1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
|
import os.path as op
import os
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_equal, assert_allclose)
import pytest
from mne import (read_events, write_events, make_fixed_length_events,
find_events, pick_events, find_stim_steps, pick_channels,
read_evokeds, Epochs, create_info, compute_raw_covariance)
from mne.io import read_raw_fif, RawArray
from mne.utils import _TempDir, run_tests_if_main
from mne.event import define_target_events, merge_events, AcqParserFIF
from mne.datasets import testing
base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
fname = op.join(base_dir, 'test-eve.fif')
fname_gz = op.join(base_dir, 'test-eve.fif.gz')
fname_1 = op.join(base_dir, 'test-1-eve.fif')
fname_txt = op.join(base_dir, 'test-eve.eve')
fname_txt_1 = op.join(base_dir, 'test-eve-1.eve')
# for testing Elekta averager
elekta_base_dir = op.join(testing.data_path(download=False), 'misc')
fname_raw_elekta = op.join(elekta_base_dir, 'test_elekta_3ch_raw.fif')
fname_ave_elekta = op.join(elekta_base_dir, 'test_elekta-ave.fif')
# using mne_process_raw --raw test_raw.fif --eventsout test-mpr-eve.eve:
fname_txt_mpr = op.join(base_dir, 'test-mpr-eve.eve')
fname_old_txt = op.join(base_dir, 'test-eve-old-style.eve')
raw_fname = op.join(base_dir, 'test_raw.fif')
def test_fix_stim():
"""Test fixing stim STI016 for Neuromag."""
raw = read_raw_fif(raw_fname, preload=True)
# 32768 (016) + 3 (002+001) bits gets incorrectly coded during acquisition
raw._data[raw.ch_names.index('STI 014'), :3] = [0, -32765, 0]
with pytest.warns(RuntimeWarning, match='STI016'):
events = find_events(raw, 'STI 014')
assert_array_equal(events[0], [raw.first_samp + 1, 0, 32765])
events = find_events(raw, 'STI 014', uint_cast=True)
assert_array_equal(events[0], [raw.first_samp + 1, 0, 32771])
def test_add_events():
"""Test adding events to a Raw file."""
# need preload
raw = read_raw_fif(raw_fname)
events = np.array([[raw.first_samp, 0, 1]])
pytest.raises(RuntimeError, raw.add_events, events, 'STI 014')
raw = read_raw_fif(raw_fname, preload=True)
orig_events = find_events(raw, 'STI 014')
# add some events
events = np.array([raw.first_samp, 0, 1])
pytest.raises(ValueError, raw.add_events, events, 'STI 014') # bad shape
events[0] = raw.first_samp + raw.n_times + 1
events = events[np.newaxis, :]
pytest.raises(ValueError, raw.add_events, events, 'STI 014') # bad time
events[0, 0] = raw.first_samp - 1
pytest.raises(ValueError, raw.add_events, events, 'STI 014') # bad time
events[0, 0] = raw.first_samp + 1 # can't actually be first_samp
pytest.raises(ValueError, raw.add_events, events, 'STI FOO')
raw.add_events(events, 'STI 014')
new_events = find_events(raw, 'STI 014')
assert_array_equal(new_events, np.concatenate((events, orig_events)))
raw.add_events(events, 'STI 014', replace=True)
new_events = find_events(raw, 'STI 014')
assert_array_equal(new_events, events)
def test_merge_events():
"""Test event merging."""
events_orig = [[1, 0, 1], [3, 0, 2], [10, 0, 3], [20, 0, 4]]
events_replacement = \
[[1, 0, 12],
[3, 0, 12],
[10, 0, 34],
[20, 0, 34]]
events_no_replacement = \
[[1, 0, 1],
[1, 0, 12],
[1, 0, 1234],
[3, 0, 2],
[3, 0, 12],
[3, 0, 1234],
[10, 0, 3],
[10, 0, 34],
[10, 0, 1234],
[20, 0, 4],
[20, 0, 34],
[20, 0, 1234]]
for replace_events, events_good in [(True, events_replacement),
(False, events_no_replacement)]:
events = merge_events(events_orig, [1, 2], 12, replace_events)
events = merge_events(events, [3, 4], 34, replace_events)
events = merge_events(events, [1, 2, 3, 4], 1234, replace_events)
assert_array_equal(events, events_good)
def test_io_events():
"""Test IO for events."""
