1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Denis A. Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
from copy import deepcopy
from distutils.version import LooseVersion
from glob import glob
from functools import partial
import os
from os import path as op
import sys
from struct import pack
import numpy as np
from scipy.sparse import coo_matrix, csr_matrix, eye as speye
from .io.constants import FIFF
from .io.open import fiff_open
from .io.pick import pick_types
from .io.tree import dir_tree_find
from .io.tag import find_tag
from .io.write import (write_int, start_file, end_block, start_block, end_file,
write_string, write_float_sparse_rcs)
from .channels.channels import _get_meg_system
from .transforms import transform_surface_to, _pol_to_cart, _cart_to_sph
from .utils import logger, verbose, get_subjects_dir, warn
from .externals.six import string_types
from .fixes import _serialize_volume_info, _get_read_geometry, einsum
###############################################################################
# AUTOMATED SURFACE FINDING
@verbose
def get_head_surf(subject, source=('bem', 'head'), subjects_dir=None,
verbose=None):
"""Load the subject head surface.
Parameters
----------
subject : str
Subject name.
source : str | list of str
Type to load. Common choices would be `'bem'` or `'head'`. We first
try loading `'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'`, and
then look for `'$SUBJECT*$SOURCE.fif'` in the same directory by going
through all files matching the pattern. The head surface will be read
from the first file containing a head surface. Can also be a list
to try multiple strings.
subjects_dir : str, or None
Path to the SUBJECTS_DIR. If None, the path is obtained by using
the environment variable SUBJECTS_DIR.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
surf : dict
The head surface.
"""
return _get_head_surface(subject=subject, source=source,
subjects_dir=subjects_dir)
def _get_head_surface(subject, source, subjects_dir, raise_error=True):
"""Load the subject head surface."""
from .bem import read_bem_surfaces
# Load the head surface from the BEM
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if not isinstance(subject, string_types):
raise TypeError('subject must be a string, not %s.' % (type(subject,)))
# use realpath to allow for linked surfaces (c.f. MNE manual 196-197)
if isinstance(source, string_types):
source = [source]
surf = None
for this_source in source:
this_head = op.realpath(op.join(subjects_dir, subject, 'bem',
'%s-%s.fif' % (subject, this_source)))
if op.exists(this_head):
surf = read_bem_surfaces(this_head, True,
FIFF.FIFFV_BEM_SURF_ID_HEAD,
verbose=False)
else:
# let's do a more sophisticated search
path = op.join(subjects_dir, subject, 'bem')
if not op.isdir(path):
raise IOError('Subject bem directory "%s" does not exist.'
% path)
files = sorted(glob(op.join(path, '%s*%s.fif'
% (subject, this_source))))
for this_head in files:
try:
surf = read_bem_surfaces(this_head, True,
FIFF.FIFFV_BEM_SURF_ID_HEAD,
verbose=False)
except ValueError:
pass
else:
break
if surf is not None:
break
if surf is None:
if raise_error:
raise IOError('No file matching "%s*%s" and containing a head '
'surface found.' % (subject, this_source))
else:
return surf
logger.info('Using surface from %s.' % this_head)
return surf
@verbose
def get_meg_helmet_surf(info, trans=None, verbose=None):
"""Load the MEG helmet associated with the MEG sensors.
Parameters
----------
info : instance of Info
Measurement info.
trans : dict
The head<->MRI transformation, usually obtained using
read_trans(). Can be None, in which case the surface will
be in head coordinates instead of MRI coordinates.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
surf : dict
The MEG helmet as a surface.
Notes
-----
A built-in helmet is loaded if possible. If not, a helmet surface
will be approximated based on the sensor locations.
"""
from scipy.spatial import ConvexHull, Delaunay
from .bem import read_bem_surfaces
system, have_helmet = _get_meg_system(info)
if have_helmet:
logger.info('Getting helmet for system %s' % system)
fname = op.join(op.split(__file__)[0], 'data', 'helmets',
system + '.fif.gz')
surf = read_bem_surfaces(fname, False, FIFF.FIFFV_MNE_SURF_MEG_HELMET,
verbose=False)
else:
rr = np.array([info['chs'][pick]['loc'][:3]
for pick in pick_types(info, meg=True, ref_meg=False,
exclude=())])
logger.info('Getting helmet for system %s (derived from %d MEG '
'channel locations)' % (system, len(rr)))
rr = rr[np.unique(ConvexHull(rr).simplices)]
com = rr.mean(axis=0)
xy = _pol_to_cart(_cart_to_sph(rr - com)[:, 1:][:, ::-1])
tris = _reorder_ccw(rr, Delaunay(xy).simplices)
surf = dict(rr=rr, tris=tris)
complete_surface_info(surf, copy=False, verbose=False)
# Ignore what the file says, it's in device coords and we want MRI coords
surf['coord_frame'] = FIFF.FIFFV_COORD_DEVICE
transform_surface_to(surf, 'head', info['dev_head_t'])
if trans is not None:
transform_surface_to(surf, 'mri', trans)
return surf
def _reorder_ccw(rrs, tris):
"""Reorder tris of a convex hull to be wound counter-clockwise."""
# This ensures that rendering with front-/back-face culling works properly
com = np.mean(rrs, axis=0)
rr_tris = rrs[tris]
dirs = np.sign((np.cross(rr_tris[:, 1] - rr_tris[:, 0],
rr_tris[:, 2] - rr_tris[:, 0]) *
(rr_tris[:, 0] - com)).sum(-1)).astype(int)
return np.array([t[::d] for d, t in zip(dirs, tris)])
###############################################################################
# EFFICIENCY UTILITIES
def fast_cross_3d(x, y):
"""Compute cross product between list of 3D vectors.
Much faster than np.cross() when the number of cross products
becomes large (>500). This is because np.cross() methods become
less memory efficient at this stage.
Parameters
----------
x : array
Input array 1, shape (..., 3).
y : array
Input array 2, shape (..., 3).
