File: test_cov.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (775 lines) | stat: -rw-r--r-- 33,094 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#         Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)

import os.path as op
import itertools as itt

from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_equal, assert_allclose)
import pytest
import numpy as np
from scipy import linalg

from mne.cov import (regularize, whiten_evoked, _estimate_rank_meeg_cov,
                     _auto_low_rank_model, _apply_scaling_cov,
                     _undo_scaling_cov, prepare_noise_cov, compute_whitener,
                     _apply_scaling_array, _undo_scaling_array,
                     _regularized_covariance)

from mne import (read_cov, write_cov, Epochs, merge_events,
                 find_events, compute_raw_covariance,
                 compute_covariance, read_evokeds, compute_proj_raw,
                 pick_channels_cov, pick_types, pick_info, make_ad_hoc_cov,
                 make_fixed_length_events)
from mne.datasets import testing
from mne.fixes import _get_args
from mne.io import read_raw_fif, RawArray, read_raw_ctf
from mne.io.pick import channel_type, _picks_by_type, _DATA_CH_TYPES_SPLIT
from mne.io.proc_history import _get_sss_rank
from mne.io.proj import _has_eeg_average_ref_proj
from mne.preprocessing import maxwell_filter
from mne.tests.common import assert_snr
from mne.utils import (_TempDir, requires_version, run_tests_if_main,
                       catch_logging)

base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
cov_fname = op.join(base_dir, 'test-cov.fif')
cov_gz_fname = op.join(base_dir, 'test-cov.fif.gz')
cov_km_fname = op.join(base_dir, 'test-km-cov.fif')
raw_fname = op.join(base_dir, 'test_raw.fif')
ave_fname = op.join(base_dir, 'test-ave.fif')
erm_cov_fname = op.join(base_dir, 'test_erm-cov.fif')
hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')

ctf_fname = op.join(testing.data_path(download=False), 'CTF',
                    'testdata_ctf.ds')


def test_cov_mismatch():
    """Test estimation with MEG<->Head mismatch."""
    raw = read_raw_fif(raw_fname).crop(0, 5).load_data()
    events = find_events(raw, stim_channel='STI 014')
    raw.pick_channels(raw.ch_names[:5])
    raw.add_proj([], remove_existing=True)
    epochs = Epochs(raw, events, None, tmin=-0.2, tmax=0., preload=True)
    for kind in ('shift', 'None'):
        epochs_2 = epochs.copy()
        # This should be fine
        compute_covariance([epochs, epochs_2])
        if kind == 'shift':
            epochs_2.info['dev_head_t']['trans'][:3, 3] += 0.001
        else:  # None
            epochs_2.info['dev_head_t'] = None
        pytest.raises(ValueError, compute_covariance, [epochs, epochs_2])
        compute_covariance([epochs, epochs_2], on_mismatch='ignore')
        with pytest.raises(RuntimeWarning, match='transform mismatch'):
            compute_covariance([epochs, epochs_2], on_mismatch='warn')
        pytest.raises(ValueError, compute_covariance, epochs,
                      on_mismatch='x')
    # This should work
    epochs.info['dev_head_t'] = None
    epochs_2.info['dev_head_t'] = None
    compute_covariance([epochs, epochs_2], method=None)


