File: test_evoked.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (602 lines) | stat: -rw-r--r-- 23,775 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#         Denis Engemann <denis.engemann@gmail.com>
#         Andrew Dykstra <andrew.r.dykstra@gmail.com>
#         Mads Jensen <mje.mads@gmail.com>
#
# License: BSD (3-clause)

import os.path as op
from copy import deepcopy

import numpy as np
from scipy import fftpack
from numpy.testing import (assert_array_almost_equal, assert_equal,
                           assert_array_equal, assert_allclose)
import pytest

from mne import (equalize_channels, pick_types, read_evokeds, write_evokeds,
                 grand_average, combine_evoked, create_info, read_events,
                 Epochs, EpochsArray)
from mne.evoked import _get_peak, Evoked, EvokedArray
from mne.io import read_raw_fif
from mne.utils import (_TempDir, requires_pandas, requires_version,
                       run_tests_if_main)
from mne.externals.six.moves import cPickle as pickle

base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
fname = op.join(base_dir, 'test-ave.fif')
fname_gz = op.join(base_dir, 'test-ave.fif.gz')
raw_fname = op.join(base_dir, 'test_raw.fif')
event_name = op.join(base_dir, 'test-eve.fif')


def test_decim():
    """Test evoked decimation."""
    rng = np.random.RandomState(0)
    n_epochs, n_channels, n_times = 5, 10, 20
    dec_1, dec_2 = 2, 3
    decim = dec_1 * dec_2
    sfreq = 1000.
    sfreq_new = sfreq / decim
    data = rng.randn(n_epochs, n_channels, n_times)
    events = np.array([np.arange(n_epochs), [0] * n_epochs, [1] * n_epochs]).T
    info = create_info(n_channels, sfreq, 'eeg')
    info['lowpass'] = sfreq_new / float(decim)
    epochs = EpochsArray(data, info, events)
    data_epochs = epochs.copy().decimate(decim).get_data()
    data_epochs_2 = epochs.copy().decimate(decim, offset=1).get_data()
    data_epochs_3 = epochs.decimate(dec_1).decimate(dec_2).get_data()
    assert_array_equal(data_epochs, data[:, :, ::decim])
    assert_array_equal(data_epochs_2, data[:, :, 1::decim])
    assert_array_equal(data_epochs, data_epochs_3)

    # Now let's do it with some real data
    raw = read_raw_fif(raw_fname)
    events = read_events(event_name)
    sfreq_new = raw.info['sfreq'] / decim
    raw.info['lowpass'] = sfreq_new / 4.  # suppress aliasing warnings
    picks = pick_types(raw.info, meg=True, eeg=True, exclude=())
    epochs = Epochs(raw, events, 1, -0.2, 0.5, picks=picks, preload=True)
    for offset in (0, 1):
        ev_ep_decim = epochs.copy().decimate(decim, offset).average()
        ev_decim = epochs.average().decimate(decim, offset)
        expected_times = epochs.times[offset::decim]
        assert_allclose(ev_decim.times, expected_times)
        assert_allclose(ev_ep_decim.times, expected_times)
        expected_data = epochs.get_data()[:, :, offset::decim].mean(axis=0)
        assert_allclose(ev_decim.data, expected_data)
        assert_allclose(ev_ep_decim.data, expected_data)
        assert_equal(ev_decim.info['sfreq'], sfreq_new)
        assert_array_equal(ev_decim.times, expected_times)


