1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
|
import os
import os.path as op
import shutil
import glob
import numpy as np
from scipy import sparse
from numpy.testing import (assert_array_equal, assert_array_almost_equal,
assert_equal)
import pytest
from mne.datasets import testing
from mne import (read_label, stc_to_label, read_source_estimate,
read_source_spaces, grow_labels, read_labels_from_annot,
write_labels_to_annot, split_label, spatial_tris_connectivity,
read_surface, random_parcellation)
from mne.label import Label, _blend_colors, label_sign_flip
from mne.utils import (_TempDir, requires_sklearn, get_subjects_dir,
run_tests_if_main, requires_version)
from mne.fixes import assert_is, assert_is_not
from mne.label import _n_colors
from mne.source_space import SourceSpaces
from mne.source_estimate import mesh_edges
from mne.externals.six import string_types
from mne.externals.six.moves import cPickle as pickle
data_path = testing.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
src_fname = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif')
stc_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-lh.stc')
real_label_fname = op.join(data_path, 'MEG', 'sample', 'labels',
'Aud-lh.label')
real_label_rh_fname = op.join(data_path, 'MEG', 'sample', 'labels',
'Aud-rh.label')
v1_label_fname = op.join(subjects_dir, 'sample', 'label', 'lh.V1.label')
fwd_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
src_bad_fname = op.join(data_path, 'subjects', 'fsaverage', 'bem',
'fsaverage-ico-5-src.fif')
label_dir = op.join(subjects_dir, 'sample', 'label', 'aparc')
test_path = op.join(op.split(__file__)[0], '..', 'io', 'tests', 'data')
label_fname = op.join(test_path, 'test-lh.label')
label_rh_fname = op.join(test_path, 'test-rh.label')
# This code was used to generate the "fake" test labels:
# for hemi in ['lh', 'rh']:
# label = Label(np.unique((np.random.rand(100) * 10242).astype(int)),
# hemi=hemi, comment='Test ' + hemi, subject='fsaverage')
# label.save(op.join(test_path, 'test-%s.label' % hemi))
# XXX : this was added for backward compat and keep the old test_label_in_src
def _stc_to_label(stc, src, smooth, subjects_dir=None):
"""Compute a label from the non-zero sources in an stc object.
Parameters
----------
stc : SourceEstimate
The source estimates.
src : SourceSpaces | str | None
The source space over which the source estimates are defined.
If it's a string it should the subject name (e.g. fsaverage).
Can be None if stc.subject is not None.
smooth : int
Number of smoothing iterations.
subjects_dir : str | None
Path to SUBJECTS_DIR if it is not set in the environment.
Returns
-------
labels : list of Labels | list of list of Labels
The generated labels. If connected is False, it returns
a list of Labels (one per hemisphere). If no Label is available
in a hemisphere, None is returned. If connected is True,
it returns for each hemisphere a list of connected labels
ordered in decreasing order depending of the maximum value in the stc.
If no Label is available in an hemisphere, an empty list is returned.
"""
src = stc.subject if src is None else src
if isinstance(src, string_types):
subject = src
else:
subject = stc.subject
if isinstance(src, string_types):
subjects_dir = get_subjects_dir(subjects_dir)
surf_path_from = op.join(subjects_dir, src, 'surf')
rr_lh, tris_lh = read_surface(op.join(surf_path_from,
'lh.white'))
rr_rh, tris_rh = read_surface(op.join(surf_path_from,
'rh.white'))
rr = [rr_lh, rr_rh]
tris = [tris_lh, tris_rh]
else:
if not isinstance(src, SourceSpaces):
raise TypeError('src must be a string or a set of source spaces')
if len(src) != 2:
raise ValueError('source space should contain the 2 hemispheres')
rr = [1e3 * src[0]['rr'], 1e3 * src[1]['rr']]
tris = [src[0]['tris'], src[1]['tris']]
labels = []
cnt = 0
for hemi_idx, (hemi, this_vertno, this_tris, this_rr) in enumerate(
zip(['lh', 'rh'], stc.vertices, tris, rr)):
this_data = stc.data[cnt:cnt + len(this_vertno)]
e = mesh_edges(this_tris)
e.data[e.data == 2] = 1
n_vertices = e.shape[0]
e = e + sparse.eye(n_vertices, n_vertices)
clusters = [this_vertno[np.any(this_data, axis=1)]]
cnt += len(this_vertno)
clusters = [c for c in clusters if len(c) > 0]
if len(clusters) == 0:
this_labels = None
else:
this_labels = []
colors = _n_colors(len(clusters))
for c, color in zip(clusters, colors):
idx_use = c
for k in range(smooth):
e_use = e[:, idx_use]
data1 = e_use * np.ones(len(idx_use))
idx_use = np.where(data1)[0]
label = Label(idx_use, this_rr[idx_use], None, hemi,
'Label from stc', subject=subject,
color=color)
this_labels.append(label)
this_labels = this_labels[0]
labels.append(this_labels)
return labels
def assert_labels_equal(l0, l1, decimal=5, comment=True, color=True):
"""Assert two labels are equal."""