def test_cov_order():
    """Test covariance ordering."""
    raw = read_raw_fif(raw_fname)
    raw.set_eeg_reference(projection=True)
    info = raw.info
    # add MEG channel with low enough index number to affect EEG if
    # order is incorrect
    info['bads'] += ['MEG 0113']
    ch_names = [info['ch_names'][pick]
                for pick in pick_types(info, meg=False, eeg=True)]
    cov = read_cov(cov_fname)
    # no avg ref present warning
    prepare_noise_cov(cov, info, ch_names, verbose='error')
    # big reordering
    cov_reorder = cov.copy()
    order = np.random.RandomState(0).permutation(np.arange(len(cov.ch_names)))
    cov_reorder['names'] = [cov['names'][ii] for ii in order]
    cov_reorder['data'] = cov['data'][order][:, order]
    # Make sure we did this properly
    _assert_reorder(cov_reorder, cov, order)
    # Now check some functions that should get the same result for both
    # regularize
    with pytest.raises(ValueError, match='rank, if str'):
        regularize(cov, info, rank='foo')
    with pytest.raises(ValueError, match='or "full"'):
        regularize(cov, info, rank=False)
    with pytest.raises(ValueError, match='or "full"'):
        regularize(cov, info, rank=1.)
    cov_reg = regularize(cov, info, rank='full')
    cov_reg_reorder = regularize(cov_reorder, info, rank='full')
    _assert_reorder(cov_reg_reorder, cov_reg, order)
    # prepare_noise_cov
    cov_prep = prepare_noise_cov(cov, info, ch_names)
    cov_prep_reorder = prepare_noise_cov(cov, info, ch_names)
    _assert_reorder(cov_prep, cov_prep_reorder,
                    order=np.arange(len(cov_prep['names'])))
    # compute_whitener
    whitener, w_ch_names = compute_whitener(cov, info)
    whitener_2, w_ch_names_2 = compute_whitener(cov_reorder, info)
    assert_array_equal(w_ch_names_2, w_ch_names)
    assert_allclose(whitener_2, whitener)
    # whiten_evoked
    evoked = read_evokeds(ave_fname)[0]
    evoked_white = whiten_evoked(evoked, cov)
    evoked_white_2 = whiten_evoked(evoked, cov_reorder)
    assert_allclose(evoked_white_2.data, evoked_white.data)


def _assert_reorder(cov_new, cov_orig, order):
    """Check that we get the same result under reordering."""
    inv_order = np.argsort(order)
    assert_array_equal([cov_new['names'][ii] for ii in inv_order],
                       cov_orig['names'])
    assert_allclose(cov_new['data'][inv_order][:, inv_order],
                    cov_orig['data'], atol=1e-20)


def test_ad_hoc_cov():
    """Test ad hoc cov creation and I/O."""
    tempdir = _TempDir()
    out_fname = op.join(tempdir, 'test-cov.fif')
    evoked = read_evokeds(ave_fname)[0]
    cov = make_ad_hoc_cov(evoked.info)
    cov.save(out_fname)
    assert 'Covariance' in repr(cov)
    cov2 = read_cov(out_fname)
    assert_array_almost_equal(cov['data'], cov2['data'])
    std = dict(grad=2e-13, mag=10e-15, eeg=0.1e-6)
    cov = make_ad_hoc_cov(evoked.info, std)
    cov.save(out_fname)
    assert 'Covariance' in repr(cov)
    cov2 = read_cov(out_fname)
    assert_array_almost_equal(cov['data'], cov2['data'])


def test_io_cov():
    """Test IO for noise covariance matrices."""
    tempdir = _TempDir()
    cov = read_cov(cov_fname)
    cov['method'] = 'empirical'
    cov['loglik'] = -np.inf
    cov.save(op.join(tempdir, 'test-cov.fif'))
    cov2 = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert_array_almost_equal(cov.data, cov2.data)
    assert_equal(cov['method'], cov2['method'])
    assert_equal(cov['loglik'], cov2['loglik'])
    assert 'Covariance' in repr(cov)

    cov2 = read_cov(cov_gz_fname)
    assert_array_almost_equal(cov.data, cov2.data)
    cov2.save(op.join(tempdir, 'test-cov.fif.gz'))
    cov2 = read_cov(op.join(tempdir, 'test-cov.fif.gz'))
    assert_array_almost_equal(cov.data, cov2.data)

    cov['bads'] = ['EEG 039']
    cov_sel = pick_channels_cov(cov, exclude=cov['bads'])
    assert cov_sel['dim'] == (len(cov['data']) - len(cov['bads']))
    assert cov_sel['data'].shape == (cov_sel['dim'], cov_sel['dim'])
    cov_sel.save(op.join(tempdir, 'test-cov.fif'))

    cov2 = read_cov(cov_gz_fname)
    assert_array_almost_equal(cov.data, cov2.data)
    cov2.save(op.join(tempdir, 'test-cov.fif.gz'))
    cov2 = read_cov(op.join(tempdir, 'test-cov.fif.gz'))
    assert_array_almost_equal(cov.data, cov2.data)

    # test warnings on bad filenames
    cov_badname = op.join(tempdir, 'test-bad-name.fif.gz')
    with pytest.warns(RuntimeWarning, match='-cov.fif'):
        write_cov(cov_badname, cov)
    with pytest.warns(RuntimeWarning, match='-cov.fif'):
        read_cov(cov_badname)


def test_cov_estimation_on_raw():
    """Test estimation from raw (typically empty room)."""
    tempdir = _TempDir()
    raw = read_raw_fif(raw_fname, preload=True)
    cov_mne = read_cov(erm_cov_fname)