@requires_version('scipy', '0.14')
def test_savgol_filter():
    """Test savgol filtering."""
    h_freq = 10.
    evoked = read_evokeds(fname, 0)
    freqs = fftpack.fftfreq(len(evoked.times), 1. / evoked.info['sfreq'])
    data = np.abs(fftpack.fft(evoked.data))
    match_mask = np.logical_and(freqs >= 0, freqs <= h_freq / 2.)
    mismatch_mask = np.logical_and(freqs >= h_freq * 2, freqs < 50.)
    pytest.raises(ValueError, evoked.savgol_filter, evoked.info['sfreq'])
    evoked_sg = evoked.copy().savgol_filter(h_freq)
    data_filt = np.abs(fftpack.fft(evoked_sg.data))
    # decent in pass-band
    assert_allclose(np.mean(data[:, match_mask], 0),
                    np.mean(data_filt[:, match_mask], 0),
                    rtol=1e-4, atol=1e-2)
    # suppression in stop-band
    assert (np.mean(data[:, mismatch_mask]) >
            np.mean(data_filt[:, mismatch_mask]) * 5)
    # original preserved
    assert_allclose(data, np.abs(fftpack.fft(evoked.data)), atol=1e-16)


def test_hash_evoked():
    """Test evoked hashing."""
    ave = read_evokeds(fname, 0)
    ave_2 = read_evokeds(fname, 0)
    assert_equal(hash(ave), hash(ave_2))
    # do NOT use assert_equal here, failing output is terrible
    assert (pickle.dumps(ave) == pickle.dumps(ave_2))

    ave_2.data[0, 0] -= 1
    assert hash(ave) != hash(ave_2)


@pytest.mark.slowtest
def test_io_evoked():
    """Test IO for evoked data (fif + gz) with integer and str args."""
    tempdir = _TempDir()
    ave = read_evokeds(fname, 0)

    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave)
    ave2 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))[0]

    # This not being assert_array_equal due to windows rounding
    assert (np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-3))
    assert_array_almost_equal(ave.times, ave2.times)
    assert_equal(ave.nave, ave2.nave)
    assert_equal(ave._aspect_kind, ave2._aspect_kind)
    assert_equal(ave.kind, ave2.kind)
    assert_equal(ave.last, ave2.last)
    assert_equal(ave.first, ave2.first)
    assert (repr(ave))

    # test compressed i/o
    ave2 = read_evokeds(fname_gz, 0)
    assert (np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-8))

    # test str access
    condition = 'Left Auditory'
    pytest.raises(ValueError, read_evokeds, fname, condition, kind='stderr')
    pytest.raises(ValueError, read_evokeds, fname, condition,
                  kind='standard_error')
    ave3 = read_evokeds(fname, condition)
    assert_array_almost_equal(ave.data, ave3.data, 19)

    # test read_evokeds and write_evokeds
    aves1 = read_evokeds(fname)[1::2]
    aves2 = read_evokeds(fname, [1, 3])
    aves3 = read_evokeds(fname, ['Right Auditory', 'Right visual'])
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), aves1)
    aves4 = read_evokeds(op.join(tempdir, 'evoked-ave.fif'))
    for aves in [aves2, aves3, aves4]:
        for [av1, av2] in zip(aves1, aves):
            assert_array_almost_equal(av1.data, av2.data)
            assert_array_almost_equal(av1.times, av2.times)
            assert_equal(av1.nave, av2.nave)
            assert_equal(av1.kind, av2.kind)
            assert_equal(av1._aspect_kind, av2._aspect_kind)
            assert_equal(av1.last, av2.last)
            assert_equal(av1.first, av2.first)
            assert_equal(av1.comment, av2.comment)

    # test warnings on bad filenames
    fname2 = op.join(tempdir, 'test-bad-name.fif')
    with pytest.warns(RuntimeWarning, match='-ave.fif'):
        write_evokeds(fname2, ave)
    with pytest.warns(RuntimeWarning, match='-ave.fif'):
        read_evokeds(fname2)

