File: test_dipole.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (422 lines) | stat: -rw-r--r-- 17,423 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import os.path as op

import numpy as np
from numpy.testing import assert_allclose, assert_array_equal, assert_equal
import pytest

from mne import (read_dipole, read_forward_solution,
                 convert_forward_solution, read_evokeds, read_cov,
                 SourceEstimate, write_evokeds, fit_dipole,
                 transform_surface_to, make_sphere_model, pick_types,
                 pick_info, EvokedArray, read_source_spaces, make_ad_hoc_cov,
                 make_forward_solution, Dipole, DipoleFixed, Epochs,
                 make_fixed_length_events, Evoked)
from mne.dipole import get_phantom_dipoles
from mne.simulation import simulate_evoked
from mne.datasets import testing
from mne.utils import run_tests_if_main, _TempDir, requires_mne, run_subprocess
from mne.proj import make_eeg_average_ref_proj

from mne.io import read_raw_fif, read_raw_ctf
from mne.io.constants import FIFF

from mne.surface import _compute_nearest
from mne.bem import _bem_find_surface, read_bem_solution
from mne.transforms import apply_trans, _get_trans

import matplotlib
matplotlib.use('Agg')  # for testing don't use X server

data_path = testing.data_path(download=False)
meg_path = op.join(data_path, 'MEG', 'sample')
fname_dip_xfit = op.join(meg_path, 'sample_audvis-ave_xfit.dip')
fname_raw = op.join(meg_path, 'sample_audvis_trunc_raw.fif')
fname_dip = op.join(meg_path, 'sample_audvis_trunc_set1.dip')
fname_evo = op.join(meg_path, 'sample_audvis_trunc-ave.fif')
fname_evo_full = op.join(meg_path, 'sample_audvis-ave.fif')
fname_cov = op.join(meg_path, 'sample_audvis_trunc-cov.fif')
fname_trans = op.join(meg_path, 'sample_audvis_trunc-trans.fif')
fname_fwd = op.join(meg_path, 'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
fname_bem = op.join(data_path, 'subjects', 'sample', 'bem',
                    'sample-1280-1280-1280-bem-sol.fif')
fname_src = op.join(data_path, 'subjects', 'sample', 'bem',
                    'sample-oct-2-src.fif')
fname_xfit_dip = op.join(data_path, 'dip', 'fixed_auto.fif')
fname_xfit_dip_txt = op.join(data_path, 'dip', 'fixed_auto.dip')
fname_xfit_seq_txt = op.join(data_path, 'dip', 'sequential.dip')
fname_ctf = op.join(data_path, 'CTF', 'testdata_ctf_short.ds')
subjects_dir = op.join(data_path, 'subjects')


def _compare_dipoles(orig, new):
    """Compare dipole results for equivalence."""
    assert_allclose(orig.times, new.times, atol=1e-3, err_msg='times')
    assert_allclose(orig.pos, new.pos, err_msg='pos')
    assert_allclose(orig.amplitude, new.amplitude, err_msg='amplitude')
    assert_allclose(orig.gof, new.gof, err_msg='gof')
    assert_allclose(orig.ori, new.ori, rtol=1e-4, atol=1e-4, err_msg='ori')
    assert_equal(orig.name, new.name)


def _check_dipole(dip, n_dipoles):
    """Check dipole sizes."""
    assert_equal(len(dip), n_dipoles)
    assert_equal(dip.pos.shape, (n_dipoles, 3))
    assert_equal(dip.ori.shape, (n_dipoles, 3))
    assert_equal(dip.gof.shape, (n_dipoles,))
    assert_equal(dip.amplitude.shape, (n_dipoles,))


@testing.requires_testing_data
def test_io_dipoles():
    """Test IO for .dip files."""
    tempdir = _TempDir()
    dipole = read_dipole(fname_dip)
    print(dipole)  # test repr
    out_fname = op.join(tempdir, 'temp.dip')
    dipole.save(out_fname)
    dipole_new = read_dipole(out_fname)
    _compare_dipoles(dipole, dipole_new)


@testing.requires_testing_data
def test_dipole_fitting_ctf():
    """Test dipole fitting with CTF data."""
    raw_ctf = read_raw_ctf(fname_ctf).set_eeg_reference(projection=True)
    events = make_fixed_length_events(raw_ctf, 1)
    evoked = Epochs(raw_ctf, events, 1, 0, 0, baseline=None).average()
    cov = make_ad_hoc_cov(evoked.info)
    sphere = make_sphere_model((0., 0., 0.))
    # XXX Eventually we should do some better checks about accuracy, but
    # for now our CTF phantom fitting tutorials will have to do
    # (otherwise we need to add that to the testing dataset, which is
    # a bit too big)
    fit_dipole(evoked, cov, sphere)


