File: surface.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (1381 lines) | stat: -rw-r--r-- 50,665 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Denis A. Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)

from copy import deepcopy
from distutils.version import LooseVersion
from glob import glob
from functools import partial
import os
from os import path as op
import sys
from struct import pack

import numpy as np
from scipy.sparse import coo_matrix, csr_matrix, eye as speye

from .io.constants import FIFF
from .io.open import fiff_open
from .io.pick import pick_types
from .io.tree import dir_tree_find
from .io.tag import find_tag
from .io.write import (write_int, start_file, end_block, start_block, end_file,
                       write_string, write_float_sparse_rcs)
from .channels.channels import _get_meg_system
from .transforms import transform_surface_to, _pol_to_cart, _cart_to_sph
from .utils import logger, verbose, get_subjects_dir, warn
from .externals.six import string_types
from .fixes import _serialize_volume_info, _get_read_geometry, einsum


###############################################################################
# AUTOMATED SURFACE FINDING

@verbose
def get_head_surf(subject, source=('bem', 'head'), subjects_dir=None,
                  verbose=None):
    """Load the subject head surface.

    Parameters
    ----------
    subject : str
        Subject name.
    source : str | list of str
        Type to load. Common choices would be `'bem'` or `'head'`. We first
        try loading `'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'`, and
        then look for `'$SUBJECT*$SOURCE.fif'` in the same directory by going
        through all files matching the pattern. The head surface will be read
        from the first file containing a head surface. Can also be a list
        to try multiple strings.
    subjects_dir : str, or None
        Path to the SUBJECTS_DIR. If None, the path is obtained by using
        the environment variable SUBJECTS_DIR.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    surf : dict
        The head surface.
    """
    return _get_head_surface(subject=subject, source=source,
                             subjects_dir=subjects_dir)


def _get_head_surface(subject, source, subjects_dir, raise_error=True):
    """Load the subject head surface."""
    from .bem import read_bem_surfaces
    # Load the head surface from the BEM
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    if not isinstance(subject, string_types):
        raise TypeError('subject must be a string, not %s.' % (type(subject,)))
    # use realpath to allow for linked surfaces (c.f. MNE manual 196-197)
    if isinstance(source, string_types):
        source = [source]
    surf = None
    for this_source in source:
        this_head = op.realpath(op.join(subjects_dir, subject, 'bem',
                                        '%s-%s.fif' % (subject, this_source)))
        if op.exists(this_head):
            surf = read_bem_surfaces(this_head, True,
                                     FIFF.FIFFV_BEM_SURF_ID_HEAD,
                                     verbose=False)
        else:
            # let's do a more sophisticated search
            path = op.join(subjects_dir, subject, 'bem')
            if not op.isdir(path):
                raise IOError('Subject bem directory "%s" does not exist.'
                              % path)
            files = sorted(glob(op.join(path, '%s*%s.fif'
                                        % (subject, this_source))))
            for this_head in files:
                try:
                    surf = read_bem_surfaces(this_head, True,
                                             FIFF.FIFFV_BEM_SURF_ID_HEAD,
                                             verbose=False)
                except ValueError:
                    pass
                else:
                    break
        if surf is not None:
            break

    if surf is None:
        if raise_error:
            raise IOError('No file matching "%s*%s" and containing a head '
                          'surface found.' % (subject, this_source))
        else:
            return surf
    logger.info('Using surface from %s.' % this_head)
    return surf


@verbose
def get_meg_helmet_surf(info, trans=None, verbose=None):
    """Load the MEG helmet associated with the MEG sensors.

    Parameters
    ----------
    info : instance of Info
        Measurement info.
    trans : dict
        The head<->MRI transformation, usually obtained using
        read_trans(). Can be None, in which case the surface will
        be in head coordinates instead of MRI coordinates.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    surf : dict
        The MEG helmet as a surface.

    Notes
    -----
    A built-in helmet is loaded if possible. If not, a helmet surface
    will be approximated based on the sensor locations.
    """
    from scipy.spatial import ConvexHull, Delaunay
    from .bem import read_bem_surfaces
    system, have_helmet = _get_meg_system(info)
    if have_helmet:
        logger.info('Getting helmet for system %s' % system)
        fname = op.join(op.split(__file__)[0], 'data', 'helmets',
                        system + '.fif.gz')
        surf = read_bem_surfaces(fname, False, FIFF.FIFFV_MNE_SURF_MEG_HELMET,
                                 verbose=False)
    else:
        rr = np.array([info['chs'][pick]['loc'][:3]
                       for pick in pick_types(info, meg=True, ref_meg=False,
                                              exclude=())])
        logger.info('Getting helmet for system %s (derived from %d MEG '
                    'channel locations)' % (system, len(rr)))
        rr = rr[np.unique(ConvexHull(rr).simplices)]
        com = rr.mean(axis=0)
        xy = _pol_to_cart(_cart_to_sph(rr - com)[:, 1:][:, ::-1])
        tris = _reorder_ccw(rr, Delaunay(xy).simplices)

        surf = dict(rr=rr, tris=tris)
        complete_surface_info(surf, copy=False, verbose=False)

    # Ignore what the file says, it's in device coords and we want MRI coords
    surf['coord_frame'] = FIFF.FIFFV_COORD_DEVICE
    transform_surface_to(surf, 'head', info['dev_head_t'])
    if trans is not None:
        transform_surface_to(surf, 'mri', trans)
    return surf


def _reorder_ccw(rrs, tris):
    """Reorder tris of a convex hull to be wound counter-clockwise."""
    # This ensures that rendering with front-/back-face culling works properly
    com = np.mean(rrs, axis=0)
    rr_tris = rrs[tris]
    dirs = np.sign((np.cross(rr_tris[:, 1] - rr_tris[:, 0],
                             rr_tris[:, 2] - rr_tris[:, 0]) *
                    (rr_tris[:, 0] - com)).sum(-1)).astype(int)
    return np.array([t[::d] for d, t in zip(dirs, tris)])


###############################################################################
# EFFICIENCY UTILITIES

def fast_cross_3d(x, y):
    """Compute cross product between list of 3D vectors.

    Much faster than np.cross() when the number of cross products
    becomes large (>500). This is because np.cross() methods become
    less memory efficient at this stage.

    Parameters
    ----------
    x : array
        Input array 1, shape (..., 3).
    y : array
        Input array 2, shape (..., 3).