Returns
-------
z : array, shape (..., 3)
Cross product of x and y along the last dimension.
Notes
-----
x and y must broadcast against each other.
"""
assert x.ndim >= 1
assert y.ndim >= 1
assert x.shape[-1] == 3
assert y.shape[-1] == 3
if max(x.size, y.size) >= 1500:
a = x[..., 1] * y[..., 2] - x[..., 2] * y[..., 1]
b = x[..., 2] * y[..., 0] - x[..., 0] * y[..., 2]
c = x[..., 0] * y[..., 1] - x[..., 1] * y[..., 0]
# Once we bump to NumPy 1.10, np.stack simplifies this
return np.concatenate([
a[..., np.newaxis], b[..., np.newaxis], c[..., np.newaxis]], -1)
else:
return np.cross(x, y)
def _fast_cross_nd_sum(a, b, c):
"""Fast cross and sum."""
return ((a[..., 1] * b[..., 2] - a[..., 2] * b[..., 1]) * c[..., 0] +
(a[..., 2] * b[..., 0] - a[..., 0] * b[..., 2]) * c[..., 1] +
(a[..., 0] * b[..., 1] - a[..., 1] * b[..., 0]) * c[..., 2])
def _accumulate_normals(tris, tri_nn, npts):
"""Efficiently accumulate triangle normals."""
# this code replaces the following, but is faster (vectorized):
#
# this['nn'] = np.zeros((this['np'], 3))
# for p in xrange(this['ntri']):
# verts = this['tris'][p]
# this['nn'][verts, :] += this['tri_nn'][p, :]
#
nn = np.zeros((npts, 3))
for verts in tris.T: # note this only loops 3x (number of verts per tri)
for idx in range(3): # x, y, z
nn[:, idx] += np.bincount(verts, weights=tri_nn[:, idx],
minlength=npts)
return nn
def _triangle_neighbors(tris, npts):
"""Efficiently compute vertex neighboring triangles."""
# this code replaces the following, but is faster (vectorized):
# neighbor_tri = [list() for _ in range(npts)]
# for ti, tri in enumerate(tris):
# for t in tri:
# neighbor_tri[t].append(ti)
rows = tris.ravel()
cols = np.repeat(np.arange(len(tris)), 3)
data = np.ones(len(cols))
csr = coo_matrix((data, (rows, cols)), shape=(npts, len(tris))).tocsr()
neighbor_tri = [csr.indices[start:stop]
for start, stop in zip(csr.indptr[:-1], csr.indptr[1:])]
assert len(neighbor_tri) == npts
return neighbor_tri
def _triangle_coords(r, geom, best):
"""Get coordinates of a vertex projected to a triangle."""
r1 = geom['r1'][best]
tri_nn = geom['nn'][best]
r12 = geom['r12'][best]
r13 = geom['r13'][best]
a = geom['a'][best]
b = geom['b'][best]
c = geom['c'][best]
rr = r - r1
z = np.sum(rr * tri_nn)
v1 = np.sum(rr * r12)
v2 = np.sum(rr * r13)
det = a * b - c * c
x = (b * v1 - c * v2) / det
y = (a * v2 - c * v1) / det
return x, y, z
def _project_onto_surface(rrs, surf, project_rrs=False, return_nn=False,
method='accurate'):
"""Project points onto (scalp) surface."""
surf_geom = _get_tri_supp_geom(surf)
coords = np.empty((len(rrs), 3))
tri_idx = np.empty((len(rrs),), int)
if method == 'accurate':
for ri, rr in enumerate(rrs):
# Get index of closest tri on scalp BEM to electrode position
tri_idx[ri] = _find_nearest_tri_pt(rr, surf_geom)[2]
# Calculate a linear interpolation between the vertex values to
# get coords of pt projected onto closest triangle
coords[ri] = _triangle_coords(rr, surf_geom, tri_idx[ri])
weights = np.array([1. - coords[:, 0] - coords[:, 1], coords[:, 0],
coords[:, 1]])
out = (weights, tri_idx)
if project_rrs: #
out += (einsum('ij,jik->jk', weights,
surf['rr'][surf['tris'][tri_idx]]),)
if return_nn:
out += (surf_geom['nn'][tri_idx],)
else: # nearest neighbor
assert project_rrs
idx = _compute_nearest(surf['rr'], rrs)
out = (None, None, surf['rr'][idx])
if return_nn:
nn = _accumulate_normals(surf['tris'], surf_geom['nn'],
len(surf['rr']))
out += (nn[idx],)
return out
@verbose
def complete_surface_info(surf, do_neighbor_vert=False, copy=True,
verbose=None):
"""Complete surface information.
Parameters
----------
surf : dict
The surface.
do_neighbor_vert : bool
If True, add neighbor vertex information.
copy : bool
If True (default), make a copy. If False, operate in-place.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
surf : dict
The transformed surface.
"""
if copy:
surf = deepcopy(surf)
# based on mne_source_space_add_geometry_info() in mne_add_geometry_info.c
# Main triangulation [mne_add_triangle_data()]
surf['ntri'] = surf.get('ntri', len(surf['tris']))
surf['np'] = surf.get('np', len(surf['rr']))
surf['tri_area'] = np.zeros(surf['ntri'])
r1 = surf['rr'][surf['tris'][:, 0], :]
r2 = surf['rr'][surf['tris'][:, 1], :]
r3 = surf['rr'][surf['tris'][:, 2], :]
surf['tri_cent'] = (r1 + r2 + r3) / 3.0
surf['tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1))
# Triangle normals and areas
surf['tri_area'] = _normalize_vectors(surf['tri_nn']) / 2.0
zidx = np.where(surf['tri_area'] == 0)[0]
if len(zidx) > 0:
logger.info(' Warning: zero size triangles: %s' % zidx)
# Find neighboring triangles, accumulate vertex normals, normalize
logger.info(' Triangle neighbors and vertex normals...')
