transforms.py:_str_to_frame
Returns
-------
src : dict
The source space.
"""
# Check that coordinate frame is valid
if coord_frame not in _str_to_frame: # will fail if coord_frame not string
raise KeyError('coord_frame must be one of %s, not "%s"'
% (list(_str_to_frame.keys()), coord_frame))
coord_frame = _str_to_frame[coord_frame] # now an int
# process points (copy and cast)
rr = np.array(pos['rr'], float)
nn = np.array(pos['nn'], float)
if not (rr.ndim == nn.ndim == 2 and nn.shape[0] == nn.shape[0] and
rr.shape[1] == nn.shape[1]):
raise RuntimeError('"rr" and "nn" must both be 2D arrays with '
'the same number of rows and 3 columns')
npts = rr.shape[0]
_normalize_vectors(nn)
nz = np.sum(np.sum(nn * nn, axis=1) == 0)
if nz != 0:
raise RuntimeError('%d sources have zero length normal' % nz)
logger.info('Positions (in meters) and orientations')
logger.info('%d sources' % npts)
# Ready to make the source space
sp = dict(coord_frame=coord_frame, type='discrete', nuse=npts, np=npts,
inuse=np.ones(npts, int), vertno=np.arange(npts), rr=rr, nn=nn,
id=-1)
return sp
def _make_volume_source_space(surf, grid, exclude, mindist, mri=None,
volume_label=None, do_neighbors=True, n_jobs=1):
"""Make a source space which covers the volume bounded by surf."""
# Figure out the grid size in the MRI coordinate frame
if 'rr' in surf:
mins = np.min(surf['rr'], axis=0)
maxs = np.max(surf['rr'], axis=0)
cm = np.mean(surf['rr'], axis=0) # center of mass
maxdist = np.linalg.norm(surf['rr'] - cm, axis=1).max()
else:
mins = surf['r0'] - surf['R']
maxs = surf['r0'] + surf['R']
cm = surf['r0'].copy()
maxdist = surf['R']
# Define the sphere which fits the surface
logger.info('Surface CM = (%6.1f %6.1f %6.1f) mm'
% (1000 * cm[0], 1000 * cm[1], 1000 * cm[2]))
logger.info('Surface fits inside a sphere with radius %6.1f mm'
% (1000 * maxdist))
logger.info('Surface extent:')
for c, mi, ma in zip('xyz', mins, maxs):
logger.info(' %s = %6.1f ... %6.1f mm' % (c, 1000 * mi, 1000 * ma))
maxn = np.array([np.floor(np.abs(m) / grid) + 1 if m > 0 else -
np.floor(np.abs(m) / grid) - 1 for m in maxs], int)
minn = np.array([np.floor(np.abs(m) / grid) + 1 if m > 0 else -
np.floor(np.abs(m) / grid) - 1 for m in mins], int)
logger.info('Grid extent:')
for c, mi, ma in zip('xyz', minn, maxn):
logger.info(' %s = %6.1f ... %6.1f mm'
% (c, 1000 * mi * grid, 1000 * ma * grid))
# Now make the initial grid
ns = maxn - minn + 1
npts = np.prod(ns)
nrow = ns[0]
ncol = ns[1]
nplane = nrow * ncol
# x varies fastest, then y, then z (can use unravel to do this)
rr = np.meshgrid(np.arange(minn[2], maxn[2] + 1),
np.arange(minn[1], maxn[1] + 1),
np.arange(minn[0], maxn[0] + 1), indexing='ij')
x, y, z = rr[2].ravel(), rr[1].ravel(), rr[0].ravel()
rr = np.array([x * grid, y * grid, z * grid]).T
sp = dict(np=npts, nn=np.zeros((npts, 3)), rr=rr,
inuse=np.ones(npts, int), type='vol', nuse=npts,
coord_frame=FIFF.FIFFV_COORD_MRI, id=-1, shape=ns)
sp['nn'][:, 2] = 1.0
assert sp['rr'].shape[0] == npts
logger.info('%d sources before omitting any.', sp['nuse'])
# Exclude infeasible points
dists = np.linalg.norm(sp['rr'] - cm, axis=1)
bads = np.where(np.logical_or(dists < exclude, dists > maxdist))[0]
sp['inuse'][bads] = False
sp['nuse'] -= len(bads)
logger.info('%d sources after omitting infeasible sources.', sp['nuse'])
if 'rr' in surf:
_filter_source_spaces(surf, mindist, None, [sp], n_jobs)
else: # sphere
vertno = np.where(sp['inuse'])[0]
bads = (np.linalg.norm(sp['rr'][vertno] - surf['r0'], axis=-1) >=
surf['R'] - mindist / 1000.)
sp['nuse'] -= bads.sum()
sp['inuse'][vertno[bads]] = False
sp['vertno'] = np.where(sp['inuse'])[0]
del vertno
del surf
logger.info('%d sources remaining after excluding the sources outside '
'the surface and less than %6.1f mm inside.'