    # constructor
    pytest.raises(TypeError, Evoked, fname)

    # MaxShield
    fname_ms = op.join(tempdir, 'test-ave.fif')
    assert (ave.info['maxshield'] is False)
    ave.info['maxshield'] = True
    ave.save(fname_ms)
    pytest.raises(ValueError, read_evokeds, fname_ms)
    with pytest.warns(RuntimeWarning, match='Elekta'):
        aves = read_evokeds(fname_ms, allow_maxshield=True)
    assert all(ave.info['maxshield'] is True for ave in aves)
    aves = read_evokeds(fname_ms, allow_maxshield='yes')
    assert (all(ave.info['maxshield'] is True for ave in aves))


def test_shift_time_evoked():
    """Test for shifting of time scale."""
    tempdir = _TempDir()
    # Shift backward
    ave = read_evokeds(fname, 0)
    ave.shift_time(-0.1, relative=True)
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave)

    # Shift forward twice the amount
    ave_bshift = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)
    ave_bshift.shift_time(0.2, relative=True)
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave_bshift)

    # Shift backward again
    ave_fshift = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)
    ave_fshift.shift_time(-0.1, relative=True)
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave_fshift)

    ave_normal = read_evokeds(fname, 0)
    ave_relative = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)

    assert_allclose(ave_normal.data, ave_relative.data, atol=1e-16, rtol=1e-3)
    assert_array_almost_equal(ave_normal.times, ave_relative.times, 10)

    assert_equal(ave_normal.last, ave_relative.last)
    assert_equal(ave_normal.first, ave_relative.first)

    # Absolute time shift
    ave = read_evokeds(fname, 0)
    ave.shift_time(-0.3, relative=False)
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave)

    ave_absolute = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)

    assert_allclose(ave_normal.data, ave_absolute.data, atol=1e-16, rtol=1e-3)
    assert_equal(ave_absolute.first, int(-0.3 * ave.info['sfreq']))


def test_evoked_resample():
    """Test resampling evoked data."""
    tempdir = _TempDir()
    # upsample, write it out, read it in
    ave = read_evokeds(fname, 0)
    sfreq_normal = ave.info['sfreq']
    ave.resample(2 * sfreq_normal, npad=100)
    write_evokeds(op.join(tempdir, 'evoked-ave.fif'), ave)
    ave_up = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)

    # compare it to the original
    ave_normal = read_evokeds(fname, 0)

    # and compare the original to the downsampled upsampled version
    ave_new = read_evokeds(op.join(tempdir, 'evoked-ave.fif'), 0)
    ave_new.resample(sfreq_normal, npad=100)

    assert_array_almost_equal(ave_normal.data, ave_new.data, 2)
    assert_array_almost_equal(ave_normal.times, ave_new.times)
    assert_equal(ave_normal.nave, ave_new.nave)
    assert_equal(ave_normal._aspect_kind, ave_new._aspect_kind)
    assert_equal(ave_normal.kind, ave_new.kind)
    assert_equal(ave_normal.last, ave_new.last)
    assert_equal(ave_normal.first, ave_new.first)

    # for the above to work, the upsampling just about had to, but
    # we'll add a couple extra checks anyway
    assert (len(ave_up.times) == 2 * len(ave_normal.times))
    assert (ave_up.data.shape[1] == 2 * ave_normal.data.shape[1])


def test_evoked_filter():
    """Test filtering evoked data."""
    # this is mostly a smoke test as the Epochs and raw tests are more complete
    ave = read_evokeds(fname, 0).pick_types('grad')
    ave.data[:] = 1.
    assert round(ave.info['lowpass']) == 172
    ave_filt = ave.copy().filter(None, 40., fir_design='firwin')
    assert ave_filt.info['lowpass'] == 40.
    assert_allclose(ave.data, 1., atol=1e-6)


def test_evoked_detrend():
    """Test for detrending evoked data."""
    ave = read_evokeds(fname, 0)
    ave_normal = read_evokeds(fname, 0)
    ave.detrend(0)
    ave_normal.data -= np.mean(ave_normal.data, axis=1)[:, np.newaxis]
    picks = pick_types(ave.info, meg=True, eeg=True, exclude='bads')
    assert_allclose(ave.data[picks], ave_normal.data[picks],
                    rtol=1e-8, atol=1e-16)