if comment:
assert_equal(l0.comment, l1.comment)
if color:
assert_equal(l0.color, l1.color)
for attr in ['hemi', 'subject']:
attr0 = getattr(l0, attr)
attr1 = getattr(l1, attr)
msg = "label.%s: %r != %r" % (attr, attr0, attr1)
assert_equal(attr0, attr1, msg)
for attr in ['vertices', 'pos', 'values']:
a0 = getattr(l0, attr)
a1 = getattr(l1, attr)
assert_array_almost_equal(a0, a1, decimal)
def test_copy():
"""Test label copying."""
label = read_label(label_fname)
label_2 = label.copy()
label_2.pos += 1
assert_array_equal(label.pos, label_2.pos - 1)
def test_label_subject():
"""Test label subject name extraction."""
label = read_label(label_fname)
assert_is(label.subject, None)
assert ('unknown' in repr(label))
label = read_label(label_fname, subject='fsaverage')
assert (label.subject == 'fsaverage')
assert ('fsaverage' in repr(label))
def test_label_addition():
"""Test label addition."""
pos = np.random.RandomState(0).rand(10, 3)
values = np.arange(10.) / 10
idx0 = list(range(7))
idx1 = list(range(7, 10)) # non-overlapping
idx2 = list(range(5, 10)) # overlapping
l0 = Label(idx0, pos[idx0], values[idx0], 'lh', color='red')
l1 = Label(idx1, pos[idx1], values[idx1], 'lh')
l2 = Label(idx2, pos[idx2], values[idx2], 'lh', color=(0, 1, 0, .5))
assert_equal(len(l0), len(idx0))
l_good = l0.copy()
l_good.subject = 'sample'
l_bad = l1.copy()
l_bad.subject = 'foo'
pytest.raises(ValueError, l_good.__add__, l_bad)
pytest.raises(TypeError, l_good.__add__, 'foo')
pytest.raises(ValueError, l_good.__sub__, l_bad)
pytest.raises(TypeError, l_good.__sub__, 'foo')
# adding non-overlapping labels
l01 = l0 + l1
assert_equal(len(l01), len(l0) + len(l1))
assert_array_equal(l01.values[:len(l0)], l0.values)
assert_equal(l01.color, l0.color)
# subtraction
assert_labels_equal(l01 - l0, l1, comment=False, color=False)
assert_labels_equal(l01 - l1, l0, comment=False, color=False)
# adding overlapping labels
l02 = l0 + l2
i0 = np.where(l0.vertices == 6)[0][0]
i2 = np.where(l2.vertices == 6)[0][0]
i = np.where(l02.vertices == 6)[0][0]
assert_equal(l02.values[i], l0.values[i0] + l2.values[i2])
assert_equal(l02.values[0], l0.values[0])
assert_array_equal(np.unique(l02.vertices), np.unique(idx0 + idx2))
assert_equal(l02.color, _blend_colors(l0.color, l2.color))
# adding lh and rh
l2.hemi = 'rh'
bhl = l0 + l2
assert_equal(bhl.hemi, 'both')
assert_equal(len(bhl), len(l0) + len(l2))
assert_equal(bhl.color, l02.color)
assert ('BiHemiLabel' in repr(bhl))
# subtraction
assert_labels_equal(bhl - l0, l2)
assert_labels_equal(bhl - l2, l0)
bhl2 = l1 + bhl
assert_labels_equal(bhl2.lh, l01)
assert_equal(bhl2.color, _blend_colors(l1.color, bhl.color))
assert_array_equal((l2 + bhl).rh.vertices, bhl.rh.vertices) # rh label
assert_array_equal((bhl + bhl).lh.vertices, bhl.lh.vertices)
pytest.raises(TypeError, bhl.__add__, 5)
# subtraction
bhl_ = bhl2 - l1
assert_labels_equal(bhl_.lh, bhl.lh, comment=False, color=False)
assert_labels_equal(bhl_.rh, bhl.rh)
assert_labels_equal(bhl2 - l2, l0 + l1)
assert_labels_equal(bhl2 - l1 - l0, l2)
bhl_ = bhl2 - bhl2
assert_array_equal(bhl_.vertices, [])
@testing.requires_testing_data
def test_label_in_src():
"""Test label in src."""