tempdir = _TempDir()
# Test binary fif IO
events = read_events(fname) # Use as the gold standard
write_events(op.join(tempdir, 'events-eve.fif'), events)
events2 = read_events(op.join(tempdir, 'events-eve.fif'))
assert_array_almost_equal(events, events2)
# Test binary fif.gz IO
events2 = read_events(fname_gz) # Use as the gold standard
assert_array_almost_equal(events, events2)
write_events(op.join(tempdir, 'events-eve.fif.gz'), events2)
events2 = read_events(op.join(tempdir, 'events-eve.fif.gz'))
assert_array_almost_equal(events, events2)
# Test new format text file IO
write_events(op.join(tempdir, 'events.eve'), events)
events2 = read_events(op.join(tempdir, 'events.eve'))
assert_array_almost_equal(events, events2)
with pytest.warns(RuntimeWarning, match='first row of'):
events2 = read_events(fname_txt_mpr, mask=0, mask_type='not_and')
assert_array_almost_equal(events, events2)
# Test old format text file IO
events2 = read_events(fname_old_txt)
assert_array_almost_equal(events, events2)
write_events(op.join(tempdir, 'events.eve'), events)
events2 = read_events(op.join(tempdir, 'events.eve'))
assert_array_almost_equal(events, events2)
# Test event selection
a = read_events(op.join(tempdir, 'events-eve.fif'), include=1)
b = read_events(op.join(tempdir, 'events-eve.fif'), include=[1])
c = read_events(op.join(tempdir, 'events-eve.fif'),
exclude=[2, 3, 4, 5, 32])
d = read_events(op.join(tempdir, 'events-eve.fif'), include=1,
exclude=[2, 3])
assert_array_equal(a, b)
assert_array_equal(a, c)
assert_array_equal(a, d)
# test reading file with mask=None
events2 = events.copy()
events2[:, -1] = range(events2.shape[0])
write_events(op.join(tempdir, 'events-eve.fif'), events2)
events3 = read_events(op.join(tempdir, 'events-eve.fif'), mask=None)
assert_array_almost_equal(events2, events3)
# Test binary file IO for 1 event
events = read_events(fname_1) # Use as the new gold standard
write_events(op.join(tempdir, 'events-eve.fif'), events)
events2 = read_events(op.join(tempdir, 'events-eve.fif'))
assert_array_almost_equal(events, events2)
# Test text file IO for 1 event
write_events(op.join(tempdir, 'events.eve'), events)
events2 = read_events(op.join(tempdir, 'events.eve'))
assert_array_almost_equal(events, events2)
# test warnings on bad filenames
fname2 = op.join(tempdir, 'test-bad-name.fif')
with pytest.warns(RuntimeWarning, match='-eve.fif'):
write_events(fname2, events)
with pytest.warns(RuntimeWarning, match='-eve.fif'):
read_events(fname2)
def test_find_events():
"""Test find events in raw file."""
events = read_events(fname)
raw = read_raw_fif(raw_fname, preload=True)
# let's test the defaulting behavior while we're at it
extra_ends = ['', '_1']
orig_envs = [os.getenv('MNE_STIM_CHANNEL%s' % s) for s in extra_ends]
os.environ['MNE_STIM_CHANNEL'] = 'STI 014'
if 'MNE_STIM_CHANNEL_1' in os.environ:
del os.environ['MNE_STIM_CHANNEL_1']
events2 = find_events(raw)
assert_array_almost_equal(events, events2)
# now test with mask
events11 = find_events(raw, mask=3, mask_type='not_and')
with pytest.warns(RuntimeWarning, match='events masked'):
events22 = read_events(fname, mask=3, mask_type='not_and')
assert_array_equal(events11, events22)
# Reset some data for ease of comparison
raw._first_samps[0] = 0
raw.info['sfreq'] = 1000
raw._update_times()
stim_channel = 'STI 014'
stim_channel_idx = pick_channels(raw.info['ch_names'],
include=[stim_channel])
# test digital masking
raw._data[stim_channel_idx, :5] = np.arange(5)