@pytest.mark.slowtest
@testing.requires_testing_data
@requires_mne
def test_dipole_fitting():
    """Test dipole fitting."""
    amp = 100e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False, force_fixed=True,
                                   use_cps=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [np.sort(rng.permutation(s['vertno'])[:n_per_hemi])
                for s in fwd['src']]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd, stc, evoked.info, cov, nave=evoked.nave,
                             random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(np.concatenate([
        pick_types(evoked.info, meg=True, eeg=False)[::2],
        pick_types(evoked.info, meg=False, eeg=True)[::2]]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit', '--meas', fname_sim, '--meg', '--eeg',
        '--noise', fname_cov, '--dip', fname_dtemp,
        '--mri', fname_fwd, '--reg', '0', '--tmin', '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    with pytest.warns(RuntimeWarning, match='projection'):
        dip, residual = fit_dipole(evoked, cov, sphere, fname_fwd)
    assert isinstance(residual, Evoked)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
    resi_rms = np.sqrt(np.sum(residual.data ** 2, axis=0))
    assert (data_rms > resi_rms * 0.95).all(), \
        '%s (factor: %s)' % ((data_rms / resi_rms).min(), 0.95)

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    assert_equal(fwd['src'][0]['coord_frame'], FIFF.FIFFV_COORD_HEAD)
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    out = dip.crop(dip_c.times[0], dip_c.times[-1])
    assert (dip is out)
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did about as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori,
                                                     axis=1)))]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
        gofs += [np.mean(d.gof)]
    # XXX possibly some OpenBLAS numerical differences make
    # things slightly worse for us
    factor = 0.7
    assert dists[0] / factor >= dists[1], 'dists: %s' % dists
    assert corrs[0] * factor <= corrs[1], 'corrs: %s' % corrs
    assert gc_dists[0] / factor >= gc_dists[1] * 0.8, \
        'gc-dists (ori): %s' % gc_dists
    assert amp_errs[0] / factor >= amp_errs[1],\
        'amplitude errors: %s' % amp_errs
    # This one is weird because our cov/sim/picking is weird
    assert gofs[0] * factor <= gofs[1] * 2, 'gof: %s' % gofs


@testing.requires_testing_data
def test_dipole_fitting_fixed():
    """Test dipole fitting with a fixed position."""
    import matplotlib.pyplot as plt
    tpeak = 0.073
    sphere = make_sphere_model(head_radius=0.1)
    evoked = read_evokeds(fname_evo, baseline=(None, 0))[0]
    evoked.pick_types(meg=True)
    t_idx = np.argmin(np.abs(tpeak - evoked.times))
    evoked_crop = evoked.copy().crop(tpeak, tpeak)
    assert_equal(len(evoked_crop.times), 1)
    cov = read_cov(fname_cov)
    dip_seq, resid = fit_dipole(evoked_crop, cov, sphere)
    assert isinstance(dip_seq, Dipole)
    assert isinstance(resid, Evoked)
    assert_equal(len(dip_seq.times), 1)
    pos, ori, gof = dip_seq.pos[0], dip_seq.ori[0], dip_seq.gof[0]
    amp = dip_seq.amplitude[0]
    # Fix position, allow orientation to change
    dip_free, resid_free = fit_dipole(evoked, cov, sphere, pos=pos)
    assert isinstance(dip_free, Dipole)
    assert isinstance(resid_free, Evoked)
    assert_allclose(dip_free.times, evoked.times)
    assert_allclose(np.tile(pos[np.newaxis], (len(evoked.times), 1)),
                    dip_free.pos)
    assert_allclose(ori, dip_free.ori[t_idx])  # should find same ori
    assert (np.dot(dip_free.ori, ori).mean() < 0.9)  # but few the same
    assert_allclose(gof, dip_free.gof[t_idx])  # ... same gof
    assert_allclose(amp, dip_free.amplitude[t_idx])  # and same amp
    assert_allclose(resid.data, resid_free.data[:, [t_idx]])
    # Fix position and orientation
    dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
    assert (isinstance(dip_fixed, DipoleFixed))
    assert_allclose(dip_fixed.times, evoked.times)
    assert_allclose(dip_fixed.info['chs'][0]['loc'][:3], pos)
    assert_allclose(dip_fixed.info['chs'][0]['loc'][3:6], ori)
    assert_allclose(dip_fixed.data[1, t_idx], gof)
    assert_allclose(resid.data, resid_fixed.data[:, [t_idx]])
    _check_roundtrip_fixed(dip_fixed)
    # bad resetting
    evoked.info['bads'] = [evoked.ch_names[3]]
    dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
    # Degenerate conditions
    evoked_nan = evoked.copy().crop(0, 0)
    evoked_nan.data[0, 0] = None
    pytest.raises(ValueError, fit_dipole, evoked_nan, cov, sphere)
    pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, ori=[1, 0, 0])
    pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0, 0, 0],
                  ori=[2, 0, 0])
    pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0.1, 0, 0])
    # copying
    dip_fixed_2 = dip_fixed.copy()
    dip_fixed_2.data[:] = 0.
    assert not np.isclose(dip_fixed.data, 0., atol=1e-20).any()
    # plotting
    plt.close('all')
    dip_fixed.plot()
    plt.close('all')