src = read_source_spaces(src_fname)
label = read_label(v1_label_fname)
# construct label from source space vertices
vert_in_src = np.intersect1d(label.vertices, src[0]['vertno'], True)
where = np.in1d(label.vertices, vert_in_src)
pos_in_src = label.pos[where]
values_in_src = label.values[where]
label_src = Label(vert_in_src, pos_in_src, values_in_src,
hemi='lh').fill(src)
# check label vertices
vertices_status = np.in1d(src[0]['nearest'], label.vertices)
vertices_in = np.nonzero(vertices_status)[0]
vertices_out = np.nonzero(np.logical_not(vertices_status))[0]
assert_array_equal(label_src.vertices, vertices_in)
assert_array_equal(np.in1d(vertices_out, label_src.vertices), False)
# check values
value_idx = np.digitize(src[0]['nearest'][vertices_in], vert_in_src, True)
assert_array_equal(label_src.values, values_in_src[value_idx])
# test exception
vertices = np.append([-1], vert_in_src)
pytest.raises(ValueError, Label(vertices, hemi='lh').fill, src)
# test filling empty label
label = Label([], hemi='lh')
label.fill(src)
assert_array_equal(label.vertices, np.array([], int))
@testing.requires_testing_data
def test_label_io_and_time_course_estimates():
"""Test IO for label + stc files."""
stc = read_source_estimate(stc_fname)
label = read_label(real_label_fname)
stc_label = stc.in_label(label)
assert (len(stc_label.times) == stc_label.data.shape[1])
assert (len(stc_label.vertices[0]) == stc_label.data.shape[0])
@testing.requires_testing_data
def test_label_io():
"""Test IO of label files."""
tempdir = _TempDir()
label = read_label(label_fname)
# label attributes
assert_equal(label.name, 'test-lh')
assert_is(label.subject, None)
assert_is(label.color, None)
# save and reload
label.save(op.join(tempdir, 'foo'))
label2 = read_label(op.join(tempdir, 'foo-lh.label'))
assert_labels_equal(label, label2)
# pickling
dest = op.join(tempdir, 'foo.pickled')
with open(dest, 'wb') as fid:
pickle.dump(label, fid, pickle.HIGHEST_PROTOCOL)
with open(dest, 'rb') as fid:
label2 = pickle.load(fid)
assert_labels_equal(label, label2)
def _assert_labels_equal(labels_a, labels_b, ignore_pos=False):
"""Ensure two sets of labels are equal."""
for label_a, label_b in zip(labels_a, labels_b):
assert_array_equal(label_a.vertices, label_b.vertices)
assert (label_a.name == label_b.name)
assert (label_a.hemi == label_b.hemi)
if not ignore_pos:
assert_array_equal(label_a.pos, label_b.pos)
@testing.requires_testing_data
def test_annot_io():
"""Test I/O from and to *.annot files."""