% (sp['nuse'], mindist))
if not do_neighbors:
if volume_label is not None:
raise RuntimeError('volume_label cannot be None unless '
'do_neighbors is True')
return sp
k = np.arange(npts)
neigh = np.empty((26, npts), int)
neigh.fill(-1)
# Figure out each neighborhood:
# 6-neighborhood first
idxs = [z > minn[2], x < maxn[0], y < maxn[1],
x > minn[0], y > minn[1], z < maxn[2]]
offsets = [-nplane, 1, nrow, -1, -nrow, nplane]
for n, idx, offset in zip(neigh[:6], idxs, offsets):
n[idx] = k[idx] + offset
# Then the rest to complete the 26-neighborhood
# First the plane below
idx1 = z > minn[2]
idx2 = np.logical_and(idx1, x < maxn[0])
neigh[6, idx2] = k[idx2] + 1 - nplane
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[7, idx3] = k[idx3] + 1 + nrow - nplane
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[8, idx2] = k[idx2] + nrow - nplane
idx2 = np.logical_and(idx1, x > minn[0])
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[9, idx3] = k[idx3] - 1 + nrow - nplane
neigh[10, idx2] = k[idx2] - 1 - nplane
idx3 = np.logical_and(idx2, y > minn[1])
neigh[11, idx3] = k[idx3] - 1 - nrow - nplane
idx2 = np.logical_and(idx1, y > minn[1])
neigh[12, idx2] = k[idx2] - nrow - nplane
idx3 = np.logical_and(idx2, x < maxn[0])
neigh[13, idx3] = k[idx3] + 1 - nrow - nplane
# Then the same plane
idx1 = np.logical_and(x < maxn[0], y < maxn[1])
neigh[14, idx1] = k[idx1] + 1 + nrow
idx1 = x > minn[0]
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[15, idx2] = k[idx2] - 1 + nrow
idx2 = np.logical_and(idx1, y > minn[1])
neigh[16, idx2] = k[idx2] - 1 - nrow
idx1 = np.logical_and(y > minn[1], x < maxn[0])
neigh[17, idx1] = k[idx1] + 1 - nrow - nplane
# Finally one plane above
idx1 = z < maxn[2]
idx2 = np.logical_and(idx1, x < maxn[0])
neigh[18, idx2] = k[idx2] + 1 + nplane
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[19, idx3] = k[idx3] + 1 + nrow + nplane
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[20, idx2] = k[idx2] + nrow + nplane
idx2 = np.logical_and(idx1, x > minn[0])
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[21, idx3] = k[idx3] - 1 + nrow + nplane
neigh[22, idx2] = k[idx2] - 1 + nplane
idx3 = np.logical_and(idx2, y > minn[1])
neigh[23, idx3] = k[idx3] - 1 - nrow + nplane
idx2 = np.logical_and(idx1, y > minn[1])
neigh[24, idx2] = k[idx2] - nrow + nplane
idx3 = np.logical_and(idx2, x < maxn[0])
neigh[25, idx3] = k[idx3] + 1 - nrow + nplane
# Restrict sources to volume of interest
if volume_label is not None:
try:
import nibabel as nib
except ImportError:
raise ImportError("nibabel is required to read segmentation file.")
logger.info('Selecting voxels from %s' % volume_label)
# Read the segmentation data using nibabel
mgz = nib.load(mri)
mgz_data = mgz.get_data()
# Get the numeric index for this volume label
lut = _get_lut()
vol_id = _get_lut_id(lut, volume_label, True)
# Get indices for this volume label in voxel space
vox_bool = mgz_data == vol_id
# Get the 3 dimensional indices in voxel space
vox_xyz = np.array(np.where(vox_bool)).T
# Transform to RAS coordinates
# (use tkr normalization or volume won't align with surface sources)
trans = _get_mgz_header(mri)['vox2ras_tkr']
# Convert transform from mm to m
trans[:3] /= 1000.
rr_voi = apply_trans(trans, vox_xyz) # positions of VOI in RAS space
# Filter out points too far from volume region voxels
dists = _compute_nearest(rr_voi, sp['rr'], return_dists=True)[1]
# Maximum distance from center of mass of a voxel to any of its corners
maxdist = linalg.norm(trans[:3, :3].sum(0) / 2.)
bads = np.where(dists > maxdist)[0]
# Update source info
sp['inuse'][bads] = False
sp['vertno'] = np.where(sp['inuse'] > 0)[0]
sp['nuse'] = len(sp['vertno'])
sp['seg_name'] = volume_label
sp['mri_file'] = mri
# Update log
logger.info('%d sources remaining after excluding sources too far '
'from VOI voxels', sp['nuse'])
# Omit unused vertices from the neighborhoods
logger.info('Adjusting the neighborhood info...')
# remove non source-space points
log_inuse = sp['inuse'] > 0
neigh[:, np.logical_not(log_inuse)] = -1
# remove these points from neigh
vertno = np.where(log_inuse)[0]
sp['vertno'] = vertno
old_shape = neigh.shape
neigh = neigh.ravel()
checks = np.where(neigh >= 0)[0]
removes = np.logical_not(np.in1d(checks, vertno))
neigh[checks[removes]] = -1
neigh.shape = old_shape
neigh = neigh.T
# Thought we would need this, but C code keeps -1 vertices, so we will:
# neigh = [n[n >= 0] for n in enumerate(neigh[vertno])]
sp['neighbor_vert'] = neigh
# Set up the volume data (needed for creating the interpolation matrix)
r0 = minn * grid
voxel_size = grid * np.ones(3)
ras = np.eye(3)
sp['src_mri_t'] = _make_voxel_ras_trans(r0, ras, voxel_size)
sp['vol_dims'] = maxn - minn + 1
return sp
def _vol_vertex(width, height, jj, kk, pp):
return jj + width * kk + pp * (width * height)
def _get_mri_header(fname):
"""Get MRI header using nibabel."""