    # The pure-string uses the more efficient numpy-based method, the
    # the list gets triaged to compute_covariance (should be equivalent
    # but use more memory)
    for method in (None, ['empirical']):  # None is cast to 'empirical'
        cov = compute_raw_covariance(raw, tstep=None, method=method)
        assert_equal(cov.ch_names, cov_mne.ch_names)
        assert_equal(cov.nfree, cov_mne.nfree)
        assert_snr(cov.data, cov_mne.data, 1e4)

        cov = compute_raw_covariance(raw, method=method)  # tstep=0.2 (default)
        assert_equal(cov.nfree, cov_mne.nfree - 119)  # cutoff some samples
        assert_snr(cov.data, cov_mne.data, 1e2)

        # test IO when computation done in Python
        cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
        cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
        assert cov_read.ch_names == cov.ch_names
        assert cov_read.nfree == cov.nfree
        assert_array_almost_equal(cov.data, cov_read.data)

        # test with a subset of channels
        raw_pick = raw.copy().pick_channels(raw.ch_names[:5])
        raw_pick.info.normalize_proj()
        cov = compute_raw_covariance(raw_pick, tstep=None, method=method)
        assert cov_mne.ch_names[:5] == cov.ch_names
        assert_snr(cov.data, cov_mne.data[:5, :5], 1e4)
        cov = compute_raw_covariance(raw_pick, method=method)
        assert_snr(cov.data, cov_mne.data[:5, :5], 90)  # cutoff samps
        # make sure we get a warning with too short a segment
        raw_2 = read_raw_fif(raw_fname).crop(0, 1)
        with pytest.warns(RuntimeWarning, match='Too few samples'):
            cov = compute_raw_covariance(raw_2, method=method)
        # no epochs found due to rejection
        pytest.raises(ValueError, compute_raw_covariance, raw, tstep=None,
                      method='empirical', reject=dict(eog=200e-6))
        # but this should work
        cov = compute_raw_covariance(raw.copy().crop(0, 10.),
                                     tstep=None, method=method,
                                     reject=dict(eog=1000e-6))


@pytest.mark.slowtest
@requires_version('sklearn', '0.15')
def test_cov_estimation_on_raw_reg():
    """Test estimation from raw with regularization."""
    raw = read_raw_fif(raw_fname, preload=True)
    raw.info['sfreq'] /= 10.
    raw = RawArray(raw._data[:, ::10].copy(), raw.info)  # decimate for speed
    cov_mne = read_cov(erm_cov_fname)
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        # XXX don't use "shrunk" here, for some reason it makes Travis 2.7
        # hang... "diagonal_fixed" is much faster. Use long epochs for speed.
        cov = compute_raw_covariance(raw, tstep=5., method='diagonal_fixed')
    assert_snr(cov.data, cov_mne.data, 5)


def _assert_cov(cov, cov_desired, tol=0.005, nfree=True):
    assert_equal(cov.ch_names, cov_desired.ch_names)
    err = (linalg.norm(cov.data - cov_desired.data, ord='fro') /
           linalg.norm(cov.data, ord='fro'))
    assert err < tol, '%s >= %s' % (err, tol)
    if nfree:
        assert_equal(cov.nfree, cov_desired.nfree)


@pytest.mark.slowtest
@pytest.mark.parametrize('rank', ('full', None))
def test_cov_estimation_with_triggers(rank):
    """Test estimation from raw with triggers."""
    tempdir = _TempDir()
    raw = read_raw_fif(raw_fname)
    raw.set_eeg_reference(projection=True).load_data()
    events = find_events(raw, stim_channel='STI 014')
    event_ids = [1, 2, 3, 4]
    reject = dict(grad=10000e-13, mag=4e-12, eeg=80e-6, eog=150e-6)

    # cov with merged events and keep_sample_mean=True
    events_merged = merge_events(events, event_ids, 1234)
    epochs = Epochs(raw, events_merged, 1234, tmin=-0.2, tmax=0,
                    baseline=(-0.2, -0.1), proj=True,
                    reject=reject, preload=True)

    cov = compute_covariance(epochs, keep_sample_mean=True)
    _assert_cov(cov, read_cov(cov_km_fname))