@requires_pandas
def test_to_data_frame():
    """Test evoked Pandas exporter."""
    ave = read_evokeds(fname, 0)
    pytest.raises(ValueError, ave.to_data_frame, picks=np.arange(400))
    df = ave.to_data_frame()
    assert ((df.columns == ave.ch_names).all())
    df = ave.to_data_frame(index=None).reset_index()
    assert ('time' in df.columns)
    assert_array_equal(df.values[:, 1], ave.data[0] * 1e13)
    assert_array_equal(df.values[:, 3], ave.data[2] * 1e15)


def test_evoked_proj():
    """Test SSP proj operations."""
    for proj in [True, False]:
        ave = read_evokeds(fname, condition=0, proj=proj)
        assert (all(p['active'] == proj for p in ave.info['projs']))

        # test adding / deleting proj
        if proj:
            pytest.raises(ValueError, ave.add_proj, [],
                          {'remove_existing': True})
            pytest.raises(ValueError, ave.del_proj, 0)
        else:
            projs = deepcopy(ave.info['projs'])
            n_proj = len(ave.info['projs'])
            ave.del_proj(0)
            assert (len(ave.info['projs']) == n_proj - 1)
            # Test that already existing projections are not added.
            ave.add_proj(projs, remove_existing=False)
            assert (len(ave.info['projs']) == n_proj)
            ave.add_proj(projs[:-1], remove_existing=True)
            assert (len(ave.info['projs']) == n_proj - 1)

    ave = read_evokeds(fname, condition=0, proj=False)
    data = ave.data.copy()
    ave.apply_proj()
    assert_allclose(np.dot(ave._projector, data), ave.data)


def test_get_peak():
    """Test peak getter."""
    evoked = read_evokeds(fname, condition=0, proj=True)
    pytest.raises(ValueError, evoked.get_peak, ch_type='mag', tmin=1)
    pytest.raises(ValueError, evoked.get_peak, ch_type='mag', tmax=0.9)
    pytest.raises(ValueError, evoked.get_peak, ch_type='mag', tmin=0.02,
                  tmax=0.01)
    pytest.raises(ValueError, evoked.get_peak, ch_type='mag', mode='foo')
    pytest.raises(RuntimeError, evoked.get_peak, ch_type=None, mode='foo')
    pytest.raises(ValueError, evoked.get_peak, ch_type='misc', mode='foo')

    ch_name, time_idx = evoked.get_peak(ch_type='mag')
    assert (ch_name in evoked.ch_names)
    assert (time_idx in evoked.times)

    ch_name, time_idx, max_amp = evoked.get_peak(ch_type='mag',
                                                 time_as_index=True,
                                                 return_amplitude=True)
    assert (time_idx < len(evoked.times))
    assert_equal(ch_name, 'MEG 1421')
    assert_allclose(max_amp, 7.17057e-13, rtol=1e-5)

    pytest.raises(ValueError, evoked.get_peak, ch_type='mag', merge_grads=True)
    ch_name, time_idx = evoked.get_peak(ch_type='grad', merge_grads=True)
    assert_equal(ch_name, 'MEG 244X')

    data = np.array([[0., 1.,  2.],
                     [0., -3.,  0]])

    times = np.array([.1, .2, .3])

    ch_idx, time_idx, max_amp = _get_peak(data, times, mode='abs')
    assert_equal(ch_idx, 1)
    assert_equal(time_idx, 1)
    assert_allclose(max_amp, -3.)

    ch_idx, time_idx, max_amp = _get_peak(data * -1, times, mode='neg')
    assert_equal(ch_idx, 0)
    assert_equal(time_idx, 2)
    assert_allclose(max_amp, -2.)