# copy necessary files from fsaverage to tempdir
tempdir = _TempDir()
subject = 'fsaverage'
label_src = os.path.join(subjects_dir, 'fsaverage', 'label')
surf_src = os.path.join(subjects_dir, 'fsaverage', 'surf')
label_dir = os.path.join(tempdir, subject, 'label')
surf_dir = os.path.join(tempdir, subject, 'surf')
os.makedirs(label_dir)
os.mkdir(surf_dir)
shutil.copy(os.path.join(label_src, 'lh.PALS_B12_Lobes.annot'), label_dir)
shutil.copy(os.path.join(label_src, 'rh.PALS_B12_Lobes.annot'), label_dir)
shutil.copy(os.path.join(surf_src, 'lh.white'), surf_dir)
shutil.copy(os.path.join(surf_src, 'rh.white'), surf_dir)
# read original labels
pytest.raises(IOError, read_labels_from_annot, subject, 'PALS_B12_Lobesey',
subjects_dir=tempdir)
labels = read_labels_from_annot(subject, 'PALS_B12_Lobes',
subjects_dir=tempdir)
# test saving parcellation only covering one hemisphere
parc = [l for l in labels if l.name == 'LOBE.TEMPORAL-lh']
write_labels_to_annot(parc, subject, 'myparc', subjects_dir=tempdir)
parc1 = read_labels_from_annot(subject, 'myparc', subjects_dir=tempdir)
parc1 = [l for l in parc1 if not l.name.startswith('unknown')]
assert_equal(len(parc1), len(parc))
for l1, l in zip(parc1, parc):
assert_labels_equal(l1, l)
# test saving only one hemisphere
parc = [l for l in labels if l.name.startswith('LOBE')]
write_labels_to_annot(parc, subject, 'myparc2', hemi='lh',
subjects_dir=tempdir)
annot_fname = os.path.join(tempdir, subject, 'label', '%sh.myparc2.annot')
assert os.path.isfile(annot_fname % 'l')
assert not os.path.isfile(annot_fname % 'r')
parc1 = read_labels_from_annot(subject, 'myparc2',
annot_fname=annot_fname % 'l',
subjects_dir=tempdir)
parc_lh = [l for l in parc if l.name.endswith('lh')]
for l1, l in zip(parc1, parc_lh):
assert_labels_equal(l1, l)
@testing.requires_testing_data
def test_read_labels_from_annot():
"""Test reading labels from FreeSurfer parcellation."""
# test some invalid inputs
pytest.raises(ValueError, read_labels_from_annot, 'sample', hemi='bla',
subjects_dir=subjects_dir)
pytest.raises(ValueError, read_labels_from_annot, 'sample',
annot_fname='bla.annot', subjects_dir=subjects_dir)
# read labels using hemi specification
labels_lh = read_labels_from_annot('sample', hemi='lh',
subjects_dir=subjects_dir)
for label in labels_lh:
assert (label.name.endswith('-lh'))
assert (label.hemi == 'lh')
assert_is_not(label.color, None)
# read labels using annot_fname
annot_fname = op.join(subjects_dir, 'sample', 'label', 'rh.aparc.annot')
labels_rh = read_labels_from_annot('sample', annot_fname=annot_fname,
subjects_dir=subjects_dir)
for label in labels_rh:
assert (label.name.endswith('-rh'))
assert (label.hemi == 'rh')
assert_is_not(label.color, None)
# combine the lh, rh, labels and sort them
labels_lhrh = list()
labels_lhrh.extend(labels_lh)
labels_lhrh.extend(labels_rh)
names = [label.name for label in labels_lhrh]
labels_lhrh = [label for (name, label) in sorted(zip(names, labels_lhrh))]
# read all labels at once
labels_both = read_labels_from_annot('sample', subjects_dir=subjects_dir)
# we have the same result
_assert_labels_equal(labels_lhrh, labels_both)
# aparc has 68 cortical labels
assert (len(labels_both) == 68)
# test regexp
label = read_labels_from_annot('sample', parc='aparc.a2009s',
regexp='Angu', subjects_dir=subjects_dir)[0]
assert (label.name == 'G_pariet_inf-Angular-lh')
# silly, but real regexp:
label = read_labels_from_annot('sample', 'aparc.a2009s',
regexp='.*-.{4,}_.{3,3}-L',
subjects_dir=subjects_dir)[0]
assert (label.name == 'G_oc-temp_med-Lingual-lh')
pytest.raises(RuntimeError, read_labels_from_annot, 'sample', parc='aparc',
annot_fname=annot_fname, regexp='JackTheRipper',
subjects_dir=subjects_dir)
@testing.requires_testing_data
def test_read_labels_from_annot_annot2labels():
"""Test reading labels from parc. by comparing with mne_annot2labels."""
label_fnames = glob.glob(label_dir + '/*.label')
label_fnames.sort()
labels_mne = [read_label(fname) for fname in label_fnames]
labels = read_labels_from_annot('sample', subjects_dir=subjects_dir)
# we have the same result, mne does not fill pos, so ignore it
_assert_labels_equal(labels, labels_mne, ignore_pos=True)
@testing.requires_testing_data
def test_write_labels_to_annot():
"""Test writing FreeSurfer parcellation from labels."""