    # Test with tmin and tmax (different but not too much)
    cov_tmin_tmax = compute_covariance(epochs, tmin=-0.19, tmax=-0.01)
    assert np.all(cov.data != cov_tmin_tmax.data)
    err = (linalg.norm(cov.data - cov_tmin_tmax.data, ord='fro') /
           linalg.norm(cov_tmin_tmax.data, ord='fro'))
    assert err < 0.05

    # cov using a list of epochs and keep_sample_mean=True
    epochs = [Epochs(raw, events, ev_id, tmin=-0.2, tmax=0,
              baseline=(-0.2, -0.1), proj=True, reject=reject)
              for ev_id in event_ids]
    cov2 = compute_covariance(epochs, keep_sample_mean=True)
    assert_array_almost_equal(cov.data, cov2.data)
    assert cov.ch_names == cov2.ch_names

    # cov with keep_sample_mean=False using a list of epochs
    cov = compute_covariance(epochs, keep_sample_mean=False)
    _assert_cov(cov, read_cov(cov_fname), nfree=False)

    method_params = {'empirical': {'assume_centered': False}}
    pytest.raises(ValueError, compute_covariance, epochs,
                  keep_sample_mean=False, method_params=method_params)
    pytest.raises(ValueError, compute_covariance, epochs,
                  keep_sample_mean=False, method='shrunk', rank=rank)

    # test IO when computation done in Python
    cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
    cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
    _assert_cov(cov, cov_read, 1e-5)

    # cov with list of epochs with different projectors
    epochs = [Epochs(raw, events[:1], None, tmin=-0.2, tmax=0,
                     baseline=(-0.2, -0.1), proj=True),
              Epochs(raw, events[:1], None, tmin=-0.2, tmax=0,
                     baseline=(-0.2, -0.1), proj=False)]
    # these should fail
    pytest.raises(ValueError, compute_covariance, epochs)
    pytest.raises(ValueError, compute_covariance, epochs, projs=None)
    # these should work, but won't be equal to above
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        cov = compute_covariance(epochs, projs=epochs[0].info['projs'])
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        cov = compute_covariance(epochs, projs=[])

    # test new dict support
    epochs = Epochs(raw, events, dict(a=1, b=2, c=3, d=4), tmin=-0.01, tmax=0,
                    proj=True, reject=reject, preload=True)
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        compute_covariance(epochs)
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        compute_covariance(epochs, projs=[])
    pytest.raises(TypeError, compute_covariance, epochs, projs='foo')
    pytest.raises(TypeError, compute_covariance, epochs, projs=['foo'])


def test_arithmetic_cov():
    """Test arithmetic with noise covariance matrices."""
    cov = read_cov(cov_fname)
    cov_sum = cov + cov
    assert_array_almost_equal(2 * cov.nfree, cov_sum.nfree)
    assert_array_almost_equal(2 * cov.data, cov_sum.data)
    assert cov.ch_names == cov_sum.ch_names

    cov += cov
    assert_array_almost_equal(cov_sum.nfree, cov.nfree)
    assert_array_almost_equal(cov_sum.data, cov.data)
    assert cov_sum.ch_names == cov.ch_names


def test_regularize_cov():
    """Test cov regularization."""
    raw = read_raw_fif(raw_fname)
    raw.info['bads'].append(raw.ch_names[0])  # test with bad channels
    noise_cov = read_cov(cov_fname)
    # Regularize noise cov
    reg_noise_cov = regularize(noise_cov, raw.info,
                               mag=0.1, grad=0.1, eeg=0.1, proj=True,
                               exclude='bads', rank='full')
    assert noise_cov['dim'] == reg_noise_cov['dim']
    assert noise_cov['data'].shape == reg_noise_cov['data'].shape
    assert np.mean(noise_cov['data'] < reg_noise_cov['data']) < 0.08
    # make sure all args are represented
    assert set(_DATA_CH_TYPES_SPLIT) - set(_get_args(regularize)) == set()


def test_whiten_evoked():
    """Test whitening of evoked data."""
    evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
                          proj=True)
    cov = read_cov(cov_fname)