    ch_idx, time_idx, max_amp = _get_peak(data, times, mode='pos')
    assert_equal(ch_idx, 0)
    assert_equal(time_idx, 2)
    assert_allclose(max_amp, 2.)

    pytest.raises(ValueError, _get_peak, data + 1e3, times, mode='neg')
    pytest.raises(ValueError, _get_peak, data - 1e3, times, mode='pos')


def test_drop_channels_mixin():
    """Test channels-dropping functionality."""
    evoked = read_evokeds(fname, condition=0, proj=True)
    drop_ch = evoked.ch_names[:3]
    ch_names = evoked.ch_names[3:]

    ch_names_orig = evoked.ch_names
    dummy = evoked.copy().drop_channels(drop_ch)
    assert_equal(ch_names, dummy.ch_names)
    assert_equal(ch_names_orig, evoked.ch_names)
    assert_equal(len(ch_names_orig), len(evoked.data))
    dummy2 = evoked.copy().drop_channels([drop_ch[0]])
    assert_equal(dummy2.ch_names, ch_names_orig[1:])

    evoked.drop_channels(drop_ch)
    assert_equal(ch_names, evoked.ch_names)
    assert_equal(len(ch_names), len(evoked.data))

    for ch_names in ([1, 2], "fake", ["fake"]):
        pytest.raises(ValueError, evoked.drop_channels, ch_names)


def test_pick_channels_mixin():
    """Test channel-picking functionality."""
    evoked = read_evokeds(fname, condition=0, proj=True)
    ch_names = evoked.ch_names[:3]

    ch_names_orig = evoked.ch_names
    dummy = evoked.copy().pick_channels(ch_names)
    assert_equal(ch_names, dummy.ch_names)
    assert_equal(ch_names_orig, evoked.ch_names)
    assert_equal(len(ch_names_orig), len(evoked.data))

    evoked.pick_channels(ch_names)
    assert_equal(ch_names, evoked.ch_names)
    assert_equal(len(ch_names), len(evoked.data))

    evoked = read_evokeds(fname, condition=0, proj=True)
    assert ('meg' in evoked)
    assert ('eeg' in evoked)
    evoked.pick_types(meg=False, eeg=True)
    assert ('meg' not in evoked)
    assert ('eeg' in evoked)
    assert (len(evoked.ch_names) == 60)


def test_equalize_channels():
    """Test equalization of channels."""
    evoked1 = read_evokeds(fname, condition=0, proj=True)
    evoked2 = evoked1.copy()
    ch_names = evoked1.ch_names[2:]
    evoked1.drop_channels(evoked1.ch_names[:1])
    evoked2.drop_channels(evoked2.ch_names[1:2])
    my_comparison = [evoked1, evoked2]
    equalize_channels(my_comparison)
    for e in my_comparison:
        assert_equal(ch_names, e.ch_names)


def test_arithmetic():
    """Test evoked arithmetic."""
    ev = read_evokeds(fname, condition=0)
    ev1 = EvokedArray(np.ones_like(ev.data), ev.info, ev.times[0], nave=20)
    ev2 = EvokedArray(-np.ones_like(ev.data), ev.info, ev.times[0], nave=10)

    # combine_evoked([ev1, ev2]) should be the same as ev1 + ev2:
    # data should be added according to their `nave` weights
    # nave = ev1.nave + ev2.nave
    ev = combine_evoked([ev1, ev2], weights='nave')
    assert_equal(ev.nave, ev1.nave + ev2.nave)
    assert_allclose(ev.data, 1. / 3. * np.ones_like(ev.data))