tempdir = _TempDir()
labels = read_labels_from_annot('sample', subjects_dir=subjects_dir)
# create temporary subjects-dir skeleton
surf_dir = op.join(subjects_dir, 'sample', 'surf')
temp_surf_dir = op.join(tempdir, 'sample', 'surf')
os.makedirs(temp_surf_dir)
shutil.copy(op.join(surf_dir, 'lh.white'), temp_surf_dir)
shutil.copy(op.join(surf_dir, 'rh.white'), temp_surf_dir)
os.makedirs(op.join(tempdir, 'sample', 'label'))
# test automatic filenames
dst = op.join(tempdir, 'sample', 'label', '%s.%s.annot')
write_labels_to_annot(labels, 'sample', 'test1', subjects_dir=tempdir)
assert (op.exists(dst % ('lh', 'test1')))
assert (op.exists(dst % ('rh', 'test1')))
# lh only
for label in labels:
if label.hemi == 'lh':
break
write_labels_to_annot([label], 'sample', 'test2', subjects_dir=tempdir)
assert (op.exists(dst % ('lh', 'test2')))
assert (op.exists(dst % ('rh', 'test2')))
# rh only
for label in labels:
if label.hemi == 'rh':
break
write_labels_to_annot([label], 'sample', 'test3', subjects_dir=tempdir)
assert (op.exists(dst % ('lh', 'test3')))
assert (op.exists(dst % ('rh', 'test3')))
# label alone
pytest.raises(TypeError, write_labels_to_annot, labels[0], 'sample',
'test4', subjects_dir=tempdir)
# write left and right hemi labels with filenames:
fnames = [op.join(tempdir, hemi + '-myparc') for hemi in ['lh', 'rh']]
for fname in fnames:
with pytest.warns(RuntimeWarning, match='subjects_dir'):
write_labels_to_annot(labels, annot_fname=fname)
# read it back
labels2 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
annot_fname=fnames[0])
labels22 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
annot_fname=fnames[1])
labels2.extend(labels22)
names = [label.name for label in labels2]
for label in labels:
idx = names.index(label.name)
assert_labels_equal(label, labels2[idx])
# same with label-internal colors
for fname in fnames:
write_labels_to_annot(labels, 'sample', annot_fname=fname,
overwrite=True, subjects_dir=subjects_dir)
labels3 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
annot_fname=fnames[0])
labels33 = read_labels_from_annot('sample', subjects_dir=subjects_dir,
annot_fname=fnames[1])
labels3.extend(labels33)
names3 = [label.name for label in labels3]
for label in labels:
idx = names3.index(label.name)
assert_labels_equal(label, labels3[idx])
# make sure we can't overwrite things
pytest.raises(ValueError, write_labels_to_annot, labels, 'sample',
annot_fname=fnames[0], subjects_dir=subjects_dir)
# however, this works
write_labels_to_annot(labels, 'sample', annot_fname=fnames[0],
overwrite=True, subjects_dir=subjects_dir)
# label without color
labels_ = labels[:]
labels_[0] = labels_[0].copy()
labels_[0].color = None
write_labels_to_annot(labels_, 'sample', annot_fname=fnames[0],
overwrite=True, subjects_dir=subjects_dir)
# duplicate color
labels_[0].color = labels_[2].color
pytest.raises(ValueError, write_labels_to_annot, labels_, 'sample',
annot_fname=fnames[0], overwrite=True,
subjects_dir=subjects_dir)
# invalid color inputs
labels_[0].color = (1.1, 1., 1., 1.)
pytest.raises(ValueError, write_labels_to_annot, labels_, 'sample',
annot_fname=fnames[0], overwrite=True,
subjects_dir=subjects_dir)
# overlapping labels
labels_ = labels[:]
cuneus_lh = labels[6]
precuneus_lh = labels[50]
labels_.append(precuneus_lh + cuneus_lh)
pytest.raises(ValueError, write_labels_to_annot, labels_, 'sample',
annot_fname=fnames[0], overwrite=True,
subjects_dir=subjects_dir)
# unlabeled vertices
labels_lh = [label for label in labels if label.name.endswith('lh')]
write_labels_to_annot(labels_lh[1:], 'sample', annot_fname=fnames[0],
overwrite=True, subjects_dir=subjects_dir)
labels_reloaded = read_labels_from_annot('sample', annot_fname=fnames[0],
subjects_dir=subjects_dir)
assert_equal(len(labels_lh), len(labels_reloaded))
label0 = labels_lh[0]
label1 = labels_reloaded[-1]
assert_equal(label1.name, "unknown-lh")
assert (np.all(np.in1d(label0.vertices, label1.vertices)))
# unnamed labels
labels4 = labels[:]
labels4[0].name = None
pytest.raises(ValueError, write_labels_to_annot, labels4,
annot_fname=fnames[0])
@requires_sklearn
@testing.requires_testing_data
def test_split_label():
"""Test splitting labels."""