surf['neighbor_tri'] = _triangle_neighbors(surf['tris'], surf['np'])
surf['nn'] = _accumulate_normals(surf['tris'], surf['tri_nn'], surf['np'])
_normalize_vectors(surf['nn'])
# Check for topological defects
idx = np.where([len(n) == 0 for n in surf['neighbor_tri']])[0]
if len(idx) > 0:
logger.info(' Vertices [%s] do not have any neighboring'
'triangles!' % ','.join([str(ii) for ii in idx]))
idx = np.where([len(n) < 3 for n in surf['neighbor_tri']])[0]
if len(idx) > 0:
logger.info(' Vertices [%s] have fewer than three neighboring '
'tris, omitted' % ','.join([str(ii) for ii in idx]))
for k in idx:
surf['neighbor_tri'][k] = np.array([], int)
# Determine the neighboring vertices and fix errors
if do_neighbor_vert is True:
logger.info(' Vertex neighbors...')
surf['neighbor_vert'] = [_get_surf_neighbors(surf, k)
for k in range(surf['np'])]
return surf
def _get_surf_neighbors(surf, k):
"""Calculate the surface neighbors based on triangulation."""
verts = surf['tris'][surf['neighbor_tri'][k]]
verts = np.setdiff1d(verts, [k], assume_unique=False)
assert np.all(verts < surf['np'])
nneighbors = len(verts)
nneigh_max = len(surf['neighbor_tri'][k])
if nneighbors > nneigh_max:
raise RuntimeError('Too many neighbors for vertex %d' % k)
elif nneighbors != nneigh_max:
logger.info(' Incorrect number of distinct neighbors for vertex'
' %d (%d instead of %d) [fixed].' % (k, nneighbors,
nneigh_max))
return verts
def _normalize_vectors(rr):
"""Normalize surface vertices."""
size = np.linalg.norm(rr, axis=1)
mask = (size > 0)
rr[mask] /= size[mask, np.newaxis] # operate in-place
return size
class _CDist(object):
"""Wrapper for cdist that uses a Tree-like pattern."""
def __init__(self, xhs):
self._xhs = xhs
def query(self, rr):
from scipy.spatial.distance import cdist
nearest = list()
dists = list()
for r in rr:
d = cdist(r[np.newaxis, :], self._xhs)
idx = np.argmin(d)
nearest.append(idx)
dists.append(d[0, idx])
return np.array(dists), np.array(nearest)
def _compute_nearest(xhs, rr, method='BallTree', return_dists=False):
"""Find nearest neighbors.
Parameters
----------
xhs : array, shape=(n_samples, n_dim)
Points of data set.
rr : array, shape=(n_query, n_dim)
Points to find nearest neighbors for.
method : str
The query method. If scikit-learn and scipy<1.0 are installed,
it will fall back to the slow brute-force search.
return_dists : bool
If True, return associated distances.
Returns
-------
nearest : array, shape=(n_query,)
Index of nearest neighbor in xhs for every point in rr.
distances : array, shape=(n_query,)
The distances. Only returned if return_dists is True.
"""
if xhs.size == 0 or rr.size == 0:
if return_dists:
return np.array([], int), np.array([])
return np.array([], int)
tree = _DistanceQuery(xhs, method=method)
out = tree.query(rr)
return out[::-1] if return_dists else out[1]
def _safe_query(rr, func, reduce=False, **kwargs):
if len(rr) == 0:
return np.array([]), np.array([], int)
out = func(rr)
out = [out[0][:, 0], out[1][:, 0]] if reduce else out
return out
class _DistanceQuery(object):
"""Wrapper for fast distance queries."""
def __init__(self, xhs, method='BallTree', allow_kdtree=False):
assert method in ('BallTree', 'cKDTree', 'cdist')
# Fastest for our problems: balltree
if method == 'BallTree':
try:
from sklearn.neighbors import BallTree
except ImportError:
logger.info('Nearest-neighbor searches will be significantly '
'faster if scikit-learn is installed.')
method = 'cKDTree'
else:
self.query = partial(_safe_query, func=BallTree(xhs).query,
reduce=True, return_distance=True)
# Then cKDTree
if method == 'cKDTree':
try:
from scipy.spatial import cKDTree
except ImportError:
method = 'cdist'
else:
self.query = cKDTree(xhs).query
# KDTree is really only faster for huge (~100k) sets,
# (e.g., with leafsize=2048), and it's slower for small (~5k)
# sets. We can add it later if we think it will help.
# Then the worst: cdist
if method == 'cdist':
self.query = _CDist(xhs).query
###############################################################################
# Handle freesurfer
def _fread3(fobj):
"""Read 3 bytes and adjust."""
b1, b2, b3 = np.fromfile(fobj, ">u1", 3)
return (b1 << 16) + (b2 << 8) + b3
def _fread3_many(fobj, n):
"""Read 3-byte ints from an open binary file object."""
b1, b2, b3 = np.fromfile(fobj, ">u1",
3 * n).reshape(-1, 3).astype(np.int).T
return (b1 << 16) + (b2 << 8) + b3
def read_curvature(filepath):
"""Load in curavature values from the ?h.curv file."""
with open(filepath, "rb") as fobj:
magic = _fread3(fobj)
if magic == 16777215:
vnum = np.fromfile(fobj, ">i4", 3)[0]
curv = np.fromfile(fobj, ">f4", vnum)
else:
vnum = magic
_fread3(fobj)
curv = np.fromfile(fobj, ">i2", vnum) / 100
bin_curv = 1 - np.array(curv != 0, np.int)
return bin_curv
@verbose
def read_surface(fname, read_metadata=False, return_dict=False, verbose=None):
"""Load a Freesurfer surface mesh in triangular format.
Parameters
----------
fname : str
The name of the file containing the surface.
read_metadata : bool
Read metadata as key-value pairs.