    Returns
    -------
    z : array, shape (..., 3)
        Cross product of x and y along the last dimension.

    Notes
    -----
    x and y must broadcast against each other.
    """
    assert x.ndim >= 1
    assert y.ndim >= 1
    assert x.shape[-1] == 3
    assert y.shape[-1] == 3
    if max(x.size, y.size) >= 1500:
        a = x[..., 1] * y[..., 2] - x[..., 2] * y[..., 1]
        b = x[..., 2] * y[..., 0] - x[..., 0] * y[..., 2]
        c = x[..., 0] * y[..., 1] - x[..., 1] * y[..., 0]
        # Once we bump to NumPy 1.10, np.stack simplifies this
        return np.concatenate([
            a[..., np.newaxis], b[..., np.newaxis], c[..., np.newaxis]], -1)
    else:
        return np.cross(x, y)


def _fast_cross_nd_sum(a, b, c):
    """Fast cross and sum."""
    return ((a[..., 1] * b[..., 2] - a[..., 2] * b[..., 1]) * c[..., 0] +
            (a[..., 2] * b[..., 0] - a[..., 0] * b[..., 2]) * c[..., 1] +
            (a[..., 0] * b[..., 1] - a[..., 1] * b[..., 0]) * c[..., 2])


def _accumulate_normals(tris, tri_nn, npts):
    """Efficiently accumulate triangle normals."""
    # this code replaces the following, but is faster (vectorized):
    #
    # this['nn'] = np.zeros((this['np'], 3))
    # for p in xrange(this['ntri']):
    #     verts = this['tris'][p]
    #     this['nn'][verts, :] += this['tri_nn'][p, :]
    #
    nn = np.zeros((npts, 3))
    for verts in tris.T:  # note this only loops 3x (number of verts per tri)
        for idx in range(3):  # x, y, z
            nn[:, idx] += np.bincount(verts, weights=tri_nn[:, idx],
                                      minlength=npts)
    return nn


def _triangle_neighbors(tris, npts):
    """Efficiently compute vertex neighboring triangles."""
    # this code replaces the following, but is faster (vectorized):
    # neighbor_tri = [list() for _ in range(npts)]
    # for ti, tri in enumerate(tris):
    #     for t in tri:
    #         neighbor_tri[t].append(ti)
    rows = tris.ravel()
    cols = np.repeat(np.arange(len(tris)), 3)
    data = np.ones(len(cols))
    csr = coo_matrix((data, (rows, cols)), shape=(npts, len(tris))).tocsr()
    neighbor_tri = [csr.indices[start:stop]
                    for start, stop in zip(csr.indptr[:-1], csr.indptr[1:])]
    assert len(neighbor_tri) == npts
    return neighbor_tri


def _triangle_coords(r, geom, best):
    """Get coordinates of a vertex projected to a triangle."""
    r1 = geom['r1'][best]
    tri_nn = geom['nn'][best]
    r12 = geom['r12'][best]
    r13 = geom['r13'][best]
    a = geom['a'][best]
    b = geom['b'][best]
    c = geom['c'][best]
    rr = r - r1
    z = np.sum(rr * tri_nn)
    v1 = np.sum(rr * r12)
    v2 = np.sum(rr * r13)
    det = a * b - c * c
    x = (b * v1 - c * v2) / det
    y = (a * v2 - c * v1) / det
    return x, y, z


def _project_onto_surface(rrs, surf, project_rrs=False, return_nn=False,
                          method='accurate'):
    """Project points onto (scalp) surface."""
    surf_geom = _get_tri_supp_geom(surf)
    coords = np.empty((len(rrs), 3))
    tri_idx = np.empty((len(rrs),), int)
    if method == 'accurate':
        for ri, rr in enumerate(rrs):
            # Get index of closest tri on scalp BEM to electrode position
            tri_idx[ri] = _find_nearest_tri_pt(rr, surf_geom)[2]
            # Calculate a linear interpolation between the vertex values to
            # get coords of pt projected onto closest triangle
            coords[ri] = _triangle_coords(rr, surf_geom, tri_idx[ri])
        weights = np.array([1. - coords[:, 0] - coords[:, 1], coords[:, 0],
                            coords[:, 1]])
        out = (weights, tri_idx)
        if project_rrs:  #
            out += (einsum('ij,jik->jk', weights,
                           surf['rr'][surf['tris'][tri_idx]]),)
        if return_nn:
            out += (surf_geom['nn'][tri_idx],)
    else:  # nearest neighbor
        assert project_rrs
        idx = _compute_nearest(surf['rr'], rrs)
        out = (None, None, surf['rr'][idx])
        if return_nn:
            nn = _accumulate_normals(surf['tris'], surf_geom['nn'],
                                     len(surf['rr']))
            out += (nn[idx],)
    return out


@verbose
def complete_surface_info(surf, do_neighbor_vert=False, copy=True,
                          verbose=None):
    """Complete surface information.

    Parameters
    ----------
    surf : dict
        The surface.
    do_neighbor_vert : bool
        If True, add neighbor vertex information.
    copy : bool
        If True (default), make a copy. If False, operate in-place.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    surf : dict
        The transformed surface.
    """
    if copy:
        surf = deepcopy(surf)
    # based on mne_source_space_add_geometry_info() in mne_add_geometry_info.c

    #   Main triangulation [mne_add_triangle_data()]
    surf['ntri'] = surf.get('ntri', len(surf['tris']))
    surf['np'] = surf.get('np', len(surf['rr']))
    surf['tri_area'] = np.zeros(surf['ntri'])
    r1 = surf['rr'][surf['tris'][:, 0], :]
    r2 = surf['rr'][surf['tris'][:, 1], :]
    r3 = surf['rr'][surf['tris'][:, 2], :]
    surf['tri_cent'] = (r1 + r2 + r3) / 3.0
    surf['tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))

    #   Triangle normals and areas
    surf['tri_area'] = _normalize_vectors(surf['tri_nn']) / 2.0
    zidx = np.where(surf['tri_area'] == 0)[0]
    if len(zidx) > 0:
        logger.info('    Warning: zero size triangles: %s' % zidx)

    #    Find neighboring triangles, accumulate vertex normals, normalize
    logger.info('    Triangle neighbors and vertex normals...')
    surf['neighbor_tri'] = _triangle_neighbors(surf['tris'], surf['np'])
    surf['nn'] = _accumulate_normals(surf['tris'], surf['tri_nn'], surf['np'])
    _normalize_vectors(surf['nn'])