    # with same trial counts, a bunch of things should be equivalent
    for weights in ('nave', 'equal', [0.5, 0.5]):
        ev = combine_evoked([ev1, ev1], weights=weights)
        assert_allclose(ev.data, ev1.data)
        assert_equal(ev.nave, 2 * ev1.nave)
        ev = combine_evoked([ev1, -ev1], weights=weights)
        assert_allclose(ev.data, 0., atol=1e-20)
        assert_equal(ev.nave, 2 * ev1.nave)
    ev = combine_evoked([ev1, -ev1], weights='equal')
    assert_allclose(ev.data, 0., atol=1e-20)
    assert_equal(ev.nave, 2 * ev1.nave)
    ev = combine_evoked([ev1, -ev2], weights='equal')
    expected = int(round(1. / (0.25 / ev1.nave + 0.25 / ev2.nave)))
    assert_equal(expected, 27)  # this is reasonable
    assert_equal(ev.nave, expected)

    # default comment behavior if evoked.comment is None
    old_comment1 = ev1.comment
    old_comment2 = ev2.comment
    ev1.comment = None
    ev = combine_evoked([ev1, -ev2], weights=[1, -1])
    assert_equal(ev.comment.count('unknown'), 2)
    assert ('-unknown' in ev.comment)
    assert (' + ' in ev.comment)
    ev1.comment = old_comment1
    ev2.comment = old_comment2

    # equal weighting
    ev = combine_evoked([ev1, ev2], weights='equal')
    assert_allclose(ev.data, np.zeros_like(ev1.data))

    # combine_evoked([ev1, ev2], weights=[1, 0]) should yield the same as ev1
    ev = combine_evoked([ev1, ev2], weights=[1, 0])
    assert_equal(ev.nave, ev1.nave)
    assert_allclose(ev.data, ev1.data)

    # simple subtraction (like in oddball)
    ev = combine_evoked([ev1, ev2], weights=[1, -1])
    assert_allclose(ev.data, 2 * np.ones_like(ev1.data))

    pytest.raises(ValueError, combine_evoked, [ev1, ev2], weights='foo')
    pytest.raises(ValueError, combine_evoked, [ev1, ev2], weights=[1])

    # grand average
    evoked1, evoked2 = read_evokeds(fname, condition=[0, 1], proj=True)
    ch_names = evoked1.ch_names[2:]
    evoked1.info['bads'] = ['EEG 008']  # test interpolation
    evoked1.drop_channels(evoked1.ch_names[:1])
    evoked2.drop_channels(evoked2.ch_names[1:2])
    gave = grand_average([evoked1, evoked2])
    assert_equal(gave.data.shape, [len(ch_names), evoked1.data.shape[1]])
    assert_equal(ch_names, gave.ch_names)
    assert_equal(gave.nave, 2)
    pytest.raises(TypeError, grand_average, [1, evoked1])

    # test channel (re)ordering
    evoked1, evoked2 = read_evokeds(fname, condition=[0, 1], proj=True)
    data2 = evoked2.data  # assumes everything is ordered to the first evoked
    data = (evoked1.data + evoked2.data) / 2
    evoked2.reorder_channels(evoked2.ch_names[::-1])
    assert not np.allclose(data2, evoked2.data)
    with pytest.warns(RuntimeWarning, match='reordering'):
        ev3 = grand_average((evoked1, evoked2))
    assert np.allclose(ev3.data, data)
    assert evoked1.ch_names != evoked2.ch_names
    assert evoked1.ch_names == ev3.ch_names


def test_array_epochs():
    """Test creating evoked from array."""
    tempdir = _TempDir()

    # creating
    rng = np.random.RandomState(42)
    data1 = rng.randn(20, 60)
    sfreq = 1e3
    ch_names = ['EEG %03d' % (i + 1) for i in range(20)]
    types = ['eeg'] * 20
    info = create_info(ch_names, sfreq, types)
    evoked1 = EvokedArray(data1, info, tmin=-0.01)

    # save, read, and compare evokeds
    tmp_fname = op.join(tempdir, 'evkdary-ave.fif')
    evoked1.save(tmp_fname)
    evoked2 = read_evokeds(tmp_fname)[0]
    data2 = evoked2.data
    assert_allclose(data1, data2)
    assert_allclose(evoked1.times, evoked2.times)
    assert_equal(evoked1.first, evoked2.first)
    assert_equal(evoked1.last, evoked2.last)
    assert_equal(evoked1.kind, evoked2.kind)
    assert_equal(evoked1.nave, evoked2.nave)