Valid keys:
* 'head' : array of int
* 'valid' : str
* 'filename' : str
* 'volume' : array of int, shape (3,)
* 'voxelsize' : array of float, shape (3,)
* 'xras' : array of float, shape (3,)
* 'yras' : array of float, shape (3,)
* 'zras' : array of float, shape (3,)
* 'cras' : array of float, shape (3,)
.. versionadded:: 0.13.0
return_dict : bool
If True, a dictionary with surface parameters is returned.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
rr : array, shape=(n_vertices, 3)
Coordinate points.
tris : int array, shape=(n_faces, 3)
Triangulation (each line contains indices for three points which
together form a face).
volume_info : dict-like
If read_metadata is true, key-value pairs found in the geometry file.
surf : dict
The surface parameters. Only returned if ``return_dict`` is True.
See Also
--------
write_surface
read_tri
"""
ret = _get_read_geometry()(fname, read_metadata=read_metadata)
if return_dict:
ret += (dict(rr=ret[0], tris=ret[1], ntri=len(ret[1]), use_tris=ret[1],
np=len(ret[0])),)
return ret
##############################################################################
# SURFACE CREATION
def _get_ico_surface(grade, patch_stats=False):
"""Return an icosahedral surface of the desired grade."""
# always use verbose=False since users don't need to know we're pulling
# these from a file
from .bem import read_bem_surfaces
ico_file_name = op.join(op.dirname(__file__), 'data',
'icos.fif.gz')
ico = read_bem_surfaces(ico_file_name, patch_stats, s_id=9000 + grade,
verbose=False)
return ico
def _tessellate_sphere_surf(level, rad=1.0):
"""Return a surface structure instead of the details."""
rr, tris = _tessellate_sphere(level)
npt = len(rr) # called "npt" instead of "np" because of numpy...
ntri = len(tris)
nn = rr.copy()
rr *= rad
s = dict(rr=rr, np=npt, tris=tris, use_tris=tris, ntri=ntri, nuse=npt,
nn=nn, inuse=np.ones(npt, int))
return s
def _norm_midpt(ai, bi, rr):
"""Get normalized midpoint."""
c = rr[ai]
c += rr[bi]
_normalize_vectors(c)
return c
def _tessellate_sphere(mylevel):
"""Create a tessellation of a unit sphere."""
# Vertices of a unit octahedron
rr = np.array([[1, 0, 0], [-1, 0, 0], # xplus, xminus
[0, 1, 0], [0, -1, 0], # yplus, yminus
[0, 0, 1], [0, 0, -1]], float) # zplus, zminus
tris = np.array([[0, 4, 2], [2, 4, 1], [1, 4, 3], [3, 4, 0],
[0, 2, 5], [2, 1, 5], [1, 3, 5], [3, 0, 5]], int)
# A unit octahedron
if mylevel < 1:
raise ValueError('# of levels must be >= 1')
# Reverse order of points in each triangle
# for counter-clockwise ordering
tris = tris[:, [2, 1, 0]]
# Subdivide each starting triangle (mylevel - 1) times
for _ in range(1, mylevel):
r"""
Subdivide each triangle in the old approximation and normalize
the new points thus generated to lie on the surface of the unit
sphere.
Each input triangle with vertices labelled [0,1,2] as shown
below will be turned into four new triangles:
Make new points
a = (0+2)/2
b = (0+1)/2
c = (1+2)/2
1
/\ Normalize a, b, c
/ \
b/____\c Construct new triangles
/\ /\ [0,b,a]
/ \ / \ [b,1,c]
/____\/____\ [a,b,c]
0 a 2 [a,c,2]
"""
# use new method: first make new points (rr)
a = _norm_midpt(tris[:, 0], tris[:, 2], rr)
b = _norm_midpt(tris[:, 0], tris[:, 1], rr)
c = _norm_midpt(tris[:, 1], tris[:, 2], rr)
lims = np.cumsum([len(rr), len(a), len(b), len(c)])
aidx = np.arange(lims[0], lims[1])
bidx = np.arange(lims[1], lims[2])
cidx = np.arange(lims[2], lims[3])
rr = np.concatenate((rr, a, b, c))
# now that we have our points, make new triangle definitions
tris = np.array((np.c_[tris[:, 0], bidx, aidx],
np.c_[bidx, tris[:, 1], cidx],
np.c_[aidx, bidx, cidx],
np.c_[aidx, cidx, tris[:, 2]]), int).swapaxes(0, 1)
tris = np.reshape(tris, (np.prod(tris.shape[:2]), 3))
# Copy the resulting approximation into standard table
rr_orig = rr
rr = np.empty_like(rr)
nnode = 0
for k, tri in enumerate(tris):
for j in range(3):
coord = rr_orig[tri[j]]
# this is faster than cdist (no need for sqrt)
similarity = np.dot(rr[:nnode], coord)
idx = np.where(similarity > 0.99999)[0]
if len(idx) > 0:
tris[k, j] = idx[0]
else:
rr[nnode] = coord
tris[k, j] = nnode
nnode += 1
rr = rr[:nnode].copy()
return rr, tris
def _create_surf_spacing(surf, hemi, subject, stype, ico_surf, subjects_dir):
"""Load a surf and use the subdivided icosahedron to get points."""
# Based on load_source_space_surf_spacing() in load_source_space.c
surf = read_surface(surf, return_dict=True)[-1]
complete_surface_info(surf, copy=False)
if stype == 'all':
surf['inuse'] = np.ones(surf['np'], int)
surf['use_tris'] = None
else: # ico or oct
# ## from mne_ico_downsample.c ## #
surf_name = op.join(subjects_dir, subject, 'surf', hemi + '.sphere')
logger.info('Loading geometry from %s...' % surf_name)
from_surf = read_surface(surf_name, return_dict=True)[-1]
_normalize_vectors(from_surf['rr'])
if from_surf['np'] != surf['np']:
raise RuntimeError('Mismatch between number of surface vertices, '
'possible parcellation error?')