@testing.requires_testing_data
def test_len_index_dipoles():
    """Test len and indexing of Dipole objects."""
    dipole = read_dipole(fname_dip)
    d0 = dipole[0]
    d1 = dipole[:1]
    _check_dipole(d0, 1)
    _check_dipole(d1, 1)
    _compare_dipoles(d0, d1)
    mask = dipole.gof > 15
    idx = np.where(mask)[0]
    d_mask = dipole[mask]
    _check_dipole(d_mask, 4)
    _compare_dipoles(d_mask, dipole[idx])


@testing.requires_testing_data
def test_min_distance_fit_dipole():
    """Test dipole min_dist to inner_skull."""
    subject = 'sample'
    raw = read_raw_fif(fname_raw, preload=True)

    # select eeg data
    picks = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
    info = pick_info(raw.info, picks)

    # Let's use cov = Identity
    cov = read_cov(fname_cov)
    cov['data'] = np.eye(cov['data'].shape[0])

    # Simulated scal map
    simulated_scalp_map = np.zeros(picks.shape[0])
    simulated_scalp_map[27:34] = 1

    simulated_scalp_map = simulated_scalp_map[:, None]

    evoked = EvokedArray(simulated_scalp_map, info, tmin=0)

    min_dist = 5.  # distance in mm

    bem = read_bem_solution(fname_bem)
    dip, residual = fit_dipole(evoked, cov, bem, fname_trans,
                               min_dist=min_dist)
    assert isinstance(residual, Evoked)

    dist = _compute_depth(dip, fname_bem, fname_trans, subject, subjects_dir)

    # Constraints are not exact, so bump the minimum slightly
    assert (min_dist - 0.1 < (dist[0] * 1000.) < (min_dist + 1.))

    pytest.raises(ValueError, fit_dipole, evoked, cov, fname_bem, fname_trans,
                  -1.)


def _compute_depth(dip, fname_bem, fname_trans, subject, subjects_dir):
    """Compute dipole depth."""
    trans = _get_trans(fname_trans)[0]
    bem = read_bem_solution(fname_bem)
    surf = _bem_find_surface(bem, 'inner_skull')
    points = surf['rr']
    points = apply_trans(trans['trans'], points)
    depth = _compute_nearest(points, dip.pos, return_dists=True)[1][0]
    return np.ravel(depth)


@testing.requires_testing_data
def test_accuracy():
    """Test dipole fitting to sub-mm accuracy."""
    evoked = read_evokeds(fname_evo)[0].crop(0., 0.,)
    evoked.pick_types(meg=True, eeg=False)
    evoked.pick_channels([c for c in evoked.ch_names[::4]])
    for rad, perc_90 in zip((0.09, None), (0.002, 0.004)):
        bem = make_sphere_model('auto', rad, evoked.info,
                                relative_radii=(0.999, 0.998, 0.997, 0.995))
        src = read_source_spaces(fname_src)

        fwd = make_forward_solution(evoked.info, None, src, bem)
        fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=True)
        vertices = [src[0]['vertno'], src[1]['vertno']]
        n_vertices = sum(len(v) for v in vertices)
        amp = 10e-9
        data = np.eye(n_vertices + 1)[:n_vertices]
        data[-1, -1] = 1.
        data *= amp
        stc = SourceEstimate(data, vertices, 0., 1e-3, 'sample')
        evoked.info.normalize_proj()
        sim = simulate_evoked(fwd, stc, evoked.info, cov=None, nave=np.inf)

        cov = make_ad_hoc_cov(evoked.info)
        dip = fit_dipole(sim, cov, bem, min_dist=0.001)[0]

        ds = []
        for vi in range(n_vertices):
            if vi < len(vertices[0]):
                hi = 0
                vertno = vi
            else:
                hi = 1
                vertno = vi - len(vertices[0])
            vertno = src[hi]['vertno'][vertno]
            rr = src[hi]['rr'][vertno]
            d = np.sqrt(np.sum((rr - dip.pos[vi]) ** 2))
            ds.append(d)
        # make sure that our median is sub-mm and the large majority are very
        # close (we expect some to be off by a bit e.g. because they are
        # radial)
        assert ((np.percentile(ds, [50, 90]) < [0.0005, perc_90]).all())