import nibabel as nib
img = nib.load(fname)
try:
return img.header
except AttributeError: # old nibabel
return img.get_header()
def _get_mgz_header(fname):
"""Adapted from nibabel to quickly extract header info."""
if not fname.endswith('.mgz'):
raise IOError('Filename must end with .mgz')
header_dtd = [('version', '>i4'), ('dims', '>i4', (4,)),
('type', '>i4'), ('dof', '>i4'), ('goodRASFlag', '>i2'),
('delta', '>f4', (3,)), ('Mdc', '>f4', (3, 3)),
('Pxyz_c', '>f4', (3,))]
header_dtype = np.dtype(header_dtd)
with GzipFile(fname, 'rb') as fid:
hdr_str = fid.read(header_dtype.itemsize)
header = np.ndarray(shape=(), dtype=header_dtype,
buffer=hdr_str)
# dims
dims = header['dims'].astype(int)
dims = dims[:3] if len(dims) == 4 else dims
# vox2ras_tkr
delta = header['delta']
ds = np.array(delta, float)
ns = np.array(dims * ds) / 2.0
v2rtkr = np.array([[-ds[0], 0, 0, ns[0]],
[0, 0, ds[2], -ns[2]],
[0, -ds[1], 0, ns[1]],
[0, 0, 0, 1]], dtype=np.float32)
# ras2vox
d = np.diag(delta)
pcrs_c = dims / 2.0
Mdc = header['Mdc'].T
pxyz_0 = header['Pxyz_c'] - np.dot(Mdc, np.dot(d, pcrs_c))
M = np.eye(4, 4)
M[0:3, 0:3] = np.dot(Mdc, d)
M[0:3, 3] = pxyz_0.T
M = linalg.inv(M)
header = dict(dims=dims, vox2ras_tkr=v2rtkr, ras2vox=M)
return header
def _add_interpolator(s, mri_name, add_interpolator):
"""Compute a sparse matrix to interpolate the data into an MRI volume."""
# extract transformation information from mri
logger.info('Reading %s...' % mri_name)
header = _get_mgz_header(mri_name)
mri_width, mri_height, mri_depth = header['dims']
s.update(dict(mri_width=mri_width, mri_height=mri_height,
mri_depth=mri_depth))
trans = header['vox2ras_tkr'].copy()
trans[:3, :] /= 1000.0
s['vox_mri_t'] = Transform('mri_voxel', 'mri', trans) # ras_tkr
trans = linalg.inv(np.dot(header['vox2ras_tkr'], header['ras2vox']))
trans[:3, 3] /= 1000.0
s['mri_ras_t'] = Transform('mri', 'ras', trans) # ras
s['mri_volume_name'] = mri_name
nvox = mri_width * mri_height * mri_depth
if not add_interpolator:
s['interpolator'] = sparse.csr_matrix((nvox, s['np']))
return
_print_coord_trans(s['src_mri_t'], 'Source space : ')
_print_coord_trans(s['vox_mri_t'], 'MRI volume : ')
_print_coord_trans(s['mri_ras_t'], 'MRI volume : ')
#
# Convert MRI voxels from destination (MRI volume) to source (volume
# source space subset) coordinates
#
combo_trans = combine_transforms(s['vox_mri_t'],
invert_transform(s['src_mri_t']),
'mri_voxel', 'mri_voxel')
combo_trans['trans'] = combo_trans['trans'].astype(np.float32)
logger.info('Setting up interpolation...')
# Loop over slices to save (lots of) memory
# Note that it is the slowest incrementing index
# This is equivalent to using mgrid and reshaping, but faster
data = []
indices = []
indptr = np.zeros(nvox + 1, np.int32)
for p in range(mri_depth):
js = np.arange(mri_width, dtype=np.float32)
js = np.tile(js[np.newaxis, :],
(mri_height, 1)).ravel()
ks = np.arange(mri_height, dtype=np.float32)
ks = np.tile(ks[:, np.newaxis],
(1, mri_width)).ravel()
ps = np.empty((mri_height, mri_width), np.float32).ravel()
ps.fill(p)
r0 = np.c_[js, ks, ps]
del js, ks, ps
# Transform our vertices from their MRI space into our source space's
# frame (this is labeled as FIFFV_MNE_COORD_MRI_VOXEL, but it's
# really a subset of the entire volume!)
r0 = apply_trans(combo_trans['trans'], r0)
rn = np.floor(r0).astype(int)
maxs = (s['vol_dims'] - 1)[np.newaxis, :]
good = np.where(np.logical_and(np.all(rn >= 0, axis=1),
np.all(rn < maxs, axis=1)))[0]
rn = rn[good]
r0 = r0[good]