_normalize_vectors(ico_surf['rr'])
# Make the maps
mmap = _compute_nearest(from_surf['rr'], ico_surf['rr'])
nmap = len(mmap)
surf['inuse'] = np.zeros(surf['np'], int)
for k in range(nmap):
if surf['inuse'][mmap[k]]:
# Try the nearest neighbors
neigh = _get_surf_neighbors(surf, mmap[k])
was = mmap[k]
inds = np.where(np.logical_not(surf['inuse'][neigh]))[0]
if len(inds) == 0:
raise RuntimeError('Could not find neighbor for vertex '
'%d / %d' % (k, nmap))
else:
mmap[k] = neigh[inds[-1]]
logger.info(' Source space vertex moved from %d to %d '
'because of double occupation', was, mmap[k])
elif mmap[k] < 0 or mmap[k] > surf['np']:
raise RuntimeError('Map number out of range (%d), this is '
'probably due to inconsistent surfaces. '
'Parts of the FreeSurfer reconstruction '
'need to be redone.' % mmap[k])
surf['inuse'][mmap[k]] = True
logger.info('Setting up the triangulation for the decimated '
'surface...')
surf['use_tris'] = np.array([mmap[ist] for ist in ico_surf['tris']],
np.int32)
if surf['use_tris'] is not None:
surf['nuse_tri'] = len(surf['use_tris'])
else:
surf['nuse_tri'] = 0
surf['nuse'] = np.sum(surf['inuse'])
surf['vertno'] = np.where(surf['inuse'])[0]
# set some final params
inds = np.arange(surf['np'])
sizes = _normalize_vectors(surf['nn'])
surf['inuse'][sizes <= 0] = False
surf['nuse'] = np.sum(surf['inuse'])
surf['subject_his_id'] = subject
return surf
def write_surface(fname, coords, faces, create_stamp='', volume_info=None):
"""Write a triangular Freesurfer surface mesh.
Accepts the same data format as is returned by read_surface().
Parameters
----------
fname : str
File to write.
coords : array, shape=(n_vertices, 3)
Coordinate points.
faces : int array, shape=(n_faces, 3)
Triangulation (each line contains indices for three points which
together form a face).
create_stamp : str
Comment that is written to the beginning of the file. Can not contain
line breaks.
volume_info : dict-like or None
Key-value pairs to encode at the end of the file.
Valid keys:
* 'head' : array of int
* 'valid' : str
* 'filename' : str
* 'volume' : array of int, shape (3,)
* 'voxelsize' : array of float, shape (3,)
* 'xras' : array of float, shape (3,)
* 'yras' : array of float, shape (3,)
* 'zras' : array of float, shape (3,)
* 'cras' : array of float, shape (3,)
.. versionadded:: 0.13.0
See Also
--------
read_surface
read_tri
"""
try:
import nibabel as nib
has_nibabel = True
except ImportError:
has_nibabel = False
if has_nibabel and LooseVersion(nib.__version__) > LooseVersion('2.1.0'):
nib.freesurfer.io.write_geometry(fname, coords, faces,
create_stamp=create_stamp,
volume_info=volume_info)
return
if len(create_stamp.splitlines()) > 1:
raise ValueError("create_stamp can only contain one line")
with open(fname, 'wb') as fid:
fid.write(pack('>3B', 255, 255, 254))
strs = ['%s\n' % create_stamp, '\n']
strs = [s.encode('utf-8') for s in strs]
fid.writelines(strs)
vnum = len(coords)
fnum = len(faces)
fid.write(pack('>2i', vnum, fnum))
fid.write(np.array(coords, dtype='>f4').tostring())
fid.write(np.array(faces, dtype='>i4').tostring())
# Add volume info, if given
if volume_info is not None and len(volume_info) > 0:
fid.write(_serialize_volume_info(volume_info))
###############################################################################
# Decimation
def _decimate_surface(points, triangles, reduction):
"""Aux function."""
if 'DISPLAY' not in os.environ and sys.platform != 'win32':
os.environ['ETS_TOOLKIT'] = 'null'
try:
from tvtk.api import tvtk
from tvtk.common import configure_input
except ImportError:
raise ValueError('This function requires the TVTK package to be '
'installed')
if triangles.max() > len(points) - 1:
raise ValueError('The triangles refer to undefined points. '
'Please check your mesh.')
src = tvtk.PolyData(points=points, polys=triangles)
decimate = tvtk.QuadricDecimation(target_reduction=reduction)
configure_input(decimate, src)
decimate.update()
out = decimate.output
tris = out.polys.to_array()
# n-tuples + interleaved n-next -- reshape trick
return out.points.to_array(), tris.reshape(tris.size // 4, 4)[:, 1:]
def decimate_surface(points, triangles, n_triangles):
"""Decimate surface data.
.. note:: Requires TVTK to be installed for this to function.
.. note:: If an if an odd target number was requested,
the ``'decimation'`` algorithm used results in the
next even number of triangles. For example a reduction request
to 30001 triangles may result in 30000 triangles.
Parameters
----------
points : ndarray
The surface to be decimated, a 3 x number of points array.
triangles : ndarray
The surface to be decimated, a 3 x number of triangles array.
n_triangles : int
The desired number of triangles.
Returns
-------
points : ndarray
The decimated points.
triangles : ndarray
The decimated triangles.
"""
reduction = 1 - (float(n_triangles) / len(triangles))
return _decimate_surface(points, triangles, reduction)
###############################################################################
# Morph maps
# XXX this morphing related code should probably be moved to morph.py
@verbose
def read_morph_map(subject_from, subject_to, subjects_dir=None, xhemi=False,
verbose=None):
"""Read morph map.
Morph maps can be generated with mne_make_morph_maps. If one isn't
available, it will be generated automatically and saved to the
``subjects_dir/morph_maps`` directory.