    ###########################################################################
    # Show result
    picks = pick_types(evoked.info, meg=True, eeg=True, ref_meg=False,
                       exclude='bads')

    noise_cov = regularize(cov, evoked.info, grad=0.1, mag=0.1, eeg=0.1,
                           exclude='bads', rank='full')

    evoked_white = whiten_evoked(evoked, noise_cov, picks, diag=True)
    whiten_baseline_data = evoked_white.data[picks][:, evoked.times < 0]
    mean_baseline = np.mean(np.abs(whiten_baseline_data), axis=1)
    assert np.all(mean_baseline < 1.)
    assert np.all(mean_baseline > 0.2)

    # degenerate
    cov_bad = pick_channels_cov(cov, include=evoked.ch_names[:10])
    pytest.raises(RuntimeError, whiten_evoked, evoked, cov_bad, picks)


@pytest.mark.slowtest
def test_rank():
    """Test cov rank estimation."""
    # Test that our rank estimation works properly on a simple case
    evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
                          proj=False)
    cov = read_cov(cov_fname)
    ch_names = [ch for ch in evoked.info['ch_names'] if '053' not in ch and
                ch.startswith('EEG')]
    cov = prepare_noise_cov(cov, evoked.info, ch_names, None)
    assert_equal(cov['eig'][0], 0.)  # avg projector should set this to zero
    assert (cov['eig'][1:] > 0).all()  # all else should be > 0

    # Now do some more comprehensive tests
    raw_sample = read_raw_fif(raw_fname)
    assert not _has_eeg_average_ref_proj(raw_sample.info['projs'])

    raw_sss = read_raw_fif(hp_fif_fname)
    assert not _has_eeg_average_ref_proj(raw_sss.info['projs'])
    raw_sss.add_proj(compute_proj_raw(raw_sss))

    cov_sample = compute_raw_covariance(raw_sample)
    cov_sample_proj = compute_raw_covariance(
        raw_sample.copy().apply_proj())

    cov_sss = compute_raw_covariance(raw_sss)
    cov_sss_proj = compute_raw_covariance(
        raw_sss.copy().apply_proj())

    picks_all_sample = pick_types(raw_sample.info, meg=True, eeg=True)
    picks_all_sss = pick_types(raw_sss.info, meg=True, eeg=True)

    info_sample = pick_info(raw_sample.info, picks_all_sample)
    picks_stack_sample = [('eeg', pick_types(info_sample, meg=False,
                                             eeg=True))]
    picks_stack_sample += [('meg', pick_types(info_sample, meg=True))]
    picks_stack_sample += [('all',
                            pick_types(info_sample, meg=True, eeg=True))]

    info_sss = pick_info(raw_sss.info, picks_all_sss)
    picks_stack_somato = [('eeg', pick_types(info_sss, meg=False, eeg=True))]
    picks_stack_somato += [('meg', pick_types(info_sss, meg=True))]
    picks_stack_somato += [('all',
                            pick_types(info_sss, meg=True, eeg=True))]

    iter_tests = list(itt.product(
        [(cov_sample, picks_stack_sample, info_sample),
         (cov_sample_proj, picks_stack_sample, info_sample),
         (cov_sss, picks_stack_somato, info_sss),
         (cov_sss_proj, picks_stack_somato, info_sss)],  # sss
        [dict(mag=1e15, grad=1e13, eeg=1e6)]
    ))

    for (cov, picks_list, this_info), scalings in iter_tests:
        for ch_type, picks in picks_list:

            this_very_info = pick_info(this_info, picks)

            # compute subset of projs
            this_projs = [c['active'] and
                          len(set(c['data']['col_names'])
                              .intersection(set(this_very_info['ch_names']))) >
                          0 for c in cov['projs']]
            n_projs = sum(this_projs)

            # count channel types
            ch_types = [channel_type(this_very_info, idx)
                        for idx in range(len(picks))]
            n_eeg, n_mag, n_grad = [ch_types.count(k) for k in
                                    ['eeg', 'mag', 'grad']]
            n_meg = n_mag + n_grad

            # check sss
            if len(this_very_info['proc_history']) > 0:
                mf = this_very_info['proc_history'][0]['max_info']
                n_free = _get_sss_rank(mf)
                if 'mag' not in ch_types and 'grad' not in ch_types:
                    n_free = 0
                # - n_projs XXX clarify
                expected_rank = n_free + n_eeg
            else:
                expected_rank = n_meg + n_eeg - n_projs