# now we take each MRI voxel *in this space*, and figure out how
# to make its value the weighted sum of voxels in the volume source
# space. This is a 3D weighting scheme based (presumably) on the
# fact that we know we're interpolating from one volumetric grid
# into another.
jj = rn[:, 0]
kk = rn[:, 1]
pp = rn[:, 2]
vss = np.empty((len(jj), 8), np.int32)
width = s['vol_dims'][0]
height = s['vol_dims'][1]
jjp1 = jj + 1
kkp1 = kk + 1
ppp1 = pp + 1
vss[:, 0] = _vol_vertex(width, height, jj, kk, pp)
vss[:, 1] = _vol_vertex(width, height, jjp1, kk, pp)
vss[:, 2] = _vol_vertex(width, height, jjp1, kkp1, pp)
vss[:, 3] = _vol_vertex(width, height, jj, kkp1, pp)
vss[:, 4] = _vol_vertex(width, height, jj, kk, ppp1)
vss[:, 5] = _vol_vertex(width, height, jjp1, kk, ppp1)
vss[:, 6] = _vol_vertex(width, height, jjp1, kkp1, ppp1)
vss[:, 7] = _vol_vertex(width, height, jj, kkp1, ppp1)
del jj, kk, pp, jjp1, kkp1, ppp1
uses = np.any(s['inuse'][vss], axis=1)
if uses.size == 0:
continue
vss = vss[uses].ravel() # vertex (col) numbers in csr matrix
indices.append(vss)
indptr[good[uses] + p * mri_height * mri_width + 1] = 8
del vss
# figure out weights for each vertex
r0 = r0[uses]
rn = rn[uses]
del uses, good
xf = r0[:, 0] - rn[:, 0].astype(np.float32)
yf = r0[:, 1] - rn[:, 1].astype(np.float32)
zf = r0[:, 2] - rn[:, 2].astype(np.float32)
omxf = 1.0 - xf
omyf = 1.0 - yf
omzf = 1.0 - zf
# each entry in the concatenation corresponds to a row of vss
data.append(np.array([omxf * omyf * omzf,
xf * omyf * omzf,
xf * yf * omzf,
omxf * yf * omzf,
omxf * omyf * zf,
xf * omyf * zf,
xf * yf * zf,
omxf * yf * zf], order='F').T.ravel())
del xf, yf, zf, omxf, omyf, omzf
# Compose the sparse matrix
indptr = np.cumsum(indptr, out=indptr)
indices = np.concatenate(indices)
data = np.concatenate(data)
s['interpolator'] = sparse.csr_matrix((data, indices, indptr),
shape=(nvox, s['np']))
logger.info(' %d/%d nonzero values [done]' % (len(data), nvox))
@verbose
def _filter_source_spaces(surf, limit, mri_head_t, src, n_jobs=1,
verbose=None):
"""Remove all source space points closer than a given limit (in mm)."""
if src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD and mri_head_t is None:
raise RuntimeError('Source spaces are in head coordinates and no '
'coordinate transform was provided!')
# How close are the source points to the surface?
out_str = 'Source spaces are in '
if src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD:
inv_trans = invert_transform(mri_head_t)
out_str += 'head coordinates.'
elif src[0]['coord_frame'] == FIFF.FIFFV_COORD_MRI:
out_str += 'MRI coordinates.'
else:
out_str += 'unknown (%d) coordinates.' % src[0]['coord_frame']
logger.info(out_str)
out_str = 'Checking that the sources are inside the bounding surface'
if limit > 0.0:
out_str += ' and at least %6.1f mm away' % (limit)
logger.info(out_str + ' (will take a few...)')
for s in src:
vertno = np.where(s['inuse'])[0] # can't trust s['vertno'] this deep
# Convert all points here first to save time
r1s = s['rr'][vertno]
if s['coord_frame'] == FIFF.FIFFV_COORD_HEAD:
r1s = apply_trans(inv_trans['trans'], r1s)
# Check that the source is inside surface (often the inner skull)
outside = _points_outside_surface(r1s, surf, n_jobs)
omit_outside = np.sum(outside)
# vectorized nearest using BallTree (or cdist)
omit = 0
if limit > 0.0:
dists = _compute_nearest(surf['rr'], r1s, return_dists=True)[1]
close = np.logical_and(dists < limit / 1000.0,
np.logical_not(outside))
omit = np.sum(close)
outside = np.logical_or(outside, close)
s['inuse'][vertno[outside]] = False
s['nuse'] -= (omit + omit_outside)
s['vertno'] = np.where(s['inuse'])[0]
if omit_outside > 0:
extras = [omit_outside]
extras += ['s', 'they are'] if omit_outside > 1 else ['', 'it is']
logger.info('%d source space point%s omitted because %s '
'outside the inner skull surface.' % tuple(extras))
if omit > 0:
extras = [omit]
extras += ['s'] if omit_outside > 1 else ['']
extras += [limit]
logger.info('%d source space point%s omitted because of the '
'%6.1f-mm distance limit.' % tuple(extras))
# Adjust the patch inds as well if necessary
if omit + omit_outside > 0:
_adjust_patch_info(s)
logger.info('Thank you for waiting.')
@verbose
def _adjust_patch_info(s, verbose=None):
"""Adjust patch information in place after vertex omission."""
if s.get('patch_inds') is not None:
if s['nearest'] is None:
# This shouldn't happen, but if it does, we can probably come
# up with a more clever solution
raise RuntimeError('Cannot adjust patch information properly, '
'please contact the mne-python developers')
_add_patch_info(s)
@verbose
def _points_outside_surface(rr, surf, n_jobs=1, verbose=None):
"""Check whether points are outside a surface.
Parameters
----------
rr : ndarray
Nx3 array of points to check.
surf : dict
Surface with entries "rr" and "tris".
Returns
-------
outside : ndarray
1D logical array of size N for which points are outside the surface.