Parameters
----------
subject_from : string
Name of the original subject as named in the SUBJECTS_DIR.
subject_to : string
Name of the subject on which to morph as named in the SUBJECTS_DIR.
subjects_dir : string
Path to SUBJECTS_DIR is not set in the environment.
xhemi : bool
Morph across hemisphere. Currently only implemented for
``subject_to == subject_from``. See notes of
:func:`mne.compute_source_morph`.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
left_map, right_map : sparse matrix
The morph maps for the 2 hemispheres.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
# First check for morph-map dir existence
mmap_dir = op.join(subjects_dir, 'morph-maps')
if not op.isdir(mmap_dir):
try:
os.mkdir(mmap_dir)
except Exception:
warn('Could not find or make morph map directory "%s"' % mmap_dir)
# filename components
if xhemi:
if subject_to != subject_from:
raise NotImplementedError(
"Morph-maps between hemispheres are currently only "
"implemented for subject_to == subject_from")
map_name_temp = '%s-%s-xhemi'
log_msg = 'Creating morph map %s -> %s xhemi'
else:
map_name_temp = '%s-%s'
log_msg = 'Creating morph map %s -> %s'
map_names = [map_name_temp % (subject_from, subject_to),
map_name_temp % (subject_to, subject_from)]
# find existing file
for map_name in map_names:
fname = op.join(mmap_dir, '%s-morph.fif' % map_name)
if op.exists(fname):
return _read_morph_map(fname, subject_from, subject_to)
# if file does not exist, make it
warn('Morph map "%s" does not exist, creating it and saving it to '
'disk (this may take a few minutes)' % fname)
logger.info(log_msg % (subject_from, subject_to))
mmap_1 = _make_morph_map(subject_from, subject_to, subjects_dir, xhemi)
if subject_to == subject_from:
mmap_2 = None
else:
logger.info(log_msg % (subject_to, subject_from))
mmap_2 = _make_morph_map(subject_to, subject_from, subjects_dir,
xhemi)
_write_morph_map(fname, subject_from, subject_to, mmap_1, mmap_2)
return mmap_1
def _read_morph_map(fname, subject_from, subject_to):
"""Read a morph map from disk."""
f, tree, _ = fiff_open(fname)
with f as fid:
# Locate all maps
maps = dir_tree_find(tree, FIFF.FIFFB_MNE_MORPH_MAP)
if len(maps) == 0:
raise ValueError('Morphing map data not found')
# Find the correct ones
left_map = None
right_map = None
for m in maps:
tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP_FROM)
if tag.data == subject_from:
tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP_TO)
if tag.data == subject_to:
# Names match: which hemishere is this?
tag = find_tag(fid, m, FIFF.FIFF_MNE_HEMI)
if tag.data == FIFF.FIFFV_MNE_SURF_LEFT_HEMI:
tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP)
left_map = tag.data
logger.info(' Left-hemisphere map read.')
elif tag.data == FIFF.FIFFV_MNE_SURF_RIGHT_HEMI:
tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP)
right_map = tag.data
logger.info(' Right-hemisphere map read.')
if left_map is None or right_map is None:
raise ValueError('Could not find both hemispheres in %s' % fname)
return left_map, right_map
def _write_morph_map(fname, subject_from, subject_to, mmap_1, mmap_2):
"""Write a morph map to disk."""
try:
fid = start_file(fname)
except Exception as exp:
warn('Could not write morph-map file "%s" (error: %s)'
% (fname, exp))
return
assert len(mmap_1) == 2
hemis = [FIFF.FIFFV_MNE_SURF_LEFT_HEMI, FIFF.FIFFV_MNE_SURF_RIGHT_HEMI]
for m, hemi in zip(mmap_1, hemis):
start_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_FROM, subject_from)
write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_TO, subject_to)
write_int(fid, FIFF.FIFF_MNE_HEMI, hemi)
write_float_sparse_rcs(fid, FIFF.FIFF_MNE_MORPH_MAP, m)
end_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
# don't write mmap_2 if it is identical (subject_to == subject_from)
if mmap_2 is not None:
assert len(mmap_2) == 2
for m, hemi in zip(mmap_2, hemis):
start_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_FROM, subject_to)
write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_TO, subject_from)
write_int(fid, FIFF.FIFF_MNE_HEMI, hemi)
write_float_sparse_rcs(fid, FIFF.FIFF_MNE_MORPH_MAP, m)
end_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
end_file(fid)
def _get_tri_dist(p, q, p0, q0, a, b, c, dist):
"""Get the distance to a triangle edge."""
p1 = p - p0
q1 = q - q0
out = p1 * p1 * a
out += q1 * q1 * b
out += p1 * q1 * c
out += dist * dist
return np.sqrt(out, out=out)
def _get_tri_supp_geom(surf):
"""Create supplementary geometry information using tris and rrs."""
r1 = surf['rr'][surf['tris'][:, 0], :]
r12 = surf['rr'][surf['tris'][:, 1], :] - r1
r13 = surf['rr'][surf['tris'][:, 2], :] - r1
r1213 = np.array([r12, r13]).swapaxes(0, 1)
a = einsum('ij,ij->i', r12, r12)
b = einsum('ij,ij->i', r13, r13)
c = einsum('ij,ij->i', r12, r13)
mat = np.rollaxis(np.array([[b, -c], [-c, a]]), 2)
norm = (a * b - c * c)
norm[norm == 0] = 1. # avoid divide by zero
mat /= norm[:, np.newaxis, np.newaxis]
nn = fast_cross_3d(r12, r13)
_normalize_vectors(nn)
return dict(r1=r1, r12=r12, r13=r13, r1213=r1213,
a=a, b=b, c=c, mat=mat, nn=nn)
def _make_morph_map(subject_from, subject_to, subjects_dir, xhemi):
"""Construct morph map from one subject to another.
Note that this is close, but not exactly like the C version.
For example, parts are more accurate due to double precision,
so expect some small morph-map differences!
Note: This seems easily parallelizable, but the overhead
of pickling all the data structures makes it less efficient
than just running on a single core :(
"""
subjects_dir = get_subjects_dir(subjects_dir)
if xhemi:
reg = '%s.sphere.left_right'
hemis = (('lh', 'rh'), ('rh', 'lh'))
else:
reg = '%s.sphere.reg'
hemis = (('lh', 'lh'), ('rh', 'rh'))
return [_make_morph_map_hemi(subject_from, subject_to, subjects_dir,
reg % hemi_from, reg % hemi_to)
for hemi_from, hemi_to in hemis]
def _make_morph_map_hemi(subject_from, subject_to, subjects_dir, reg_from,
reg_to):
"""Construct morph map for one hemisphere."""