raw._data[stim_channel_idx, 5:] = 0
# 1 == '0b1', 2 == '0b10', 3 == '0b11', 4 == '0b100'
pytest.raises(TypeError, find_events, raw, mask="0", mask_type='and')
pytest.raises(ValueError, find_events, raw, mask=0, mask_type='blah')
# testing mask_type. default = 'not_and'
assert_array_equal(find_events(raw, shortest_event=1, mask=1,
mask_type='not_and'),
[[2, 0, 2], [4, 2, 4]])
assert_array_equal(find_events(raw, shortest_event=1, mask=2,
mask_type='not_and'),
[[1, 0, 1], [3, 0, 1], [4, 1, 4]])
assert_array_equal(find_events(raw, shortest_event=1, mask=3,
mask_type='not_and'),
[[4, 0, 4]])
assert_array_equal(find_events(raw, shortest_event=1, mask=4,
mask_type='not_and'),
[[1, 0, 1], [2, 1, 2], [3, 2, 3]])
# testing with mask_type = 'and'
assert_array_equal(find_events(raw, shortest_event=1, mask=1,
mask_type='and'),
[[1, 0, 1], [3, 0, 1]])
assert_array_equal(find_events(raw, shortest_event=1, mask=2,
mask_type='and'),
[[2, 0, 2]])
assert_array_equal(find_events(raw, shortest_event=1, mask=3,
mask_type='and'),
[[1, 0, 1], [2, 1, 2], [3, 2, 3]])
assert_array_equal(find_events(raw, shortest_event=1, mask=4,
mask_type='and'),
[[4, 0, 4]])
# test empty events channel
raw._data[stim_channel_idx, :] = 0
assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))
raw._data[stim_channel_idx, :4] = 1
assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))
raw._data[stim_channel_idx, -1:] = 9
assert_array_equal(find_events(raw), [[14399, 0, 9]])
# Test that we can handle consecutive events with no gap
raw._data[stim_channel_idx, 10:20] = 5
raw._data[stim_channel_idx, 20:30] = 6
raw._data[stim_channel_idx, 30:32] = 5
raw._data[stim_channel_idx, 40] = 6
assert_array_equal(find_events(raw, consecutive=False),
[[10, 0, 5],
[40, 0, 6],
[14399, 0, 9]])
assert_array_equal(find_events(raw, consecutive=True),
[[10, 0, 5],
[20, 5, 6],
[30, 6, 5],
[40, 0, 6],
[14399, 0, 9]])
assert_array_equal(find_events(raw),
[[10, 0, 5],
[20, 5, 6],
[40, 0, 6],
[14399, 0, 9]])
assert_array_equal(find_events(raw, output='offset', consecutive=False),
[[31, 0, 5],
[40, 0, 6],
[14399, 0, 9]])
assert_array_equal(find_events(raw, output='offset', consecutive=True),
[[19, 6, 5],
[29, 5, 6],
[31, 0, 5],
[40, 0, 6],
[14399, 0, 9]])
pytest.raises(ValueError, find_events, raw, output='step',
consecutive=True)
assert_array_equal(find_events(raw, output='step', consecutive=True,
shortest_event=1),
[[10, 0, 5],
[20, 5, 6],
[30, 6, 5],
[32, 5, 0],
[40, 0, 6],
[41, 6, 0],
[14399, 0, 9],
[14400, 9, 0]])
assert_array_equal(find_events(raw, output='offset'),
[[19, 6, 5],
[31, 0, 6],
[40, 0, 6],
[14399, 0, 9]])
assert_array_equal(find_events(raw, consecutive=False, min_duration=0.002),
[[10, 0, 5]])
assert_array_equal(find_events(raw, consecutive=True, min_duration=0.002),
[[10, 0, 5],
[20, 5, 6],
[30, 6, 5]])
assert_array_equal(find_events(raw, output='offset', consecutive=False,
min_duration=0.002),
[[31, 0, 5]])
assert_array_equal(find_events(raw, output='offset', consecutive=True,
min_duration=0.002),
[[19, 6, 5],
[29, 5, 6],
[31, 0, 5]])
assert_array_equal(find_events(raw, consecutive=True, min_duration=0.003),
[[10, 0, 5],
[20, 5, 6]])
# test find_stim_steps merge parameter
raw._data[stim_channel_idx, :] = 0
raw._data[stim_channel_idx, 0] = 1
raw._data[stim_channel_idx, 10] = 4
raw._data[stim_channel_idx, 11:20] = 5
assert_array_equal(find_stim_steps(raw, pad_start=0, merge=0,
stim_channel=stim_channel),
[[0, 0, 1],
[1, 1, 0],
[10, 0, 4],