    #   Check for topological defects
    idx = np.where([len(n) == 0 for n in surf['neighbor_tri']])[0]
    if len(idx) > 0:
        logger.info('    Vertices [%s] do not have any neighboring'
                    'triangles!' % ','.join([str(ii) for ii in idx]))
    idx = np.where([len(n) < 3 for n in surf['neighbor_tri']])[0]
    if len(idx) > 0:
        logger.info('    Vertices [%s] have fewer than three neighboring '
                    'tris, omitted' % ','.join([str(ii) for ii in idx]))
        for k in idx:
            surf['neighbor_tri'][k] = np.array([], int)

    #   Determine the neighboring vertices and fix errors
    if do_neighbor_vert is True:
        logger.info('    Vertex neighbors...')
        surf['neighbor_vert'] = [_get_surf_neighbors(surf, k)
                                 for k in range(surf['np'])]

    return surf


def _get_surf_neighbors(surf, k):
    """Calculate the surface neighbors based on triangulation."""
    verts = surf['tris'][surf['neighbor_tri'][k]]
    verts = np.setdiff1d(verts, [k], assume_unique=False)
    assert np.all(verts < surf['np'])
    nneighbors = len(verts)
    nneigh_max = len(surf['neighbor_tri'][k])
    if nneighbors > nneigh_max:
        raise RuntimeError('Too many neighbors for vertex %d' % k)
    elif nneighbors != nneigh_max:
        logger.info('    Incorrect number of distinct neighbors for vertex'
                    ' %d (%d instead of %d) [fixed].' % (k, nneighbors,
                                                         nneigh_max))
    return verts


def _normalize_vectors(rr):
    """Normalize surface vertices."""
    size = np.linalg.norm(rr, axis=1)
    mask = (size > 0)
    rr[mask] /= size[mask, np.newaxis]  # operate in-place
    return size


class _CDist(object):
    """Wrapper for cdist that uses a Tree-like pattern."""

    def __init__(self, xhs):
        self._xhs = xhs

    def query(self, rr):
        from scipy.spatial.distance import cdist
        nearest = list()
        dists = list()
        for r in rr:
            d = cdist(r[np.newaxis, :], self._xhs)
            idx = np.argmin(d)
            nearest.append(idx)
            dists.append(d[0, idx])
        return np.array(dists), np.array(nearest)


def _compute_nearest(xhs, rr, method='BallTree', return_dists=False):
    """Find nearest neighbors.

    Parameters
    ----------
    xhs : array, shape=(n_samples, n_dim)
        Points of data set.
    rr : array, shape=(n_query, n_dim)
        Points to find nearest neighbors for.
    method : str
        The query method. If scikit-learn and scipy<1.0 are installed,
        it will fall back to the slow brute-force search.
    return_dists : bool
        If True, return associated distances.

    Returns
    -------
    nearest : array, shape=(n_query,)
        Index of nearest neighbor in xhs for every point in rr.
    distances : array, shape=(n_query,)
        The distances. Only returned if return_dists is True.
    """
    if xhs.size == 0 or rr.size == 0:
        if return_dists:
            return np.array([], int), np.array([])
        return np.array([], int)
    tree = _DistanceQuery(xhs, method=method)
    out = tree.query(rr)
    return out[::-1] if return_dists else out[1]


def _safe_query(rr, func, reduce=False, **kwargs):
    if len(rr) == 0:
        return np.array([]), np.array([], int)
    out = func(rr)
    out = [out[0][:, 0], out[1][:, 0]] if reduce else out
    return out


class _DistanceQuery(object):
    """Wrapper for fast distance queries."""

    def __init__(self, xhs, method='BallTree', allow_kdtree=False):
        assert method in ('BallTree', 'cKDTree', 'cdist')

        # Fastest for our problems: balltree
        if method == 'BallTree':
            try:
                from sklearn.neighbors import BallTree
            except ImportError:
                logger.info('Nearest-neighbor searches will be significantly '
                            'faster if scikit-learn is installed.')
                method = 'cKDTree'
            else:
                self.query = partial(_safe_query, func=BallTree(xhs).query,
                                     reduce=True, return_distance=True)

        # Then cKDTree
        if method == 'cKDTree':
            try:
                from scipy.spatial import cKDTree
            except ImportError:
                method = 'cdist'
            else:
                self.query = cKDTree(xhs).query

        # KDTree is really only faster for huge (~100k) sets,
        # (e.g., with leafsize=2048), and it's slower for small (~5k)
        # sets. We can add it later if we think it will help.

        # Then the worst: cdist
        if method == 'cdist':
            self.query = _CDist(xhs).query


###############################################################################
# Handle freesurfer

def _fread3(fobj):
    """Read 3 bytes and adjust."""
    b1, b2, b3 = np.fromfile(fobj, ">u1", 3)
    return (b1 << 16) + (b2 << 8) + b3


def _fread3_many(fobj, n):
    """Read 3-byte ints from an open binary file object."""
    b1, b2, b3 = np.fromfile(fobj, ">u1",
                             3 * n).reshape(-1, 3).astype(np.int).T
    return (b1 << 16) + (b2 << 8) + b3


def read_curvature(filepath):
    """Load in curavature values from the ?h.curv file."""
    with open(filepath, "rb") as fobj:
        magic = _fread3(fobj)
        if magic == 16777215:
            vnum = np.fromfile(fobj, ">i4", 3)[0]
            curv = np.fromfile(fobj, ">f4", vnum)
        else:
            vnum = magic
            _fread3(fobj)
            curv = np.fromfile(fobj, ">i2", vnum) / 100
        bin_curv = 1 - np.array(curv != 0, np.int)
    return bin_curv


@verbose
def read_surface(fname, read_metadata=False, return_dict=False, verbose=None):
    """Load a Freesurfer surface mesh in triangular format.