# add speedy short-circuit for self-maps
if subject_from == subject_to and reg_from == reg_to:
fname = op.join(subjects_dir, subject_from, 'surf', reg_from)
n_pts = len(read_surface(fname, verbose=False)[0])
return speye(n_pts, n_pts, format='csr')
# load surfaces and normalize points to be on unit sphere
fname = op.join(subjects_dir, subject_from, 'surf', reg_from)
from_rr, from_tri = read_surface(fname, verbose=False)
fname = op.join(subjects_dir, subject_to, 'surf', reg_to)
to_rr = read_surface(fname, verbose=False)[0]
_normalize_vectors(from_rr)
_normalize_vectors(to_rr)
# from surface: get nearest neighbors, find triangles for each vertex
nn_pts_idx = _compute_nearest(from_rr, to_rr)
from_pt_tris = _triangle_neighbors(from_tri, len(from_rr))
from_pt_tris = [from_pt_tris[pt_idx] for pt_idx in nn_pts_idx]
# find triangle in which point lies and assoc. weights
tri_inds = []
weights = []
tri_geom = _get_tri_supp_geom(dict(rr=from_rr, tris=from_tri))
for pt_tris, to_pt in zip(from_pt_tris, to_rr):
p, q, idx, dist = _find_nearest_tri_pt(to_pt, tri_geom, pt_tris,
run_all=False)
tri_inds.append(idx)
weights.append([1. - (p + q), p, q])
nn_idx = from_tri[tri_inds]
weights = np.array(weights)
row_ind = np.repeat(np.arange(len(to_rr)), 3)
this_map = csr_matrix((weights.ravel(), (row_ind, nn_idx.ravel())),
shape=(len(to_rr), len(from_rr)))
return this_map
def _find_nearest_tri_pt(rr, tri_geom, pt_tris=None, run_all=True):
"""Find nearest point mapping to a set of triangles.
If run_all is False, if the point lies within a triangle, it stops.
If run_all is True, edges of other triangles are checked in case
those (somehow) are closer.
"""
# The following dense code is equivalent to the following:
# rr = r1[pt_tris] - to_pts[ii]
# v1s = np.sum(rr * r12[pt_tris], axis=1)
# v2s = np.sum(rr * r13[pt_tris], axis=1)
# aas = a[pt_tris]
# bbs = b[pt_tris]
# ccs = c[pt_tris]
# dets = aas * bbs - ccs * ccs
# pp = (bbs * v1s - ccs * v2s) / dets
# qq = (aas * v2s - ccs * v1s) / dets
# pqs = np.array(pp, qq)
# This einsum is equivalent to doing:
# pqs = np.array([np.dot(x, y) for x, y in zip(r1213, r1-to_pt)])
if pt_tris is None: # use all points
pt_tris = slice(len(tri_geom['r1']))
rrs = rr - tri_geom['r1'][pt_tris]
tri_nn = tri_geom['nn'][pt_tris]
vect = einsum('ijk,ik->ij', tri_geom['r1213'][pt_tris], rrs)
mats = tri_geom['mat'][pt_tris]
# This einsum is equivalent to doing:
# pqs = np.array([np.dot(m, v) for m, v in zip(mats, vect)]).T
pqs = einsum('ijk,ik->ji', mats, vect)
found = False
dists = np.sum(rrs * tri_nn, axis=1)
# There can be multiple (sadness), find closest
idx = np.where(np.all(pqs >= 0., axis=0))[0]
idx = idx[np.where(np.all(pqs[:, idx] <= 1., axis=0))[0]]
idx = idx[np.where(np.sum(pqs[:, idx], axis=0) < 1.)[0]]
dist = np.inf
if len(idx) > 0:
found = True
pt = idx[np.argmin(np.abs(dists[idx]))]
p, q = pqs[:, pt]
dist = dists[pt]
# re-reference back to original numbers
if not isinstance(pt_tris, slice):
pt = pt_tris[pt]
if found is False or run_all is True:
# don't include ones that we might have found before
# these are the ones that we want to check thesides of
s = np.setdiff1d(np.arange(dists.shape[0]), idx)
# Tough: must investigate the sides
use_pt_tris = s if isinstance(pt_tris, slice) else pt_tris[s]
pp, qq, ptt, distt = _nearest_tri_edge(use_pt_tris, rr, pqs[:, s],
dists[s], tri_geom)
if np.abs(distt) < np.abs(dist):
p, q, pt, dist = pp, qq, ptt, distt
return p, q, pt, dist
def _nearest_tri_edge(pt_tris, to_pt, pqs, dist, tri_geom):
"""Get nearest location from a point to the edge of a set of triangles."""
# We might do something intelligent here. However, for now
# it is ok to do it in the hard way
aa = tri_geom['a'][pt_tris]
bb = tri_geom['b'][pt_tris]
cc = tri_geom['c'][pt_tris]
pp = pqs[0]
qq = pqs[1]
# Find the nearest point from a triangle:
# Side 1 -> 2
p0 = np.minimum(np.maximum(pp + 0.5 * (qq * cc) / aa,
0.0), 1.0)
q0 = np.zeros_like(p0)
# Side 2 -> 3
t1 = (0.5 * ((2.0 * aa - cc) * (1.0 - pp) +
(2.0 * bb - cc) * qq) / (aa + bb - cc))
t1 = np.minimum(np.maximum(t1, 0.0), 1.0)
p1 = 1.0 - t1
q1 = t1
# Side 1 -> 3
q2 = np.minimum(np.maximum(qq + 0.5 * (pp * cc) / bb, 0.0), 1.0)
p2 = np.zeros_like(q2)
# figure out which one had the lowest distance
dist0 = _get_tri_dist(pp, qq, p0, q0, aa, bb, cc, dist)
dist1 = _get_tri_dist(pp, qq, p1, q1, aa, bb, cc, dist)
dist2 = _get_tri_dist(pp, qq, p2, q2, aa, bb, cc, dist)
pp = np.r_[p0, p1, p2]
qq = np.r_[q0, q1, q2]
dists = np.r_[dist0, dist1, dist2]
ii = np.argmin(np.abs(dists))
p, q, pt, dist = pp[ii], qq[ii], pt_tris[ii % len(pt_tris)], dists[ii]
return p, q, pt, dist
def mesh_edges(tris):
"""Return sparse matrix with edges as an adjacency matrix.