[11, 4, 5],
[20, 5, 0]])
assert_array_equal(find_stim_steps(raw, merge=-1,
stim_channel=stim_channel),
[[1, 1, 0],
[10, 0, 5],
[20, 5, 0]])
assert_array_equal(find_stim_steps(raw, merge=1,
stim_channel=stim_channel),
[[1, 1, 0],
[11, 0, 5],
[20, 5, 0]])
# put back the env vars we trampled on
for s, o in zip(extra_ends, orig_envs):
if o is not None:
os.environ['MNE_STIM_CHANNEL%s' % s] = o
# Test with list of stim channels
raw._data[stim_channel_idx, 1:101] = np.zeros(100)
raw._data[stim_channel_idx, 10:11] = 1
raw._data[stim_channel_idx, 30:31] = 3
stim_channel2 = 'STI 015'
stim_channel2_idx = pick_channels(raw.info['ch_names'],
include=[stim_channel2])
raw._data[stim_channel2_idx, :] = 0
raw._data[stim_channel2_idx, :100] = raw._data[stim_channel_idx, 5:105]
events1 = find_events(raw, stim_channel='STI 014')
events2 = events1.copy()
events2[:, 0] -= 5
events = find_events(raw, stim_channel=['STI 014', stim_channel2])
assert_array_equal(events[::2], events2)
assert_array_equal(events[1::2], events1)
# test initial_event argument
info = create_info(['MYSTI'], 1000, 'stim')
data = np.zeros((1, 1000))
raw = RawArray(data, info)
data[0, :10] = 100
data[0, 30:40] = 200
assert_array_equal(find_events(raw, 'MYSTI'), [[30, 0, 200]])
assert_array_equal(find_events(raw, 'MYSTI', initial_event=True),
[[0, 0, 100], [30, 0, 200]])
def test_pick_events():
"""Test pick events in a events ndarray."""
events = np.array([[1, 0, 1],
[2, 1, 0],
[3, 0, 4],
[4, 4, 2],
[5, 2, 0]])
assert_array_equal(pick_events(events, include=[1, 4], exclude=4),
[[1, 0, 1],
[3, 0, 4]])
assert_array_equal(pick_events(events, exclude=[0, 2]),
[[1, 0, 1],
[3, 0, 4]])
assert_array_equal(pick_events(events, include=[1, 2], step=True),
[[1, 0, 1],
[2, 1, 0],
[4, 4, 2],
[5, 2, 0]])
def test_make_fixed_length_events():
"""Test making events of a fixed length."""
raw = read_raw_fif(raw_fname)
events = make_fixed_length_events(raw, id=1)
assert events.shape[1] == 3
events_zero = make_fixed_length_events(raw, 1, first_samp=False)
assert_equal(events_zero[0, 0], 0)
assert_array_equal(events_zero[:, 0], events[:, 0] - raw.first_samp)
# With limits
tmin, tmax = raw.times[[0, -1]]
duration = tmax - tmin
events = make_fixed_length_events(raw, 1, tmin, tmax, duration)
assert_equal(events.shape[0], 1)
# With bad limits (no resulting events)
pytest.raises(ValueError, make_fixed_length_events, raw, 1,
tmin, tmax - 1e-3, duration)
# not raw, bad id or duration
pytest.raises(TypeError, make_fixed_length_events, raw, 2.3)
pytest.raises(TypeError, make_fixed_length_events, 'not raw', 2)
pytest.raises(TypeError, make_fixed_length_events, raw, 23, tmin, tmax,
'abc')
# Let's try some ugly sample rate/sample count combos
data = np.random.RandomState(0).randn(1, 27768)
# This breaks unless np.round() is used in make_fixed_length_events
info = create_info(1, 155.4499969482422)
raw = RawArray(data, info)
events = make_fixed_length_events(raw, 1, duration=raw.times[-1])
assert events[0, 0] == 0
assert len(events) == 1
# Without use_rounding=True this breaks
raw = RawArray(data[:, :21216], info)
events = make_fixed_length_events(raw, 1, duration=raw.times[-1])
assert events[0, 0] == 0
assert len(events) == 1
# Make sure it gets used properly by compute_raw_covariance
cov = compute_raw_covariance(raw, tstep=None)
expected = np.cov(data[:, :21216])
np.testing.assert_allclose(cov['data'], expected, atol=1e-12)
def test_define_events():
"""Test defining response events."""