    Parameters
    ----------
    fname : str
        The name of the file containing the surface.
    read_metadata : bool
        Read metadata as key-value pairs.
        Valid keys:

            * 'head' : array of int
            * 'valid' : str
            * 'filename' : str
            * 'volume' : array of int, shape (3,)
            * 'voxelsize' : array of float, shape (3,)
            * 'xras' : array of float, shape (3,)
            * 'yras' : array of float, shape (3,)
            * 'zras' : array of float, shape (3,)
            * 'cras' : array of float, shape (3,)

        .. versionadded:: 0.13.0

    return_dict : bool
        If True, a dictionary with surface parameters is returned.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    rr : array, shape=(n_vertices, 3)
        Coordinate points.
    tris : int array, shape=(n_faces, 3)
        Triangulation (each line contains indices for three points which
        together form a face).
    volume_info : dict-like
        If read_metadata is true, key-value pairs found in the geometry file.
    surf : dict
        The surface parameters. Only returned if ``return_dict`` is True.

    See Also
    --------
    write_surface
    read_tri
    """
    ret = _get_read_geometry()(fname, read_metadata=read_metadata)
    if return_dict:
        ret += (dict(rr=ret[0], tris=ret[1], ntri=len(ret[1]), use_tris=ret[1],
                     np=len(ret[0])),)
    return ret


##############################################################################
# SURFACE CREATION

def _get_ico_surface(grade, patch_stats=False):
    """Return an icosahedral surface of the desired grade."""
    # always use verbose=False since users don't need to know we're pulling
    # these from a file
    from .bem import read_bem_surfaces
    ico_file_name = op.join(op.dirname(__file__), 'data',
                            'icos.fif.gz')
    ico = read_bem_surfaces(ico_file_name, patch_stats, s_id=9000 + grade,
                            verbose=False)
    return ico


def _tessellate_sphere_surf(level, rad=1.0):
    """Return a surface structure instead of the details."""
    rr, tris = _tessellate_sphere(level)
    npt = len(rr)  # called "npt" instead of "np" because of numpy...
    ntri = len(tris)
    nn = rr.copy()
    rr *= rad
    s = dict(rr=rr, np=npt, tris=tris, use_tris=tris, ntri=ntri, nuse=npt,
             nn=nn, inuse=np.ones(npt, int))
    return s


def _norm_midpt(ai, bi, rr):
    """Get normalized midpoint."""
    c = rr[ai]
    c += rr[bi]
    _normalize_vectors(c)
    return c


def _tessellate_sphere(mylevel):
    """Create a tessellation of a unit sphere."""
    # Vertices of a unit octahedron
    rr = np.array([[1, 0, 0], [-1, 0, 0],  # xplus, xminus
                   [0, 1, 0], [0, -1, 0],  # yplus, yminus
                   [0, 0, 1], [0, 0, -1]], float)  # zplus, zminus
    tris = np.array([[0, 4, 2], [2, 4, 1], [1, 4, 3], [3, 4, 0],
                     [0, 2, 5], [2, 1, 5], [1, 3, 5], [3, 0, 5]], int)

    # A unit octahedron
    if mylevel < 1:
        raise ValueError('# of levels must be >= 1')

    # Reverse order of points in each triangle
    # for counter-clockwise ordering
    tris = tris[:, [2, 1, 0]]

    # Subdivide each starting triangle (mylevel - 1) times
    for _ in range(1, mylevel):
        r"""
        Subdivide each triangle in the old approximation and normalize
        the new points thus generated to lie on the surface of the unit
        sphere.

        Each input triangle with vertices labelled [0,1,2] as shown
        below will be turned into four new triangles:

                             Make new points
                             a = (0+2)/2
                             b = (0+1)/2
                             c = (1+2)/2
                 1
                /\           Normalize a, b, c
               /  \
             b/____\c        Construct new triangles
             /\    /\        [0,b,a]
            /  \  /  \       [b,1,c]
           /____\/____\      [a,b,c]
          0     a      2     [a,c,2]

        """
        # use new method: first make new points (rr)
        a = _norm_midpt(tris[:, 0], tris[:, 2], rr)
        b = _norm_midpt(tris[:, 0], tris[:, 1], rr)
        c = _norm_midpt(tris[:, 1], tris[:, 2], rr)
        lims = np.cumsum([len(rr), len(a), len(b), len(c)])
        aidx = np.arange(lims[0], lims[1])
        bidx = np.arange(lims[1], lims[2])
        cidx = np.arange(lims[2], lims[3])
        rr = np.concatenate((rr, a, b, c))

        # now that we have our points, make new triangle definitions
        tris = np.array((np.c_[tris[:, 0], bidx, aidx],
                         np.c_[bidx, tris[:, 1], cidx],
                         np.c_[aidx, bidx, cidx],
                         np.c_[aidx, cidx, tris[:, 2]]), int).swapaxes(0, 1)
        tris = np.reshape(tris, (np.prod(tris.shape[:2]), 3))

    # Copy the resulting approximation into standard table
    rr_orig = rr
    rr = np.empty_like(rr)
    nnode = 0
    for k, tri in enumerate(tris):
        for j in range(3):
            coord = rr_orig[tri[j]]
            # this is faster than cdist (no need for sqrt)
            similarity = np.dot(rr[:nnode], coord)
            idx = np.where(similarity > 0.99999)[0]
            if len(idx) > 0:
                tris[k, j] = idx[0]
            else:
                rr[nnode] = coord
                tris[k, j] = nnode
                nnode += 1
    rr = rr[:nnode].copy()
    return rr, tris


def _create_surf_spacing(surf, hemi, subject, stype, ico_surf, subjects_dir):
    """Load a surf and use the subdivided icosahedron to get points."""
    # Based on load_source_space_surf_spacing() in load_source_space.c
    surf = read_surface(surf, return_dict=True)[-1]
    complete_surface_info(surf, copy=False)
    if stype == 'all':
        surf['inuse'] = np.ones(surf['np'], int)
        surf['use_tris'] = None
    else:  # ico or oct
        # ## from mne_ico_downsample.c ## #
        surf_name = op.join(subjects_dir, subject, 'surf', hemi + '.sphere')
        logger.info('Loading geometry from %s...' % surf_name)
        from_surf = read_surface(surf_name, return_dict=True)[-1]
        _normalize_vectors(from_surf['rr'])
        if from_surf['np'] != surf['np']:
            raise RuntimeError('Mismatch between number of surface vertices, '
                               'possible parcellation error?')
        _normalize_vectors(ico_surf['rr'])