Parameters
----------
tris : array of shape [n_triangles x 3]
The triangles.
Returns
-------
edges : sparse matrix
The adjacency matrix.
"""
if np.max(tris) > len(np.unique(tris)):
raise ValueError('Cannot compute connectivity on a selection of '
'triangles.')
npoints = np.max(tris) + 1
ones_ntris = np.ones(3 * len(tris))
a, b, c = tris.T
x = np.concatenate((a, b, c))
y = np.concatenate((b, c, a))
edges = coo_matrix((ones_ntris, (x, y)), shape=(npoints, npoints))
edges = edges.tocsr()
edges = edges + edges.T
return edges
def mesh_dist(tris, vert):
"""Compute adjacency matrix weighted by distances.
It generates an adjacency matrix where the entries are the distances
between neighboring vertices.
Parameters
----------
tris : array (n_tris x 3)
Mesh triangulation
vert : array (n_vert x 3)
Vertex locations
Returns
-------
dist_matrix : scipy.sparse.csr_matrix
Sparse matrix with distances between adjacent vertices
"""
edges = mesh_edges(tris).tocoo()
# Euclidean distances between neighboring vertices
dist = np.linalg.norm(vert[edges.row, :] - vert[edges.col, :], axis=1)
dist_matrix = csr_matrix((dist, (edges.row, edges.col)), shape=edges.shape)
return dist_matrix
@verbose
def read_tri(fname_in, swap=False, verbose=None):
"""Read triangle definitions from an ascii file.
Parameters
----------
fname_in : str
Path to surface ASCII file (ending with '.tri').
swap : bool
Assume the ASCII file vertex ordering is clockwise instead of
counterclockwise.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
rr : array, shape=(n_vertices, 3)
Coordinate points.
tris : int array, shape=(n_faces, 3)
Triangulation (each line contains indices for three points which
together form a face).
Notes
-----
.. versionadded:: 0.13.0
See Also
--------
read_surface
write_surface
"""
with open(fname_in, "r") as fid:
lines = fid.readlines()
n_nodes = int(lines[0])
n_tris = int(lines[n_nodes + 1])
n_items = len(lines[1].split())
if n_items in [3, 6, 14, 17]:
inds = range(3)
elif n_items in [4, 7]:
inds = range(1, 4)
else:
raise IOError('Unrecognized format of data.')
rr = np.array([np.array([float(v) for v in l.split()])[inds]
for l in lines[1:n_nodes + 1]])
tris = np.array([np.array([int(v) for v in l.split()])[inds]
for l in lines[n_nodes + 2:n_nodes + 2 + n_tris]])
if swap:
tris[:, [2, 1]] = tris[:, [1, 2]]
tris -= 1
logger.info('Loaded surface from %s with %s nodes and %s triangles.' %
(fname_in, n_nodes, n_tris))
if n_items in [3, 4]:
logger.info('Node normals were not included in the source file.')
else:
warn('Node normals were not read.')
return (rr, tris)
def _get_solids(tri_rrs, fros):
"""Compute _sum_solids_div total angle in chunks."""
# NOTE: This incorporates the division by 4PI that used to be separate
# for tri_rr in tri_rrs:
# v1 = fros - tri_rr[0]
# v2 = fros - tri_rr[1]
# v3 = fros - tri_rr[2]
# triple = np.sum(fast_cross_3d(v1, v2) * v3, axis=1)
# l1 = np.sqrt(np.sum(v1 * v1, axis=1))
# l2 = np.sqrt(np.sum(v2 * v2, axis=1))
# l3 = np.sqrt(np.sum(v3 * v3, axis=1))
# s = (l1 * l2 * l3 +
# np.sum(v1 * v2, axis=1) * l3 +
# np.sum(v1 * v3, axis=1) * l2 +
# np.sum(v2 * v3, axis=1) * l1)
# tot_angle -= np.arctan2(triple, s)
# This is the vectorized version, but with a slicing heuristic to
# prevent memory explosion
tot_angle = np.zeros((len(fros)))
slices = np.r_[np.arange(0, len(fros), 100), [len(fros)]]
for i1, i2 in zip(slices[:-1], slices[1:]):
# shape (3 verts, n_tri, n_fro, 3 X/Y/Z)
vs = (fros[np.newaxis, np.newaxis, i1:i2] -
tri_rrs.transpose([1, 0, 2])[:, :, np.newaxis])
triples = _fast_cross_nd_sum(vs[0], vs[1], vs[2])
ls = np.linalg.norm(vs, axis=3)
ss = np.prod(ls, axis=0)
ss += einsum('ijk,ijk,ij->ij', vs[0], vs[1], ls[2])
ss += einsum('ijk,ijk,ij->ij', vs[0], vs[2], ls[1])
ss += einsum('ijk,ijk,ij->ij', vs[1], vs[2], ls[0])
tot_angle[i1:i2] = -np.sum(np.arctan2(triples, ss), axis=0)
return tot_angle
def _complete_sphere_surf(sphere, idx, level, complete=True):
"""Convert sphere conductor model to surface."""
rad = sphere['layers'][idx]['rad']
r0 = sphere['r0']
surf = _tessellate_sphere_surf(level, rad=rad)
surf['rr'] += r0
if complete:
complete_surface_info(surf, copy=False)
surf['coord_frame'] = sphere['coord_frame']
return surf
|