"""
rr = np.atleast_2d(rr)
assert rr.shape[1] == 3
assert n_jobs > 0
parallel, p_fun, _ = parallel_func(_get_solids, n_jobs)
tot_angles = parallel(p_fun(surf['rr'][tris], rr)
for tris in np.array_split(surf['tris'], n_jobs))
return np.abs(np.sum(tot_angles, axis=0) / (2 * np.pi) - 1.0) > 1e-5
@verbose
def _ensure_src(src, kind=None, verbose=None):
"""Ensure we have a source space."""
if isinstance(src, string_types):
if not op.isfile(src):
raise IOError('Source space file "%s" not found' % src)
logger.info('Reading %s...' % src)
src = read_source_spaces(src, verbose=False)
if not isinstance(src, SourceSpaces):
raise ValueError('src must be a string or instance of SourceSpaces')
if kind is not None:
if kind == 'surf':
surf = [s for s in src if s['type'] == 'surf']
if len(surf) != 2 or len(src) != 2:
raise ValueError('Source space must contain exactly two '
'surfaces.')
src = surf
return src
def _ensure_src_subject(src, subject):
src_subject = src[0].get('subject_his_id', None)
if subject is None:
subject = src_subject
if subject is None:
raise ValueError('source space is too old, subject must be '
'provided')
elif src_subject is not None and subject != src_subject:
raise ValueError('Mismatch between provided subject "%s" and subject '
'name "%s" in the source space'
% (subject, src_subject))
return subject
@verbose
def add_source_space_distances(src, dist_limit=np.inf, n_jobs=1, verbose=None):
"""Compute inter-source distances along the cortical surface.
This function will also try to add patch info for the source space.
It will only occur if the ``dist_limit`` is sufficiently high that all
points on the surface are within ``dist_limit`` of a point in the
source space.
Parameters
----------
src : instance of SourceSpaces
The source spaces to compute distances for.
dist_limit : float
The upper limit of distances to include (in meters).
Note: if limit < np.inf, scipy > 0.13 (bleeding edge as of
10/2013) must be installed.
n_jobs : int
Number of jobs to run in parallel. Will only use (up to) as many
cores as there are source spaces.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
src : instance of SourceSpaces
The original source spaces, with distance information added.
The distances are stored in src[n]['dist'].
Note: this function operates in-place.
Notes
-----
Requires scipy >= 0.11 (> 0.13 for `dist_limit < np.inf`).
This function can be memory- and CPU-intensive. On a high-end machine
(2012) running 6 jobs in parallel, an ico-5 (10242 per hemi) source space
takes about 10 minutes to compute all distances (`dist_limit = np.inf`).
With `dist_limit = 0.007`, computing distances takes about 1 minute.
We recommend computing distances once per source space and then saving
the source space to disk, as the computed distances will automatically be
stored along with the source space data for future use.
"""
from scipy.sparse.csgraph import dijkstra
n_jobs = check_n_jobs(n_jobs)
src = _ensure_src(src)
if not np.isscalar(dist_limit):
raise ValueError('limit must be a scalar, got %s' % repr(dist_limit))
if not check_version('scipy', '0.11'):
raise RuntimeError('scipy >= 0.11 must be installed (or > 0.13 '
'if dist_limit < np.inf')
if not all(s['type'] == 'surf' for s in src):
raise RuntimeError('Currently all source spaces must be of surface '
'type')
if dist_limit < np.inf:
# can't do introspection on dijkstra function because it's Cython,
# so we'll just try quickly here
try:
dijkstra(sparse.csr_matrix(np.zeros((2, 2))), limit=1.0)
except TypeError:
raise RuntimeError('Cannot use "limit < np.inf" unless scipy '
'> 0.13 is installed')
parallel, p_fun, _ = parallel_func(_do_src_distances, n_jobs)
min_dists = list()
min_idxs = list()
logger.info('Calculating source space distances (limit=%s mm)...'
% (1000 * dist_limit))
for s in src:
connectivity = mesh_dist(s['tris'], s['rr'])
d = parallel(p_fun(connectivity, s['vertno'], r, dist_limit)
for r in np.array_split(np.arange(len(s['vertno'])),
n_jobs))
# deal with indexing so we can add patch info
min_idx = np.array([dd[1] for dd in d])
min_dist = np.array([dd[2] for dd in d])
midx = np.argmin(min_dist, axis=0)
range_idx = np.arange(len(s['rr']))
min_dist = min_dist[midx, range_idx]
min_idx = min_idx[midx, range_idx]
min_dists.append(min_dist)
min_idxs.append(min_idx)
# now actually deal with distances, convert to sparse representation
d = np.concatenate([dd[0] for dd in d]).ravel() # already float32
idx = d > 0
d = d[idx]
i, j = np.meshgrid(s['vertno'], s['vertno'])
i = i.ravel()[idx]
j = j.ravel()[idx]
d = sparse.csr_matrix((d, (i, j)),
shape=(s['np'], s['np']), dtype=np.float32)
s['dist'] = d
s['dist_limit'] = np.array([dist_limit], np.float32)
# Let's see if our distance was sufficient to allow for patch info
if not any(np.any(np.isinf(md)) for md in min_dists):
# Patch info can be added!
for s, min_dist, min_idx in zip(src, min_dists, min_idxs):
s['nearest'] = min_idx
s['nearest_dist'] = min_dist
_add_patch_info(s)
else:
logger.info('Not adding patch information, dist_limit too small')
return src
def _do_src_distances(con, vertno, run_inds, limit):
"""Compute source space distances in chunks."""