aparc = read_labels_from_annot('fsaverage', 'aparc', 'lh',
regexp='lingual', subjects_dir=subjects_dir)
lingual = aparc[0]
# Test input error
pytest.raises(ValueError, lingual.split, 'bad_input_string')
# split with names
parts = ('lingual_post', 'lingual_ant')
post, ant = split_label(lingual, parts, subjects_dir=subjects_dir)
# check output names
assert_equal(post.name, parts[0])
assert_equal(ant.name, parts[1])
# check vertices add up
lingual_reconst = post + ant
lingual_reconst.name = lingual.name
lingual_reconst.comment = lingual.comment
lingual_reconst.color = lingual.color
assert_labels_equal(lingual_reconst, lingual)
# compare output of Label.split() method
post1, ant1 = lingual.split(parts, subjects_dir=subjects_dir)
assert_labels_equal(post1, post)
assert_labels_equal(ant1, ant)
# compare fs_like split with freesurfer split
antmost = split_label(lingual, 40, None, subjects_dir, True)[-1]
fs_vert = [210, 4401, 7405, 12079, 16276, 18956, 26356, 32713, 32716,
32719, 36047, 36050, 42797, 42798, 42799, 59281, 59282, 59283,
71864, 71865, 71866, 71874, 71883, 79901, 79903, 79910, 103024,
107849, 107850, 122928, 139356, 139357, 139373, 139374, 139375,
139376, 139377, 139378, 139381, 149117, 149118, 149120, 149127]
assert_array_equal(antmost.vertices, fs_vert)
# check default label name
assert_equal(antmost.name, "lingual_div40-lh")
# Apply contiguous splitting to DMN label from parcellation in Yeo, 2011
label_default_mode = read_label(op.join(subjects_dir, 'fsaverage', 'label',
'lh.7Networks_7.label'))
DMN_sublabels = label_default_mode.split(parts='contiguous',
subject='fsaverage',
subjects_dir=subjects_dir)
assert_equal([len(label.vertices) for label in DMN_sublabels],
[16181, 7022, 5965, 5300, 823] + [1] * 23)
@pytest.mark.slowtest
@testing.requires_testing_data
@requires_sklearn
def test_stc_to_label():
"""Test stc_to_label."""
src = read_source_spaces(fwd_fname)
src_bad = read_source_spaces(src_bad_fname)
stc = read_source_estimate(stc_fname, 'sample')
os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects')
labels1 = _stc_to_label(stc, src='sample', smooth=3)
labels2 = _stc_to_label(stc, src=src, smooth=3)
assert_equal(len(labels1), len(labels2))
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
with pytest.warns(RuntimeWarning, match='have holes'):
labels_lh, labels_rh = stc_to_label(stc, src=src, smooth=True,
connected=True)
pytest.raises(ValueError, stc_to_label, stc, 'sample', smooth=True,
connected=True)
pytest.raises(RuntimeError, stc_to_label, stc, smooth=True, src=src_bad,
connected=True)
assert_equal(len(labels_lh), 1)
assert_equal(len(labels_rh), 1)
# test getting tris
tris = labels_lh[0].get_tris(src[0]['use_tris'], vertices=stc.vertices[0])
pytest.raises(ValueError, spatial_tris_connectivity, tris,
remap_vertices=False)
connectivity = spatial_tris_connectivity(tris, remap_vertices=True)
assert (connectivity.shape[0] == len(stc.vertices[0]))
# "src" as a subject name
pytest.raises(TypeError, stc_to_label, stc, src=1, smooth=False,
connected=False, subjects_dir=subjects_dir)
pytest.raises(ValueError, stc_to_label, stc, src=SourceSpaces([src[0]]),
smooth=False, connected=False, subjects_dir=subjects_dir)
pytest.raises(ValueError, stc_to_label, stc, src='sample', smooth=False,
connected=True, subjects_dir=subjects_dir)
pytest.raises(ValueError, stc_to_label, stc, src='sample', smooth=True,
connected=False, subjects_dir=subjects_dir)
labels_lh, labels_rh = stc_to_label(stc, src='sample', smooth=False,
connected=False,
subjects_dir=subjects_dir)
assert (len(labels_lh) > 1)
assert (len(labels_rh) > 1)
# with smooth='patch'
with pytest.warns(RuntimeWarning, match='have holes'):
labels_patch = stc_to_label(stc, src=src, smooth=True)
assert len(labels_patch) == len(labels1)
for l1, l2 in zip(labels1, labels2):
assert_labels_equal(l1, l2, decimal=4)
@pytest.mark.slowtest
@requires_version('scipy', '0.13') # 0.12 has a sparse matrix bug
@testing.requires_testing_data
def test_morph():
"""Test inter-subject label morphing."""