            C = cov['data'][np.ix_(picks, picks)]
            est_rank = _estimate_rank_meeg_cov(C, this_very_info,
                                               scalings=scalings)

            assert_equal(expected_rank, est_rank)


def test_cov_scaling():
    """Test rescaling covs."""
    evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
                          proj=True)
    cov = read_cov(cov_fname)['data']
    cov2 = read_cov(cov_fname)['data']

    assert_array_equal(cov, cov2)
    evoked.pick_channels([evoked.ch_names[k] for k in pick_types(
        evoked.info, meg=True, eeg=True
    )])
    picks_list = _picks_by_type(evoked.info)
    scalings = dict(mag=1e15, grad=1e13, eeg=1e6)

    _apply_scaling_cov(cov2, picks_list, scalings=scalings)
    _apply_scaling_cov(cov, picks_list, scalings=scalings)
    assert_array_equal(cov, cov2)
    assert cov.max() > 1

    _undo_scaling_cov(cov2, picks_list, scalings=scalings)
    _undo_scaling_cov(cov, picks_list, scalings=scalings)
    assert_array_equal(cov, cov2)
    assert cov.max() < 1

    data = evoked.data.copy()
    _apply_scaling_array(data, picks_list, scalings=scalings)
    _undo_scaling_array(data, picks_list, scalings=scalings)
    assert_allclose(data, evoked.data, atol=1e-20)

    # check that input data remain unchanged. gh-5698
    _regularized_covariance(data)
    assert_array_almost_equal(data, evoked.data)


@requires_version('sklearn', '0.15')
def test_auto_low_rank():
    """Test probabilistic low rank estimators."""
    n_samples, n_features, rank = 400, 10, 5
    sigma = 0.1

    def get_data(n_samples, n_features, rank, sigma):
        rng = np.random.RandomState(42)
        W = rng.randn(n_features, n_features)
        X = rng.randn(n_samples, rank)
        U, _, _ = linalg.svd(W.copy())
        X = np.dot(X, U[:, :rank].T)

        sigmas = sigma * rng.rand(n_features) + sigma / 2.
        X += rng.randn(n_samples, n_features) * sigmas
        return X

    X = get_data(n_samples=n_samples, n_features=n_features, rank=rank,
                 sigma=sigma)
    method_params = {'iter_n_components': [4, 5, 6]}
    cv = 3
    n_jobs = 1
    mode = 'factor_analysis'
    rescale = 1e8
    X *= rescale
    est, info = _auto_low_rank_model(X, mode=mode, n_jobs=n_jobs,
                                     method_params=method_params,
                                     cv=cv)
    assert_equal(info['best'], rank)

    X = get_data(n_samples=n_samples, n_features=n_features, rank=rank,
                 sigma=sigma)
    method_params = {'iter_n_components': [n_features + 5]}
    msg = ('You are trying to estimate %i components on matrix '
           'with %i features.') % (n_features + 5, n_features)
    with pytest.warns(RuntimeWarning, match=msg):
        _auto_low_rank_model(X, mode=mode, n_jobs=n_jobs,
                             method_params=method_params, cv=cv)


@pytest.mark.slowtest
@pytest.mark.parametrize('rank', ('full', None))
@requires_version('sklearn', '0.15')
def test_compute_covariance_auto_reg(rank):
    """Test automated regularization."""
    raw = read_raw_fif(raw_fname, preload=True)
    raw.resample(100, npad='auto')  # much faster estimation
    events = find_events(raw, stim_channel='STI 014')
    event_ids = [1, 2, 3, 4]
    reject = dict(mag=4e-12)

    # cov with merged events and keep_sample_mean=True
    events_merged = merge_events(events, event_ids, 1234)
    # we need a few channels for numerical reasons in PCA/FA
    picks = pick_types(raw.info, meg='mag', eeg=False)[:10]
    raw.pick_channels([raw.ch_names[pick] for pick in picks])
    raw.info.normalize_proj()
    epochs = Epochs(
        raw, events_merged, 1234, tmin=-0.2, tmax=0,
        baseline=(-0.2, -0.1), proj=True, reject=reject, preload=True)
    epochs = epochs.crop(None, 0)[:5]

    method_params = dict(factor_analysis=dict(iter_n_components=[3]),
                         pca=dict(iter_n_components=[3]))

    covs = compute_covariance(epochs, method='auto',
                              method_params=method_params,
                              return_estimators=True, rank=rank)
    # make sure regularization produces structured differencess
    diag_mask = np.eye(len(epochs.ch_names)).astype(bool)
    off_diag_mask = np.invert(diag_mask)
    for cov_a, cov_b in itt.combinations(covs, 2):
        if (cov_a['method'] == 'diagonal_fixed' and
                # here we have diagnoal or no regularization.
                cov_b['method'] == 'empirical' and rank == 'full'):

            assert not np.any(cov_a['data'][diag_mask] ==
                              cov_b['data'][diag_mask])