        # Make the maps
        mmap = _compute_nearest(from_surf['rr'], ico_surf['rr'])
        nmap = len(mmap)
        surf['inuse'] = np.zeros(surf['np'], int)
        for k in range(nmap):
            if surf['inuse'][mmap[k]]:
                # Try the nearest neighbors
                neigh = _get_surf_neighbors(surf, mmap[k])
                was = mmap[k]
                inds = np.where(np.logical_not(surf['inuse'][neigh]))[0]
                if len(inds) == 0:
                    raise RuntimeError('Could not find neighbor for vertex '
                                       '%d / %d' % (k, nmap))
                else:
                    mmap[k] = neigh[inds[-1]]
                logger.info('    Source space vertex moved from %d to %d '
                            'because of double occupation', was, mmap[k])
            elif mmap[k] < 0 or mmap[k] > surf['np']:
                raise RuntimeError('Map number out of range (%d), this is '
                                   'probably due to inconsistent surfaces. '
                                   'Parts of the FreeSurfer reconstruction '
                                   'need to be redone.' % mmap[k])
            surf['inuse'][mmap[k]] = True

        logger.info('Setting up the triangulation for the decimated '
                    'surface...')
        surf['use_tris'] = np.array([mmap[ist] for ist in ico_surf['tris']],
                                    np.int32)
    if surf['use_tris'] is not None:
        surf['nuse_tri'] = len(surf['use_tris'])
    else:
        surf['nuse_tri'] = 0
    surf['nuse'] = np.sum(surf['inuse'])
    surf['vertno'] = np.where(surf['inuse'])[0]

    # set some final params
    inds = np.arange(surf['np'])
    sizes = _normalize_vectors(surf['nn'])
    surf['inuse'][sizes <= 0] = False
    surf['nuse'] = np.sum(surf['inuse'])
    surf['subject_his_id'] = subject
    return surf


def write_surface(fname, coords, faces, create_stamp='', volume_info=None):
    """Write a triangular Freesurfer surface mesh.

    Accepts the same data format as is returned by read_surface().

    Parameters
    ----------
    fname : str
        File to write.
    coords : array, shape=(n_vertices, 3)
        Coordinate points.
    faces : int array, shape=(n_faces, 3)
        Triangulation (each line contains indices for three points which
        together form a face).
    create_stamp : str
        Comment that is written to the beginning of the file. Can not contain
        line breaks.
    volume_info : dict-like or None
        Key-value pairs to encode at the end of the file.
        Valid keys:

            * 'head' : array of int
            * 'valid' : str
            * 'filename' : str
            * 'volume' : array of int, shape (3,)
            * 'voxelsize' : array of float, shape (3,)
            * 'xras' : array of float, shape (3,)
            * 'yras' : array of float, shape (3,)
            * 'zras' : array of float, shape (3,)
            * 'cras' : array of float, shape (3,)

        .. versionadded:: 0.13.0

    See Also
    --------
    read_surface
    read_tri
    """
    try:
        import nibabel as nib
        has_nibabel = True
    except ImportError:
        has_nibabel = False
    if has_nibabel and LooseVersion(nib.__version__) > LooseVersion('2.1.0'):
        nib.freesurfer.io.write_geometry(fname, coords, faces,
                                         create_stamp=create_stamp,
                                         volume_info=volume_info)
        return
    if len(create_stamp.splitlines()) > 1:
        raise ValueError("create_stamp can only contain one line")

    with open(fname, 'wb') as fid:
        fid.write(pack('>3B', 255, 255, 254))
        strs = ['%s\n' % create_stamp, '\n']
        strs = [s.encode('utf-8') for s in strs]
        fid.writelines(strs)
        vnum = len(coords)
        fnum = len(faces)
        fid.write(pack('>2i', vnum, fnum))
        fid.write(np.array(coords, dtype='>f4').tostring())
        fid.write(np.array(faces, dtype='>i4').tostring())

        # Add volume info, if given
        if volume_info is not None and len(volume_info) > 0:
            fid.write(_serialize_volume_info(volume_info))


###############################################################################
# Decimation

def _decimate_surface(points, triangles, reduction):
    """Aux function."""
    if 'DISPLAY' not in os.environ and sys.platform != 'win32':
        os.environ['ETS_TOOLKIT'] = 'null'
    try:
        from tvtk.api import tvtk
        from tvtk.common import configure_input
    except ImportError:
        raise ValueError('This function requires the TVTK package to be '
                         'installed')
    if triangles.max() > len(points) - 1:
        raise ValueError('The triangles refer to undefined points. '
                         'Please check your mesh.')
    src = tvtk.PolyData(points=points, polys=triangles)
    decimate = tvtk.QuadricDecimation(target_reduction=reduction)
    configure_input(decimate, src)
    decimate.update()
    out = decimate.output
    tris = out.polys.to_array()
    # n-tuples + interleaved n-next -- reshape trick
    return out.points.to_array(), tris.reshape(tris.size // 4, 4)[:, 1:]


def decimate_surface(points, triangles, n_triangles):
    """Decimate surface data.

    .. note:: Requires TVTK to be installed for this to function.

    .. note:: If an if an odd target number was requested,
              the ``'decimation'`` algorithm used results in the
              next even number of triangles. For example a reduction request
              to 30001 triangles may result in 30000 triangles.

    Parameters
    ----------
    points : ndarray
        The surface to be decimated, a 3 x number of points array.
    triangles : ndarray
        The surface to be decimated, a 3 x number of triangles array.
    n_triangles : int
        The desired number of triangles.

    Returns
    -------
    points : ndarray
        The decimated points.
    triangles : ndarray
        The decimated triangles.
    """
    reduction = 1 - (float(n_triangles) / len(triangles))
    return _decimate_surface(points, triangles, reduction)


###############################################################################
# Morph maps

# XXX this morphing related code should probably be moved to morph.py

@verbose
def read_morph_map(subject_from, subject_to, subjects_dir=None, xhemi=False,
                   verbose=None):
    """Read morph map.

    Morph maps can be generated with mne_make_morph_maps. If one isn't
    available, it will be generated automatically and saved to the
    ``subjects_dir/morph_maps`` directory.