label_orig = read_label(real_label_fname)
label_orig.subject = 'sample'
# should work for specifying vertices for both hemis, or just the
# hemi of the given label
vals = list()
for grade in [5, [np.arange(10242), np.arange(10242)], np.arange(10242)]:
label = label_orig.copy()
# this should throw an error because the label has all zero values
pytest.raises(ValueError, label.morph, 'sample', 'fsaverage')
label.values.fill(1)
label = label.morph(None, 'fsaverage', 5, grade, subjects_dir, 1)
label = label.morph('fsaverage', 'sample', 5, None, subjects_dir, 2)
assert (np.in1d(label_orig.vertices, label.vertices).all())
assert (len(label.vertices) < 3 * len(label_orig.vertices))
vals.append(label.vertices)
assert_array_equal(vals[0], vals[1])
# make sure label smoothing can run
assert_equal(label.subject, 'sample')
verts = [np.arange(10242), np.arange(10242)]
for hemi in ['lh', 'rh']:
label.hemi = hemi
with pytest.warns(None): # morph map maybe missing
label.morph(None, 'fsaverage', 5, verts, subjects_dir, 2)
pytest.raises(TypeError, label.morph, None, 1, 5, verts,
subjects_dir, 2)
pytest.raises(TypeError, label.morph, None, 'fsaverage', 5.5, verts,
subjects_dir, 2)
with pytest.warns(None): # morph map maybe missing
label.smooth(subjects_dir=subjects_dir) # make sure this runs
@testing.requires_testing_data
def test_grow_labels():
"""Test generation of circular source labels."""
seeds = [0, 50000]
# these were chosen manually in mne_analyze
should_be_in = [[49, 227], [51207, 48794]]
hemis = [0, 1]
names = ['aneurism', 'tumor']
labels = grow_labels('sample', seeds, 3, hemis, subjects_dir, names=names)
tgt_names = ['aneurism-lh', 'tumor-rh']
tgt_hemis = ['lh', 'rh']
for label, seed, hemi, sh, name in zip(labels, seeds, tgt_hemis,
should_be_in, tgt_names):
assert (np.any(label.vertices == seed))
assert (np.all(np.in1d(sh, label.vertices)))
assert_equal(label.hemi, hemi)
assert_equal(label.name, name)
# grow labels with and without overlap
seeds = [57532, [58887, 6304]]
l01, l02 = grow_labels('fsaverage', seeds, 20, [0, 0], subjects_dir)
seeds = [57532, [58887, 6304]]
l11, l12 = grow_labels('fsaverage', seeds, 20, [0, 0], subjects_dir,
overlap=False)
# test label naming
assert_equal(l01.name, 'Label_0-lh')
assert_equal(l02.name, 'Label_1-lh')
assert_equal(l11.name, 'Label_0-lh')
assert_equal(l12.name, 'Label_1-lh')
# make sure set 1 does not overlap
overlap = np.intersect1d(l11.vertices, l12.vertices, True)
assert_array_equal(overlap, [])
# make sure both sets cover the same vertices
l0 = l01 + l02
l1 = l11 + l12
assert_array_equal(l1.vertices, l0.vertices)
@testing.requires_testing_data
def test_random_parcellation():
"""Test generation of random cortical parcellation."""