from scipy.sparse.csgraph import dijkstra
if limit < np.inf:
func = partial(dijkstra, limit=limit)
else:
func = dijkstra
chunk_size = 20 # save memory by chunking (only a little slower)
lims = np.r_[np.arange(0, len(run_inds), chunk_size), len(run_inds)]
n_chunks = len(lims) - 1
# eventually we want this in float32, so save memory by only storing 32-bit
d = np.empty((len(run_inds), len(vertno)), np.float32)
min_dist = np.empty((n_chunks, con.shape[0]))
min_idx = np.empty((n_chunks, con.shape[0]), np.int32)
range_idx = np.arange(con.shape[0])
for li, (l1, l2) in enumerate(zip(lims[:-1], lims[1:])):
idx = vertno[run_inds[l1:l2]]
out = func(con, indices=idx)
midx = np.argmin(out, axis=0)
min_idx[li] = idx[midx]
min_dist[li] = out[midx, range_idx]
d[l1:l2] = out[:, vertno]
midx = np.argmin(min_dist, axis=0)
min_dist = min_dist[midx, range_idx]
min_idx = min_idx[midx, range_idx]
d[d == np.inf] = 0 # scipy will give us np.inf for uncalc. distances
return d, min_idx, min_dist
def get_volume_labels_from_aseg(mgz_fname, return_colors=False):
"""Return a list of names and colors of segmented volumes.
Parameters
----------
mgz_fname : str
Filename to read. Typically aseg.mgz or some variant in the freesurfer
pipeline.
return_colors : bool
If True returns also the labels colors
Returns
-------
label_names : list of str
The names of segmented volumes included in this mgz file.
label_colors : list of str
The RGB colors of the labels included in this mgz file.
Notes
-----
.. versionadded:: 0.9.0
"""
import nibabel as nib
# Read the mgz file using nibabel
mgz_data = nib.load(mgz_fname).get_data()
# Get the unique label names
lut = _get_lut()
label_names = [lut[lut['id'] == ii]['name'][0]
for ii in np.unique(mgz_data)]
label_colors = [[lut[lut['id'] == ii]['R'][0],
lut[lut['id'] == ii]['G'][0],
lut[lut['id'] == ii]['B'][0],
lut[lut['id'] == ii]['A'][0]]
for ii in np.unique(mgz_data)]
order = np.argsort(label_names)
label_names = [label_names[k] for k in order]
label_colors = [label_colors[k] for k in order]
if return_colors:
return label_names, label_colors
else:
return label_names
def get_volume_labels_from_src(src, subject, subjects_dir):
"""Return a list of Label of segmented volumes included in the src space.
Parameters
----------
src : instance of SourceSpaces
The source space containing the volume regions
subject: str
Subject name
subjects_dir: str
Freesurfer folder of the subjects
Returns
-------
labels_aseg : list of Label
List of Label of segmented volumes included in src space.
"""
import os.path as op
import numpy as np
from . import Label
from . import get_volume_labels_from_aseg
# Read the aseg file
aseg_fname = op.join(subjects_dir, subject, 'mri', 'aseg.mgz')
if not op.isfile(aseg_fname):
raise IOError('aseg file "%s" not found' % aseg_fname)
all_labels_aseg = get_volume_labels_from_aseg(aseg_fname,
return_colors=True)
# Create a list of Label
if len(src) < 2:
raise ValueError('No vol src space in src')
if any(np.any(s['type'] != 'vol') for s in src[2:]):
raise ValueError('source spaces have to be of vol type')
labels_aseg = list()
for nr in range(2, len(src)):
vertices = src[nr]['vertno']
pos = src[nr]['rr'][src[nr]['vertno'], :]
roi_str = src[nr]['seg_name']
try:
ind = all_labels_aseg[0].index(roi_str)
color = np.array(all_labels_aseg[1][ind]) / 255
except ValueError:
pass
if 'left' in roi_str.lower():
hemi = 'lh'
roi_str = roi_str.replace('Left-', '') + '-lh'
elif 'right' in roi_str.lower():
hemi = 'rh'
roi_str = roi_str.replace('Right-', '') + '-rh'
else:
hemi = 'both'
label = Label(vertices=vertices, pos=pos, hemi=hemi,
name=roi_str, color=color,
subject=subject)
labels_aseg.append(label)
return labels_aseg
def _get_hemi(s):
"""Get a hemisphere from a given source space."""
if s['type'] != 'surf':
raise RuntimeError('Only surface source spaces supported')
if s['id'] == FIFF.FIFFV_MNE_SURF_LEFT_HEMI:
return 'lh', 0, s['id']
elif s['id'] == FIFF.FIFFV_MNE_SURF_RIGHT_HEMI:
return 'rh', 1, s['id']
else:
raise ValueError('unknown surface ID %s' % s['id'])
def _get_vertex_map_nn(fro_src, subject_from, subject_to, hemi, subjects_dir,
to_neighbor_tri=None):
"""Get a nearest-neigbor vertex match for a given hemi src.
The to_neighbor_tri can optionally be passed in to avoid recomputation
if it's already available.