    Parameters
    ----------
    subject_from : string
        Name of the original subject as named in the SUBJECTS_DIR.
    subject_to : string
        Name of the subject on which to morph as named in the SUBJECTS_DIR.
    subjects_dir : string
        Path to SUBJECTS_DIR is not set in the environment.
    xhemi : bool
        Morph across hemisphere. Currently only implemented for
        ``subject_to == subject_from``. See notes of
        :func:`mne.compute_source_morph`.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    left_map, right_map : sparse matrix
        The morph maps for the 2 hemispheres.
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)

    # First check for morph-map dir existence
    mmap_dir = op.join(subjects_dir, 'morph-maps')
    if not op.isdir(mmap_dir):
        try:
            os.mkdir(mmap_dir)
        except Exception:
            warn('Could not find or make morph map directory "%s"' % mmap_dir)

    # filename components
    if xhemi:
        if subject_to != subject_from:
            raise NotImplementedError(
                "Morph-maps between hemispheres are currently only "
                "implemented for subject_to == subject_from")
        map_name_temp = '%s-%s-xhemi'
        log_msg = 'Creating morph map %s -> %s xhemi'
    else:
        map_name_temp = '%s-%s'
        log_msg = 'Creating morph map %s -> %s'

    map_names = [map_name_temp % (subject_from, subject_to),
                 map_name_temp % (subject_to, subject_from)]

    # find existing file
    for map_name in map_names:
        fname = op.join(mmap_dir, '%s-morph.fif' % map_name)
        if op.exists(fname):
            return _read_morph_map(fname, subject_from, subject_to)
    # if file does not exist, make it
    warn('Morph map "%s" does not exist, creating it and saving it to '
         'disk (this may take a few minutes)' % fname)
    logger.info(log_msg % (subject_from, subject_to))
    mmap_1 = _make_morph_map(subject_from, subject_to, subjects_dir, xhemi)
    if subject_to == subject_from:
        mmap_2 = None
    else:
        logger.info(log_msg % (subject_to, subject_from))
        mmap_2 = _make_morph_map(subject_to, subject_from, subjects_dir,
                                 xhemi)
    _write_morph_map(fname, subject_from, subject_to, mmap_1, mmap_2)
    return mmap_1


def _read_morph_map(fname, subject_from, subject_to):
    """Read a morph map from disk."""
    f, tree, _ = fiff_open(fname)
    with f as fid:
        # Locate all maps
        maps = dir_tree_find(tree, FIFF.FIFFB_MNE_MORPH_MAP)
        if len(maps) == 0:
            raise ValueError('Morphing map data not found')

        # Find the correct ones
        left_map = None
        right_map = None
        for m in maps:
            tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP_FROM)
            if tag.data == subject_from:
                tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP_TO)
                if tag.data == subject_to:
                    #  Names match: which hemishere is this?
                    tag = find_tag(fid, m, FIFF.FIFF_MNE_HEMI)
                    if tag.data == FIFF.FIFFV_MNE_SURF_LEFT_HEMI:
                        tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP)
                        left_map = tag.data
                        logger.info('    Left-hemisphere map read.')
                    elif tag.data == FIFF.FIFFV_MNE_SURF_RIGHT_HEMI:
                        tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP)
                        right_map = tag.data
                        logger.info('    Right-hemisphere map read.')

    if left_map is None or right_map is None:
        raise ValueError('Could not find both hemispheres in %s' % fname)

    return left_map, right_map


def _write_morph_map(fname, subject_from, subject_to, mmap_1, mmap_2):
    """Write a morph map to disk."""
    try:
        fid = start_file(fname)
    except Exception as exp:
        warn('Could not write morph-map file "%s" (error: %s)'
             % (fname, exp))
        return

    assert len(mmap_1) == 2
    hemis = [FIFF.FIFFV_MNE_SURF_LEFT_HEMI, FIFF.FIFFV_MNE_SURF_RIGHT_HEMI]
    for m, hemi in zip(mmap_1, hemis):
        start_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
        write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_FROM, subject_from)
        write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_TO, subject_to)
        write_int(fid, FIFF.FIFF_MNE_HEMI, hemi)
        write_float_sparse_rcs(fid, FIFF.FIFF_MNE_MORPH_MAP, m)
        end_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
    # don't write mmap_2 if it is identical (subject_to == subject_from)
    if mmap_2 is not None:
        assert len(mmap_2) == 2
        for m, hemi in zip(mmap_2, hemis):
            start_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
            write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_FROM, subject_to)
            write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_TO, subject_from)
            write_int(fid, FIFF.FIFF_MNE_HEMI, hemi)
            write_float_sparse_rcs(fid, FIFF.FIFF_MNE_MORPH_MAP, m)
            end_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
    end_file(fid)


def _get_tri_dist(p, q, p0, q0, a, b, c, dist):
    """Get the distance to a triangle edge."""
    p1 = p - p0
    q1 = q - q0
    out = p1 * p1 * a
    out += q1 * q1 * b
    out += p1 * q1 * c
    out += dist * dist
    return np.sqrt(out, out=out)


def _get_tri_supp_geom(surf):
    """Create supplementary geometry information using tris and rrs."""
    r1 = surf['rr'][surf['tris'][:, 0], :]
    r12 = surf['rr'][surf['tris'][:, 1], :] - r1
    r13 = surf['rr'][surf['tris'][:, 2], :] - r1
    r1213 = np.array([r12, r13]).swapaxes(0, 1)
    a = einsum('ij,ij->i', r12, r12)
    b = einsum('ij,ij->i', r13, r13)
    c = einsum('ij,ij->i', r12, r13)
    mat = np.rollaxis(np.array([[b, -c], [-c, a]]), 2)
    norm = (a * b - c * c)
    norm[norm == 0] = 1.  # avoid divide by zero
    mat /= norm[:, np.newaxis, np.newaxis]
    nn = fast_cross_3d(r12, r13)
    _normalize_vectors(nn)
    return dict(r1=r1, r12=r12, r13=r13, r1213=r1213,
                a=a, b=b, c=c, mat=mat, nn=nn)


def _make_morph_map(subject_from, subject_to, subjects_dir, xhemi):
    """Construct morph map from one subject to another.

    Note that this is close, but not exactly like the C version.
    For example, parts are more accurate due to double precision,
    so expect some small morph-map differences!