hemi = 'both'
n_parcel = 50
surface = 'sphere.reg'
subject = 'sample_ds'
rng = np.random.RandomState(0)
# Parcellation
labels = random_parcellation(subject, n_parcel, hemi, subjects_dir,
surface=surface, random_state=rng)
# test number of labels
assert_equal(len(labels), n_parcel)
if hemi == 'both':
hemi = ['lh', 'rh']
hemis = np.atleast_1d(hemi)
for hemi in set(hemis):
vertices_total = []
for label in labels:
if label.hemi == hemi:
# test that labels are not empty
assert (len(label.vertices) > 0)
# vertices of hemi covered by labels
vertices_total = np.append(vertices_total, label.vertices)
# test that labels don't intersect
assert_equal(len(np.unique(vertices_total)), len(vertices_total))
surf_fname = op.join(subjects_dir, subject, 'surf', hemi + '.' +
surface)
vert, _ = read_surface(surf_fname)
# Test that labels cover whole surface
assert_array_equal(np.sort(vertices_total), np.arange(len(vert)))
@testing.requires_testing_data
def test_label_sign_flip():
"""Test label sign flip computation."""
src = read_source_spaces(src_fname)
label = Label(vertices=src[0]['vertno'][:5], hemi='lh')
src[0]['nn'][label.vertices] = np.array(
[[1., 0., 0.],
[0., 1., 0.],
[0, 0, 1.],
[1. / np.sqrt(2), 1. / np.sqrt(2), 0.],
[1. / np.sqrt(2), 1. / np.sqrt(2), 0.]])
known_flips = np.array([1, 1, np.nan, 1, 1])
idx = [0, 1, 3, 4] # indices that are usable (third row is orthognoal)
flip = label_sign_flip(label, src)
assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), len(idx))
bi_label = label + Label(vertices=src[1]['vertno'][:5], hemi='rh')
src[1]['nn'][src[1]['vertno'][:5]] = -src[0]['nn'][label.vertices]
flip = label_sign_flip(bi_label, src)
known_flips = np.array([1, 1, np.nan, 1, 1, 1, 1, np.nan, 1, 1])
idx = [0, 1, 3, 4, 5, 6, 8, 9]
assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), 0.)
src[1]['nn'][src[1]['vertno'][:5]] *= -1
flip = label_sign_flip(bi_label, src)
assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), len(idx))
@testing.requires_testing_data
def test_label_center_of_mass():
"""Test computing the center of mass of a label."""
stc = read_source_estimate(stc_fname)
stc.lh_data[:] = 0
vertex_stc = stc.center_of_mass('sample', subjects_dir=subjects_dir)[0]
assert_equal(vertex_stc, 124791)
label = Label(stc.vertices[1], pos=None, values=stc.rh_data.mean(axis=1),
hemi='rh', subject='sample')
vertex_label = label.center_of_mass(subjects_dir=subjects_dir)
assert_equal(vertex_label, vertex_stc)
labels = read_labels_from_annot('sample', parc='aparc.a2009s',
subjects_dir=subjects_dir)
src = read_source_spaces(src_fname)
# Try a couple of random ones, one from left and one from right
# Visually verified in about the right place using mne_analyze
for label, expected in zip([labels[2], labels[3], labels[-5]],
[141162, 145221, 55979]):
label.values[:] = -1
pytest.raises(ValueError, label.center_of_mass,
subjects_dir=subjects_dir)
label.values[:] = 0
pytest.raises(ValueError, label.center_of_mass,
subjects_dir=subjects_dir)
label.values[:] = 1
assert_equal(label.center_of_mass(subjects_dir=subjects_dir), expected)
assert_equal(label.center_of_mass(subjects_dir=subjects_dir,
restrict_vertices=label.vertices),
expected)
# restrict to source space
idx = 0 if label.hemi == 'lh' else 1
# this simple nearest version is not equivalent, but is probably
# close enough for many labels (including the test ones):
pos = label.pos[np.where(label.vertices == expected)[0][0]]
pos = (src[idx]['rr'][src[idx]['vertno']] - pos)
pos = np.argmin(np.sum(pos * pos, axis=1))
src_expected = src[idx]['vertno'][pos]
# see if we actually get the same one
src_restrict = np.intersect1d(label.vertices, src[idx]['vertno'])
assert_equal(label.center_of_mass(subjects_dir=subjects_dir,
restrict_vertices=src_restrict),
src_expected)
assert_equal(label.center_of_mass(subjects_dir=subjects_dir,
restrict_vertices=src),
src_expected)
# degenerate cases
pytest.raises(ValueError, label.center_of_mass, subjects_dir=subjects_dir,
restrict_vertices='foo')
pytest.raises(TypeError, label.center_of_mass, subjects_dir=subjects_dir,
surf=1)
pytest.raises(IOError, label.center_of_mass, subjects_dir=subjects_dir,
surf='foo')
run_tests_if_main()
|