            # but the rest is the same
            assert_array_equal(cov_a['data'][off_diag_mask],
                               cov_b['data'][off_diag_mask])

        else:
            # and here we have shrinkage everywhere.
            assert not np.any(cov_a['data'][diag_mask] ==
                              cov_b['data'][diag_mask])

            assert not np.any(cov_a['data'][diag_mask] ==
                              cov_b['data'][diag_mask])

    logliks = [c['loglik'] for c in covs]
    assert np.diff(logliks).max() <= 0  # descending order

    methods = ['empirical', 'ledoit_wolf', 'oas', 'shrunk', 'shrinkage']
    if rank == 'full':
        methods.extend(['factor_analysis', 'pca'])
    cov3 = compute_covariance(epochs, method=methods,
                              method_params=method_params, projs=None,
                              return_estimators=True, rank=rank)
    method_names = [cov['method'] for cov in cov3]
    best_bounds = [-45, -35]
    bounds = [-55, -45] if rank == 'full' else best_bounds
    for method in set(methods) - set(['empirical', 'shrunk']):
        this_lik = cov3[method_names.index(method)]['loglik']
        assert bounds[0] < this_lik < bounds[1]
    this_lik = cov3[method_names.index('shrunk')]['loglik']
    assert best_bounds[0] < this_lik < best_bounds[1]
    this_lik = cov3[method_names.index('empirical')]['loglik']
    bounds = [-110, -100] if rank == 'full' else best_bounds
    assert bounds[0] < this_lik < bounds[1]

    assert_equal(set([c['method'] for c in cov3]), set(methods))

    cov4 = compute_covariance(epochs, method=methods,
                              method_params=method_params, projs=None,
                              return_estimators=False, rank=rank)
    assert cov3[0]['method'] == cov4['method']  # ordering

    # invalid prespecified method
    pytest.raises(ValueError, compute_covariance, epochs, method='pizza')

    # invalid scalings
    pytest.raises(ValueError, compute_covariance, epochs, method='shrunk',
                  scalings=dict(misc=123))


def _cov_rank(cov, info):
    return compute_whitener(cov, info, return_rank=True, verbose='error')[2]


@requires_version('sklearn', '0.15')
def test_low_rank():
    """Test low-rank covariance matrix estimation."""
    raw = read_raw_fif(raw_fname).set_eeg_reference(projection=True).crop(0, 3)
    raw = maxwell_filter(raw, regularize=None)  # heavily reduce the rank
    sss_proj_rank = 139  # 80 MEG + 60 EEG - 1 proj
    n_ch = 366
    proj_rank = 365  # one EEG proj
    events = make_fixed_length_events(raw)
    methods = ('empirical', 'diagonal_fixed', 'oas')
    epochs = Epochs(raw, events, tmin=-0.2, tmax=0, preload=True)
    bounds = {
        'None': dict(empirical=(-6000, -5000),
                     diagonal_fixed=(-1500, -500),
                     oas=(-700, -600)),
        'full': dict(empirical=(-9000, -8000),
                     diagonal_fixed=(-2000, -1600),
                     oas=(-1600, -1000)),
    }
    for rank in ('full', None):
        covs = compute_covariance(
            epochs, method=methods, return_estimators=True,
            verbose='error', rank=rank)
        for cov in covs:
            method = cov['method']
            these_bounds = bounds[str(rank)][method]
            this_rank = _cov_rank(cov, epochs.info)
            if rank is None or method == 'empirical':
                assert this_rank == sss_proj_rank
            else:
                assert this_rank == proj_rank
            assert these_bounds[0] < cov['loglik'] < these_bounds[1], \
                (rank, method)
            if method == 'empirical':
                emp_cov = cov  # save for later, rank param does not matter