    Note: This seems easily parallelizable, but the overhead
    of pickling all the data structures makes it less efficient
    than just running on a single core :(
    """
    subjects_dir = get_subjects_dir(subjects_dir)
    if xhemi:
        reg = '%s.sphere.left_right'
        hemis = (('lh', 'rh'), ('rh', 'lh'))
    else:
        reg = '%s.sphere.reg'
        hemis = (('lh', 'lh'), ('rh', 'rh'))

    return [_make_morph_map_hemi(subject_from, subject_to, subjects_dir,
                                 reg % hemi_from, reg % hemi_to)
            for hemi_from, hemi_to in hemis]


def _make_morph_map_hemi(subject_from, subject_to, subjects_dir, reg_from,
                         reg_to):
    """Construct morph map for one hemisphere."""
    # add speedy short-circuit for self-maps
    if subject_from == subject_to and reg_from == reg_to:
        fname = op.join(subjects_dir, subject_from, 'surf', reg_from)
        n_pts = len(read_surface(fname, verbose=False)[0])
        return speye(n_pts, n_pts, format='csr')

    # load surfaces and normalize points to be on unit sphere
    fname = op.join(subjects_dir, subject_from, 'surf', reg_from)
    from_rr, from_tri = read_surface(fname, verbose=False)
    fname = op.join(subjects_dir, subject_to, 'surf', reg_to)
    to_rr = read_surface(fname, verbose=False)[0]
    _normalize_vectors(from_rr)
    _normalize_vectors(to_rr)

    # from surface: get nearest neighbors, find triangles for each vertex
    nn_pts_idx = _compute_nearest(from_rr, to_rr)
    from_pt_tris = _triangle_neighbors(from_tri, len(from_rr))
    from_pt_tris = [from_pt_tris[pt_idx] for pt_idx in nn_pts_idx]

    # find triangle in which point lies and assoc. weights
    tri_inds = []
    weights = []
    tri_geom = _get_tri_supp_geom(dict(rr=from_rr, tris=from_tri))
    for pt_tris, to_pt in zip(from_pt_tris, to_rr):
        p, q, idx, dist = _find_nearest_tri_pt(to_pt, tri_geom, pt_tris,
                                               run_all=False)
        tri_inds.append(idx)
        weights.append([1. - (p + q), p, q])

    nn_idx = from_tri[tri_inds]
    weights = np.array(weights)

    row_ind = np.repeat(np.arange(len(to_rr)), 3)
    this_map = csr_matrix((weights.ravel(), (row_ind, nn_idx.ravel())),
                          shape=(len(to_rr), len(from_rr)))
    return this_map


def _find_nearest_tri_pt(rr, tri_geom, pt_tris=None, run_all=True):
    """Find nearest point mapping to a set of triangles.

    If run_all is False, if the point lies within a triangle, it stops.
    If run_all is True, edges of other triangles are checked in case
    those (somehow) are closer.
    """
    # The following dense code is equivalent to the following:
    #   rr = r1[pt_tris] - to_pts[ii]
    #   v1s = np.sum(rr * r12[pt_tris], axis=1)
    #   v2s = np.sum(rr * r13[pt_tris], axis=1)
    #   aas = a[pt_tris]
    #   bbs = b[pt_tris]
    #   ccs = c[pt_tris]
    #   dets = aas * bbs - ccs * ccs
    #   pp = (bbs * v1s - ccs * v2s) / dets
    #   qq = (aas * v2s - ccs * v1s) / dets
    #   pqs = np.array(pp, qq)

    # This einsum is equivalent to doing:
    # pqs = np.array([np.dot(x, y) for x, y in zip(r1213, r1-to_pt)])
    if pt_tris is None:  # use all points
        pt_tris = slice(len(tri_geom['r1']))
    rrs = rr - tri_geom['r1'][pt_tris]
    tri_nn = tri_geom['nn'][pt_tris]
    vect = einsum('ijk,ik->ij', tri_geom['r1213'][pt_tris], rrs)
    mats = tri_geom['mat'][pt_tris]
    # This einsum is equivalent to doing:
    # pqs = np.array([np.dot(m, v) for m, v in zip(mats, vect)]).T
    pqs = einsum('ijk,ik->ji', mats, vect)
    found = False
    dists = np.sum(rrs * tri_nn, axis=1)

    # There can be multiple (sadness), find closest
    idx = np.where(np.all(pqs >= 0., axis=0))[0]
    idx = idx[np.where(np.all(pqs[:, idx] <= 1., axis=0))[0]]
    idx = idx[np.where(np.sum(pqs[:, idx], axis=0) < 1.)[0]]
    dist = np.inf
    if len(idx) > 0:
        found = True
        pt = idx[np.argmin(np.abs(dists[idx]))]
        p, q = pqs[:, pt]
        dist = dists[pt]
        # re-reference back to original numbers
        if not isinstance(pt_tris, slice):
            pt = pt_tris[pt]

    if found is False or run_all is True:
        # don't include ones that we might have found before
        # these are the ones that we want to check thesides of
        s = np.setdiff1d(np.arange(dists.shape[0]), idx)
        # Tough: must investigate the sides
        use_pt_tris = s if isinstance(pt_tris, slice) else pt_tris[s]
        pp, qq, ptt, distt = _nearest_tri_edge(use_pt_tris, rr, pqs[:, s],
                                               dists[s], tri_geom)
        if np.abs(distt) < np.abs(dist):
            p, q, pt, dist = pp, qq, ptt, distt
    return p, q, pt, dist


def _nearest_tri_edge(pt_tris, to_pt, pqs, dist, tri_geom):
    """Get nearest location from a point to the edge of a set of triangles."""
    # We might do something intelligent here. However, for now
    # it is ok to do it in the hard way
    aa = tri_geom['a'][pt_tris]
    bb = tri_geom['b'][pt_tris]
    cc = tri_geom['c'][pt_tris]
    pp = pqs[0]
    qq = pqs[1]
    # Find the nearest point from a triangle:
    #   Side 1 -> 2
    p0 = np.minimum(np.maximum(pp + 0.5 * (qq * cc) / aa,
                               0.0), 1.0)
    q0 = np.zeros_like(p0)
    #   Side 2 -> 3
    t1 = (0.5 * ((2.0 * aa - cc) * (1.0 - pp) +
                 (2.0 * bb - cc) * qq) / (aa + bb - cc))
    t1 = np.minimum(np.maximum(t1, 0.0), 1.0)
    p1 = 1.0 - t1
    q1 = t1
    #   Side 1 -> 3
    q2 = np.minimum(np.maximum(qq + 0.5 * (pp * cc) / bb, 0.0), 1.0)
    p2 = np.zeros_like(q2)

    # figure out which one had the lowest distance
    dist0 = _get_tri_dist(pp, qq, p0, q0, aa, bb, cc, dist)
    dist1 = _get_tri_dist(pp, qq, p1, q1, aa, bb, cc, dist)
    dist2 = _get_tri_dist(pp, qq, p2, q2, aa, bb, cc, dist)
    pp = np.r_[p0, p1, p2]
    qq = np.r_[q0, q1, q2]
    dists = np.r_[dist0, dist1, dist2]
    ii = np.argmin(np.abs(dists))
    p, q, pt, dist = pp[ii], qq[ii], pt_tris[ii % len(pt_tris)], dists[ii]
    return p, q, pt, dist


def mesh_edges(tris):
    """Return sparse matrix with edges as an adjacency matrix.