@testing.requires_testing_data
def test_dipole_fixed():
    """Test reading a fixed-position dipole (from Xfit)."""
    dip = read_dipole(fname_xfit_dip)
    # print the representation of the object DipoleFixed
    print(dip)

    _check_roundtrip_fixed(dip)
    with pytest.warns(RuntimeWarning, match='extra fields'):
        dip_txt = read_dipole(fname_xfit_dip_txt)
    assert_allclose(dip.info['chs'][0]['loc'][:3], dip_txt.pos[0])
    assert_allclose(dip_txt.amplitude[0], 12.1e-9)
    with pytest.warns(RuntimeWarning, match='extra fields'):
        dip_txt_seq = read_dipole(fname_xfit_seq_txt)
    assert_allclose(dip_txt_seq.gof, [27.3, 46.4, 43.7, 41., 37.3, 32.5])


def _check_roundtrip_fixed(dip):
    """Check roundtrip IO for fixed dipoles."""
    tempdir = _TempDir()
    dip.save(op.join(tempdir, 'test-dip.fif.gz'))
    dip_read = read_dipole(op.join(tempdir, 'test-dip.fif.gz'))
    assert_allclose(dip_read.data, dip_read.data)
    assert_allclose(dip_read.times, dip.times)
    assert_equal(dip_read.info['xplotter_layout'], dip.info['xplotter_layout'])
    assert_equal(dip_read.ch_names, dip.ch_names)
    for ch_1, ch_2 in zip(dip_read.info['chs'], dip.info['chs']):
        assert_equal(ch_1['ch_name'], ch_2['ch_name'])
        for key in ('loc', 'kind', 'unit_mul', 'range', 'coord_frame', 'unit',
                    'cal', 'coil_type', 'scanno', 'logno'):
            assert_allclose(ch_1[key], ch_2[key], err_msg=key)


def test_get_phantom_dipoles():
    """Test getting phantom dipole locations."""
    pytest.raises(ValueError, get_phantom_dipoles, 0)
    pytest.raises(ValueError, get_phantom_dipoles, 'foo')
    for kind in ('vectorview', 'otaniemi'):
        pos, ori = get_phantom_dipoles(kind)
        assert_equal(pos.shape, (32, 3))
        assert_equal(ori.shape, (32, 3))


@testing.requires_testing_data
def test_confidence():
    """Test confidence limits."""
    tempdir = _TempDir()
    evoked = read_evokeds(fname_evo_full, 'Left Auditory', baseline=(None, 0))
    evoked.crop(0.08, 0.08).pick_types()  # MEG-only
    cov = make_ad_hoc_cov(evoked.info)
    sphere = make_sphere_model((0., 0., 0.04), 0.08)
    dip_py = fit_dipole(evoked, cov, sphere)[0]
    fname_test = op.join(tempdir, 'temp-dip.txt')
    dip_py.save(fname_test)
    dip_read = read_dipole(fname_test)
    with pytest.warns(RuntimeWarning, match="'noise/ft/cm', 'prob'"):
        dip_xfit = read_dipole(fname_dip_xfit)
    for dip_check in (dip_py, dip_read):
        assert_allclose(dip_check.pos, dip_xfit.pos, atol=5e-4)  # < 0.5 mm
        assert_allclose(dip_check.gof, dip_xfit.gof, atol=5e-1)  # < 0.5%
        assert_array_equal(dip_check.nfree, dip_xfit.nfree)  # exact match
        assert_allclose(dip_check.khi2, dip_xfit.khi2, rtol=2e-2)  # 2% miss
        assert_equal(set(dip_check.conf.keys()), set(dip_xfit.conf.keys()))
        for key in sorted(dip_check.conf.keys()):
            assert_allclose(dip_check.conf[key], dip_xfit.conf[key],
                            rtol=1.5e-1, err_msg=key)


run_tests_if_main(False)