"""
# adapted from mne_make_source_space.c, knowing accurate=False (i.e.
# nearest-neighbor mode should be used)
logger.info('Mapping %s %s -> %s (nearest neighbor)...'
% (hemi, subject_from, subject_to))
regs = [op.join(subjects_dir, s, 'surf', '%s.sphere.reg' % hemi)
for s in (subject_from, subject_to)]
reg_fro, reg_to = [read_surface(r, return_dict=True)[-1] for r in regs]
if to_neighbor_tri is not None:
reg_to['neighbor_tri'] = to_neighbor_tri
if 'neighbor_tri' not in reg_to:
reg_to['neighbor_tri'] = _triangle_neighbors(reg_to['tris'],
reg_to['np'])
morph_inuse = np.zeros(len(reg_to['rr']), bool)
best = np.zeros(fro_src['np'], int)
ones = _compute_nearest(reg_to['rr'], reg_fro['rr'][fro_src['vertno']])
for v, one in zip(fro_src['vertno'], ones):
# if it were actually a proper morph map, we would do this, but since
# we know it's nearest neighbor list, we don't need to:
# this_mm = mm[v]
# one = this_mm.indices[this_mm.data.argmax()]
if morph_inuse[one]:
# Try the nearest neighbors
neigh = _get_surf_neighbors(reg_to, one) # on demand calc
was = one
one = neigh[np.where(~morph_inuse[neigh])[0]]
if len(one) == 0:
raise RuntimeError('vertex %d would be used multiple times.'
% one)
one = one[0]
logger.info('Source space vertex moved from %d to %d because of '
'double occupation.' % (was, one))
best[v] = one
morph_inuse[one] = True
return best
@verbose
def morph_source_spaces(src_from, subject_to, surf='white', subject_from=None,
subjects_dir=None, verbose=None):
"""Morph an existing source space to a different subject.
.. warning:: This can be used in place of morphing source estimates for
multiple subjects, but there may be consequences in terms
of dipole topology.
Parameters
----------
src_from : instance of SourceSpaces
Surface source spaces to morph.
subject_to : str
The destination subject.
surf : str
The brain surface to use for the new source space.
subject_from : str | None
The "from" subject. For most source spaces this shouldn't need
to be provided, since it is stored in the source space itself.
subjects_dir : str | None
Path to SUBJECTS_DIR if it is not set in the environment.
verbose : bool | str | int | None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
src : instance of SourceSpaces
The morphed source spaces.
Notes
-----
.. versionadded:: 0.10.0
"""
# adapted from mne_make_source_space.c
src_from = _ensure_src(src_from)
subject_from = _ensure_src_subject(src_from, subject_from)
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
src_out = list()
for fro in src_from:
hemi, idx, id_ = _get_hemi(fro)
to = op.join(subjects_dir, subject_to, 'surf', '%s.%s' % (hemi, surf,))
logger.info('Reading destination surface %s' % (to,))
to = read_surface(to, return_dict=True, verbose=False)[-1]
complete_surface_info(to, copy=False)
# Now we morph the vertices to the destination
# The C code does something like this, but with a nearest-neighbor
# mapping instead of the weighted one::
#
# >>> mm = read_morph_map(subject_from, subject_to, subjects_dir)
#
# Here we use a direct NN calculation, since picking the max from the
# existing morph map (which naively one might expect to be equivalent)
# differs for ~3% of vertices.
best = _get_vertex_map_nn(fro, subject_from, subject_to, hemi,
subjects_dir, to['neighbor_tri'])
for key in ('neighbor_tri', 'tri_area', 'tri_cent', 'tri_nn',
'use_tris'):
del to[key]
to['vertno'] = np.sort(best[fro['vertno']])
to['inuse'] = np.zeros(len(to['rr']), int)
to['inuse'][to['vertno']] = True
to['use_tris'] = best[fro['use_tris']]
to.update(nuse=len(to['vertno']), nuse_tri=len(to['use_tris']),
nearest=None, nearest_dist=None, patch_inds=None, pinfo=None,
dist=None, id=id_, dist_limit=None, type='surf',
coord_frame=FIFF.FIFFV_COORD_MRI, subject_his_id=subject_to,
rr=to['rr'] / 1000.)
src_out.append(to)
logger.info('[done]\n')
info = dict(working_dir=os.getcwd(),
command_line=_get_call_line(in_verbose=True))
return SourceSpaces(src_out, info=info)
@verbose
def _get_morph_src_reordering(vertices, src_from, subject_from, subject_to,
subjects_dir=None, verbose=None):
"""Get the reordering indices for a morphed source space.
Parameters
----------
vertices : list
The vertices for the left and right hemispheres.
src_from : instance of SourceSpaces
The original source space.
subject_from : str
The source subject.
subject_to : str
The destination subject.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
data_idx : ndarray, shape (n_vertices,)
The array used to reshape the data.