    Parameters
    ----------
    tris : array of shape [n_triangles x 3]
        The triangles.

    Returns
    -------
    edges : sparse matrix
        The adjacency matrix.
    """
    if np.max(tris) > len(np.unique(tris)):
        raise ValueError('Cannot compute connectivity on a selection of '
                         'triangles.')

    npoints = np.max(tris) + 1
    ones_ntris = np.ones(3 * len(tris))

    a, b, c = tris.T
    x = np.concatenate((a, b, c))
    y = np.concatenate((b, c, a))
    edges = coo_matrix((ones_ntris, (x, y)), shape=(npoints, npoints))
    edges = edges.tocsr()
    edges = edges + edges.T
    return edges


def mesh_dist(tris, vert):
    """Compute adjacency matrix weighted by distances.

    It generates an adjacency matrix where the entries are the distances
    between neighboring vertices.

    Parameters
    ----------
    tris : array (n_tris x 3)
        Mesh triangulation
    vert : array (n_vert x 3)
        Vertex locations

    Returns
    -------
    dist_matrix : scipy.sparse.csr_matrix
        Sparse matrix with distances between adjacent vertices
    """
    edges = mesh_edges(tris).tocoo()

    # Euclidean distances between neighboring vertices
    dist = np.linalg.norm(vert[edges.row, :] - vert[edges.col, :], axis=1)
    dist_matrix = csr_matrix((dist, (edges.row, edges.col)), shape=edges.shape)
    return dist_matrix


@verbose
def read_tri(fname_in, swap=False, verbose=None):
    """Read triangle definitions from an ascii file.

    Parameters
    ----------
    fname_in : str
        Path to surface ASCII file (ending with '.tri').
    swap : bool
        Assume the ASCII file vertex ordering is clockwise instead of
        counterclockwise.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    rr : array, shape=(n_vertices, 3)
        Coordinate points.
    tris : int array, shape=(n_faces, 3)
        Triangulation (each line contains indices for three points which
        together form a face).

    Notes
    -----
    .. versionadded:: 0.13.0

    See Also
    --------
    read_surface
    write_surface
    """
    with open(fname_in, "r") as fid:
        lines = fid.readlines()
    n_nodes = int(lines[0])
    n_tris = int(lines[n_nodes + 1])
    n_items = len(lines[1].split())
    if n_items in [3, 6, 14, 17]:
        inds = range(3)
    elif n_items in [4, 7]:
        inds = range(1, 4)
    else:
        raise IOError('Unrecognized format of data.')
    rr = np.array([np.array([float(v) for v in l.split()])[inds]
                   for l in lines[1:n_nodes + 1]])
    tris = np.array([np.array([int(v) for v in l.split()])[inds]
                     for l in lines[n_nodes + 2:n_nodes + 2 + n_tris]])
    if swap:
        tris[:, [2, 1]] = tris[:, [1, 2]]
    tris -= 1
    logger.info('Loaded surface from %s with %s nodes and %s triangles.' %
                (fname_in, n_nodes, n_tris))
    if n_items in [3, 4]:
        logger.info('Node normals were not included in the source file.')
    else:
        warn('Node normals were not read.')
    return (rr, tris)


def _get_solids(tri_rrs, fros):
    """Compute _sum_solids_div total angle in chunks."""
    # NOTE: This incorporates the division by 4PI that used to be separate
    # for tri_rr in tri_rrs:
    #     v1 = fros - tri_rr[0]
    #     v2 = fros - tri_rr[1]
    #     v3 = fros - tri_rr[2]
    #     triple = np.sum(fast_cross_3d(v1, v2) * v3, axis=1)
    #     l1 = np.sqrt(np.sum(v1 * v1, axis=1))
    #     l2 = np.sqrt(np.sum(v2 * v2, axis=1))
    #     l3 = np.sqrt(np.sum(v3 * v3, axis=1))
    #     s = (l1 * l2 * l3 +
    #          np.sum(v1 * v2, axis=1) * l3 +
    #          np.sum(v1 * v3, axis=1) * l2 +
    #          np.sum(v2 * v3, axis=1) * l1)
    #     tot_angle -= np.arctan2(triple, s)

    # This is the vectorized version, but with a slicing heuristic to
    # prevent memory explosion
    tot_angle = np.zeros((len(fros)))
    slices = np.r_[np.arange(0, len(fros), 100), [len(fros)]]
    for i1, i2 in zip(slices[:-1], slices[1:]):
        # shape (3 verts, n_tri, n_fro, 3 X/Y/Z)
        vs = (fros[np.newaxis, np.newaxis, i1:i2] -
              tri_rrs.transpose([1, 0, 2])[:, :, np.newaxis])
        triples = _fast_cross_nd_sum(vs[0], vs[1], vs[2])
        ls = np.linalg.norm(vs, axis=3)
        ss = np.prod(ls, axis=0)
        ss += einsum('ijk,ijk,ij->ij', vs[0], vs[1], ls[2])
        ss += einsum('ijk,ijk,ij->ij', vs[0], vs[2], ls[1])
        ss += einsum('ijk,ijk,ij->ij', vs[1], vs[2], ls[0])
        tot_angle[i1:i2] = -np.sum(np.arctan2(triples, ss), axis=0)
    return tot_angle


def _complete_sphere_surf(sphere, idx, level, complete=True):
    """Convert sphere conductor model to surface."""
    rad = sphere['layers'][idx]['rad']
    r0 = sphere['r0']
    surf = _tessellate_sphere_surf(level, rad=rad)
    surf['rr'] += r0
    if complete:
        complete_surface_info(surf, copy=False)
    surf['coord_frame'] = sphere['coord_frame']
    return surf