    # now compare with EpochsArray (with single epoch)
    data3 = data1[np.newaxis, :, :]
    events = np.c_[10, 0, 1]
    evoked3 = EpochsArray(data3, info, events=events, tmin=-0.01).average()
    assert_allclose(evoked1.data, evoked3.data)
    assert_allclose(evoked1.times, evoked3.times)
    assert_equal(evoked1.first, evoked3.first)
    assert_equal(evoked1.last, evoked3.last)
    assert_equal(evoked1.kind, evoked3.kind)
    assert_equal(evoked1.nave, evoked3.nave)

    # test kind check
    pytest.raises(TypeError, EvokedArray, data1, info, tmin=0, kind=1)
    pytest.raises(ValueError, EvokedArray, data1, info, kind='mean')

    # test match between channels info and data
    ch_names = ['EEG %03d' % (i + 1) for i in range(19)]
    types = ['eeg'] * 19
    info = create_info(ch_names, sfreq, types)
    pytest.raises(ValueError, EvokedArray, data1, info, tmin=-0.01)


def test_time_as_index():
    """Test time as index."""
    evoked = read_evokeds(fname, condition=0).crop(-.1, .1)
    assert_array_equal(evoked.time_as_index([-.1, .1], use_rounding=True),
                       [0, len(evoked.times) - 1])


def test_add_channels():
    """Test evoked splitting / re-appending channel types."""
    evoked = read_evokeds(fname, condition=0)
    hpi_coils = [{'event_bits': []},
                 {'event_bits': np.array([256,   0, 256, 256])},
                 {'event_bits': np.array([512,   0, 512, 512])}]
    evoked.info['hpi_subsystem'] = dict(hpi_coils=hpi_coils, ncoil=2)
    evoked_eeg = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_meg = evoked.copy().pick_types(meg=True)
    evoked_stim = evoked.copy().pick_types(meg=False, stim=True)
    evoked_eeg_meg = evoked.copy().pick_types(meg=True, eeg=True)
    evoked_new = evoked_meg.copy().add_channels([evoked_eeg, evoked_stim])
    assert (all(ch in evoked_new.ch_names
                for ch in evoked_stim.ch_names + evoked_meg.ch_names))
    evoked_new = evoked_meg.copy().add_channels([evoked_eeg])

    assert (ch in evoked_new.ch_names for ch in evoked.ch_names)
    assert_array_equal(evoked_new.data, evoked_eeg_meg.data)
    assert (all(ch not in evoked_new.ch_names
                for ch in evoked_stim.ch_names))

    # Now test errors
    evoked_badsf = evoked_eeg.copy()
    evoked_badsf.info['sfreq'] = 3.1415927
    evoked_eeg = evoked_eeg.crop(-.1, .1)

    pytest.raises(RuntimeError, evoked_meg.add_channels, [evoked_badsf])
    pytest.raises(AssertionError, evoked_meg.add_channels, [evoked_eeg])
    pytest.raises(ValueError, evoked_meg.add_channels, [evoked_meg])
    pytest.raises(TypeError, evoked_meg.add_channels, evoked_badsf)


def test_evoked_baseline():
    """Test evoked baseline."""
    evoked = read_evokeds(fname, condition=0, baseline=None)

    # Here we create a data_set with constant data.
    evoked = EvokedArray(np.ones_like(evoked.data), evoked.info,
                         evoked.times[0])

    # Mean baseline correction is applied, since the data is equal to its mean
    # the resulting data should be a matrix of zeroes.
    evoked.apply_baseline((None, None))

    assert_allclose(evoked.data, np.zeros_like(evoked.data))


run_tests_if_main()