from_vertices : list
The right and left hemisphere vertex numbers for the "from" subject.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
from_vertices = list()
data_idxs = list()
offset = 0
for ii, hemi in enumerate(('lh', 'rh')):
# Get the mapping from the original source space to the destination
# subject's surface vertex numbers
best = _get_vertex_map_nn(src_from[ii], subject_from, subject_to,
hemi, subjects_dir)
full_mapping = best[src_from[ii]['vertno']]
# Tragically, we might not have all of our vertno left (e.g. because
# some are omitted during fwd calc), so we must do some indexing magic:
# From all vertices, a subset could be chosen by fwd calc:
used_vertices = np.in1d(full_mapping, vertices[ii])
from_vertices.append(src_from[ii]['vertno'][used_vertices])
remaining_mapping = full_mapping[used_vertices]
if not np.array_equal(np.sort(remaining_mapping), vertices[ii]) or \
not np.in1d(vertices[ii], full_mapping).all():
raise RuntimeError('Could not map vertices, perhaps the wrong '
'subject "%s" was provided?' % subject_from)
# And our data have been implicitly remapped by the forced ascending
# vertno order in source spaces
implicit_mapping = np.argsort(remaining_mapping) # happens to data
data_idx = np.argsort(implicit_mapping) # to reverse the mapping
data_idx += offset # hemisphere offset
data_idxs.append(data_idx)
offset += len(implicit_mapping)
data_idx = np.concatenate(data_idxs)
# this one is really just a sanity check for us, should never be violated
# by users
assert np.array_equal(np.sort(data_idx),
np.arange(sum(len(v) for v in vertices)))
return data_idx, from_vertices
def _compare_source_spaces(src0, src1, mode='exact', nearest=True,
dist_tol=1.5e-3):
"""Compare two source spaces.
Note: this function is also used by forward/tests/test_make_forward.py
"""
from numpy.testing import (assert_allclose, assert_array_equal,
assert_equal, assert_)
from scipy.spatial.distance import cdist
if mode != 'exact' and 'approx' not in mode: # 'nointerp' can be appended
raise RuntimeError('unknown mode %s' % mode)
for si, (s0, s1) in enumerate(zip(src0, src1)):
# first check the keys
a, b = set(s0.keys()), set(s1.keys())
assert_equal(a, b, str(a ^ b))
for name in ['nuse', 'ntri', 'np', 'type', 'id']:
assert_equal(s0[name], s1[name], name)
for name in ['subject_his_id']:
if name in s0 or name in s1:
assert_equal(s0[name], s1[name], name)
for name in ['interpolator']:
if name in s0 or name in s1:
diffs = (s0['interpolator'] - s1['interpolator']).data
if len(diffs) > 0 and 'nointerp' not in mode:
# 5%
assert_(np.sqrt(np.mean(diffs ** 2)) < 0.10, name)
for name in ['nn', 'rr', 'nuse_tri', 'coord_frame', 'tris']:
if s0[name] is None:
assert_(s1[name] is None, name)
else:
if mode == 'exact':
assert_array_equal(s0[name], s1[name], name)
else: # 'approx' in mode
atol = 1e-3 if name == 'nn' else 1e-4
assert_allclose(s0[name], s1[name], rtol=1e-3, atol=atol,
err_msg=name)
for name in ['seg_name']:
if name in s0 or name in s1:
assert_equal(s0[name], s1[name], name)
# these fields will exist if patch info was added
if nearest:
for name in ['nearest', 'nearest_dist', 'patch_inds']:
if s0[name] is None:
assert_(s1[name] is None, name)
else:
assert_array_equal(s0[name], s1[name])
for name in ['pinfo']:
if s0[name] is None:
assert_(s1[name] is None, name)
else:
assert_(len(s0[name]) == len(s1[name]), name)
for p1, p2 in zip(s0[name], s1[name]):
assert_(all(p1 == p2), name)
if mode == 'exact':
for name in ['inuse', 'vertno', 'use_tris']:
assert_array_equal(s0[name], s1[name], err_msg=name)
for name in ['dist_limit']:
assert_(s0[name] == s1[name], name)
for name in ['dist']:
if s0[name] is not None:
assert_equal(s1[name].shape, s0[name].shape)
assert_(len((s0['dist'] - s1['dist']).data) == 0)
else: # 'approx' in mode:
# deal with vertno, inuse, and use_tris carefully
for ii, s in enumerate((s0, s1)):
assert_array_equal(s['vertno'], np.where(s['inuse'])[0],
'src%s[%s]["vertno"] != '
'np.where(src%s[%s]["inuse"])[0]'
% (ii, si, ii, si))
assert_equal(len(s0['vertno']), len(s1['vertno']))
agreement = np.mean(s0['inuse'] == s1['inuse'])
assert_(agreement >= 0.99, "%s < 0.99" % agreement)
if agreement < 1.0:
# make sure mismatched vertno are within 1.5mm
v0 = np.setdiff1d(s0['vertno'], s1['vertno'])
v1 = np.setdiff1d(s1['vertno'], s0['vertno'])
dists = cdist(s0['rr'][v0], s1['rr'][v1])
assert_allclose(np.min(dists, axis=1), np.zeros(len(v0)),
atol=dist_tol, err_msg='mismatched vertno')
if s0['use_tris'] is not None: # for "spacing"
assert_array_equal(s0['use_tris'].shape, s1['use_tris'].shape)
else:
assert_(s1['use_tris'] is None)
assert_(np.mean(s0['use_tris'] == s1['use_tris']) > 0.99)
# The above "if s0[name] is not None" can be removed once the sample
# dataset is updated to have a source space with distance info
for name in ['working_dir', 'command_line']:
if mode == 'exact':
assert_equal(src0.info[name], src1.info[name])
else: # 'approx' in mode:
if name in src0.info:
assert_(name in src1.info, '"%s" missing' % name)
else:
assert_(name not in src1.info, '"%s" should not exist' % name)
|