    # Test equivalence with mne.cov.regularize subspace
    with pytest.raises(ValueError, match='are dependent.*must equal'):
        regularize(emp_cov, epochs.info, rank=None, mag=0.1, grad=0.2)
    assert _cov_rank(emp_cov, epochs.info) == sss_proj_rank
    reg_cov = regularize(emp_cov, epochs.info, proj=True, rank='full')
    assert _cov_rank(reg_cov, epochs.info) == proj_rank
    del reg_cov
    with catch_logging() as log:
        reg_r_cov = regularize(emp_cov, epochs.info, proj=True, rank=None,
                               verbose=True)
    log = log.getvalue()
    assert 'jointly' in log
    assert _cov_rank(reg_r_cov, epochs.info) == sss_proj_rank
    reg_r_only_cov = regularize(emp_cov, epochs.info, proj=False, rank=None)
    assert _cov_rank(reg_r_only_cov, epochs.info) == sss_proj_rank
    assert_allclose(reg_r_only_cov['data'], reg_r_cov['data'])
    del reg_r_only_cov, reg_r_cov

    # test that rank=306 is same as rank='full'
    epochs_meg = epochs.copy().pick_types()
    assert len(epochs_meg.ch_names) == 306
    epochs_meg.info.update(bads=[], projs=[])
    cov_full = compute_covariance(epochs_meg, method='oas',
                                  rank='full', verbose='error')
    assert _cov_rank(cov_full, epochs_meg.info) == 306
    cov_dict = compute_covariance(epochs_meg, method='oas',
                                  rank=306, verbose='error')
    assert _cov_rank(cov_dict, epochs_meg.info) == 306
    assert_allclose(cov_full['data'], cov_dict['data'])

    # Work with just EEG data to simplify projection / rank reduction
    raw.pick_types(meg=False, eeg=True)
    n_proj = 2
    raw.add_proj(compute_proj_raw(raw, n_eeg=n_proj))
    n_ch = len(raw.ch_names)
    rank = n_ch - n_proj - 1  # plus avg proj
    assert len(raw.info['projs']) == 3
    epochs = Epochs(raw, events, tmin=-0.2, tmax=0, preload=True)
    assert len(raw.ch_names) == n_ch
    emp_cov = compute_covariance(epochs, rank='full', verbose='error')
    assert _cov_rank(emp_cov, epochs.info) == rank
    reg_cov = regularize(emp_cov, epochs.info, proj=True, rank='full')
    assert _cov_rank(reg_cov, epochs.info) == rank
    reg_r_cov = regularize(emp_cov, epochs.info, proj=False, rank=None)
    assert _cov_rank(reg_r_cov, epochs.info) == rank
    dia_cov = compute_covariance(epochs, rank=None, method='diagonal_fixed',
                                 verbose='error')
    assert _cov_rank(dia_cov, epochs.info) == rank
    assert_allclose(dia_cov['data'], reg_cov['data'])
    # test our deprecation: can simply remove later
    epochs.pick_channels(epochs.ch_names[:103])
    with pytest.deprecated_call(match='rank'):
        compute_covariance(epochs, method='oas')
    # degenerate
    with pytest.raises(ValueError, match='can.*only be used with rank="full"'):
        compute_covariance(epochs, rank=None, method='pca')
    with pytest.raises(ValueError, match='can.*only be used with rank="full"'):
        compute_covariance(epochs, rank=None, method='factor_analysis')


@testing.requires_testing_data
@requires_version('sklearn', '0.15')
def test_cov_ctf():
    """Test basic cov computation on ctf data with/without compensation."""
    raw = read_raw_ctf(ctf_fname).crop(0., 2.).load_data()
    events = make_fixed_length_events(raw, 99999)
    assert len(events) == 2
    ch_names = [raw.info['ch_names'][pick]
                for pick in pick_types(raw.info, meg=True, eeg=False,
                                       ref_meg=False)]

    for comp in [0, 1]:
        raw.apply_gradient_compensation(comp)
        epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
        with pytest.warns(RuntimeWarning, match='Too few samples'):
            noise_cov = compute_covariance(epochs, tmax=0.,
                                           method=['empirical'])
        prepare_noise_cov(noise_cov, raw.info, ch_names)

    raw.apply_gradient_compensation(0)
    epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        noise_cov = compute_covariance(epochs, tmax=0., method=['empirical'])
    raw.apply_gradient_compensation(1)

    # TODO This next call in principle should fail.
    prepare_noise_cov(noise_cov, raw.info, ch_names)

    # make sure comps matrices was not removed from raw
    assert raw.info['comps'], 'Comps matrices removed'


run_tests_if_main()