events = read_events(fname)
raw = read_raw_fif(raw_fname)
events_, _ = define_target_events(events, 5, 32, raw.info['sfreq'],
.2, 0.7, 42, 99)
n_target = events[events[:, 2] == 5].shape[0]
n_miss = events_[events_[:, 2] == 99].shape[0]
n_target_ = events_[events_[:, 2] == 42].shape[0]
assert (n_target_ == (n_target - n_miss))
events = np.array([[0, 0, 1],
[375, 0, 2],
[500, 0, 1],
[875, 0, 3],
[1000, 0, 1],
[1375, 0, 3],
[1100, 0, 1],
[1475, 0, 2],
[1500, 0, 1],
[1875, 0, 2]])
true_lag_nofill = [1500., 1500., 1500.]
true_lag_fill = [1500., np.nan, np.nan, 1500., 1500.]
n, lag_nofill = define_target_events(events, 1, 2, 250., 1.4, 1.6, 5)
n, lag_fill = define_target_events(events, 1, 2, 250., 1.4, 1.6, 5, 99)
assert_array_equal(true_lag_fill, lag_fill)
assert_array_equal(true_lag_nofill, lag_nofill)
@testing.requires_testing_data
def test_acqparser():
"""Test AcqParserFIF."""
# no acquisition parameters
pytest.raises(ValueError, AcqParserFIF, {'acq_pars': ''})
# invalid acquisition parameters
pytest.raises(ValueError, AcqParserFIF, {'acq_pars': 'baaa'})
pytest.raises(ValueError, AcqParserFIF, {'acq_pars': 'ERFVersion\n1'})
# test oldish file
raw = read_raw_fif(raw_fname, preload=False)
acqp = AcqParserFIF(raw.info)
# test __repr__()
assert (repr(acqp))
# old file should trigger compat mode
assert (acqp.compat)
# count events and categories
assert_equal(len(acqp.categories), 6)
assert_equal(len(acqp._categories), 17)
assert_equal(len(acqp.events), 6)
assert_equal(len(acqp._events), 17)
# get category
assert (acqp['Surprise visual'])
# test TRIUX file
raw = read_raw_fif(fname_raw_elekta, preload=False)
acqp = raw.acqparser
assert (acqp is raw.acqparser) # same one, not regenerated
# test __repr__()
assert (repr(acqp))
# this file should not be in compatibility mode
assert (not acqp.compat)
# nonexistent category
pytest.raises(KeyError, acqp.__getitem__, 'does not exist')
pytest.raises(KeyError, acqp.get_condition, raw, 'foo')
# category not a string
pytest.raises(TypeError, acqp.__getitem__, 0)
# number of events / categories
assert_equal(len(acqp), 7)
assert_equal(len(acqp.categories), 7)
assert_equal(len(acqp._categories), 32)
assert_equal(len(acqp.events), 6)
assert_equal(len(acqp._events), 32)
# get category
assert (acqp['Test event 5'])
@testing.requires_testing_data
def test_acqparser_averaging():
"""Test averaging with AcqParserFIF vs. Elekta software."""
raw = read_raw_fif(fname_raw_elekta, preload=True)
acqp = AcqParserFIF(raw.info)
for cat in acqp.categories:
# XXX datasets match only when baseline is applied to both,
# not sure where relative dc shift comes from
cond = acqp.get_condition(raw, cat)
eps = Epochs(raw, baseline=(-.05, 0), **cond)
ev = eps.average()
ev_ref = read_evokeds(fname_ave_elekta, cat['comment'],
baseline=(-.05, 0), proj=False)
ev_mag = ev.copy()
ev_mag.pick_channels(['MEG0111'])
ev_grad = ev.copy()
ev_grad.pick_channels(['MEG2643', 'MEG1622'])
ev_ref_mag = ev_ref.copy()
ev_ref_mag.pick_channels(['MEG0111'])
ev_ref_grad = ev_ref.copy()
ev_ref_grad.pick_channels(['MEG2643', 'MEG1622'])
assert_allclose(ev_mag.data, ev_ref_mag.data,
rtol=0, atol=1e-15) # tol = 1 fT
# Elekta put these in a different order
assert ev_grad.ch_names[::-1] == ev_ref_grad.ch_names
assert_allclose(ev_grad.data[::-1], ev_ref_grad.data,
rtol=0, atol=1e-13) # tol = 1 fT/cm
run_tests_if_main()
|