1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
|
# -*- coding: utf-8 -*-
# Author: Tommy Clausner <Tommy.Clausner@gmail.com>
#
# License: BSD (3-clause)
import os.path as op
import pytest
import numpy as np
from numpy.testing import (assert_array_less, assert_allclose,
assert_array_equal)
from scipy.spatial.distance import cdist
import mne
from mne import (SourceEstimate, VolSourceEstimate, VectorSourceEstimate,
read_evokeds, SourceMorph, compute_source_morph,
read_source_morph, read_source_estimate,
read_forward_solution, grade_to_vertices, morph_data,
setup_volume_source_space, make_forward_solution,
make_sphere_model, make_ad_hoc_cov)
from mne.datasets import testing
from mne.minimum_norm import (apply_inverse, read_inverse_operator,
make_inverse_operator)
from mne.source_space import get_volume_labels_from_aseg
from mne.utils import (run_tests_if_main, requires_nibabel, _TempDir,
requires_dipy, requires_h5py, requires_version)
from mne.fixes import _get_args
# Setup paths
data_path = testing.data_path(download=False)
sample_dir = op.join(data_path, 'MEG', 'sample')
subjects_dir = op.join(data_path, 'subjects')
fname_evoked = op.join(sample_dir, 'sample_audvis-ave.fif')
fname_trans = op.join(sample_dir, 'sample_audvis_trunc-trans.fif')
fname_inv_vol = op.join(sample_dir,
'sample_audvis_trunc-meg-vol-7-meg-inv.fif')
fname_fwd_vol = op.join(sample_dir,
'sample_audvis_trunc-meg-vol-7-fwd.fif')
fname_vol = op.join(sample_dir,
'sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w')
fname_inv_surf = op.join(sample_dir,
'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif')
fname_fmorph = op.join(data_path, 'MEG', 'sample',
'fsaverage_audvis_trunc-meg')
fname_smorph = op.join(sample_dir, 'sample_audvis_trunc-meg')
fname_t1 = op.join(subjects_dir, 'sample', 'mri', 'T1.mgz')
fname_brain = op.join(subjects_dir, 'sample', 'mri', 'brain.mgz')
fname_stc = op.join(sample_dir, 'fsaverage_audvis_trunc-meg')
def _real_vec_stc():
inv = read_inverse_operator(fname_inv_surf)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01)
return apply_inverse(evoked, inv, pick_ori='vector')
def test_sourcemorph_consistency():
"""Test SourceMorph class consistency."""
assert _get_args(SourceMorph.__init__)[1:] == \
mne.morph._SOURCE_MORPH_ATTRIBUTES
@requires_version('scipy', '0.13') # SciPy 0.13 reduction bug
@testing.requires_testing_data
def test_sparse_morph():
"""Test sparse morphing."""
rng = np.random.RandomState(0)
vertices_fs = [np.sort(rng.permutation(np.arange(10242))[:4]),
np.sort(rng.permutation(np.arange(10242))[:6])]
data = rng.randn(10, 1)
stc_fs = SourceEstimate(data, vertices_fs, 1, 1, 'fsaverage')
spheres_fs = [mne.read_surface(op.join(
subjects_dir, 'fsaverage', 'surf', '%s.sphere.reg' % hemi))[0]
for hemi in ('lh', 'rh')]
spheres_sample = [mne.read_surface(op.join(
subjects_dir, 'sample', 'surf', '%s.sphere.reg' % hemi))[0]
for hemi in ('lh', 'rh')]
morph_fs_sample = compute_source_morph(
stc_fs, 'fsaverage', 'sample', sparse=True, spacing=None,
subjects_dir=subjects_dir)
stc_sample = morph_fs_sample.apply(stc_fs)
offset = 0
orders = list()
for v1, s1, v2, s2 in zip(stc_fs.vertices, spheres_fs,
stc_sample.vertices, spheres_sample):
dists = cdist(s1[v1], s2[v2])
order = np.argmin(dists, axis=-1)
assert_array_less(dists[np.arange(len(order)), order], 1.5) # mm
orders.append(order + offset)
offset += len(order)
assert_allclose(stc_fs.data, stc_sample.data[np.concatenate(orders)])
# Return
morph_sample_fs = compute_source_morph(
stc_sample, 'sample', 'fsaverage', sparse=True, spacing=None,
subjects_dir=subjects_dir)
stc_fs_return = morph_sample_fs.apply(stc_sample)
offset = 0
orders = list()
for v1, s, v2 in zip(stc_fs.vertices, spheres_fs, stc_fs_return.vertices):
dists = cdist(s[v1], s[v2])
order = np.argmin(dists, axis=-1)
assert_array_less(dists[np.arange(len(order)), order], 1.5) # mm
orders.append(order + offset)
offset += len(order)
assert_allclose(stc_fs.data, stc_fs_return.data[np.concatenate(orders)])
@requires_version('scipy', '0.13') # SciPy 0.12 zero-length reduction bug
@testing.requires_testing_data
def test_xhemi_morph():
"""Test cross-hemisphere morphing."""
stc = read_source_estimate(fname_stc, subject='sample')
# smooth 1 for speed where possible
smooth = 4
spacing = 4
n_grade_verts = 2562
stc = compute_source_morph(
stc, 'sample', 'fsaverage_sym', smooth=smooth, warn=False,
spacing=spacing, subjects_dir=subjects_dir).apply(stc)
morph = compute_source_morph(
stc, 'fsaverage_sym', 'fsaverage_sym', smooth=1, xhemi=True,
warn=False, spacing=[stc.vertices[0], []],
subjects_dir=subjects_dir)
stc_xhemi = morph.apply(stc)
assert stc_xhemi.data.shape[0] == n_grade_verts
assert stc_xhemi.rh_data.shape[0] == 0
assert len(stc_xhemi.vertices[1]) == 0
assert stc_xhemi.lh_data.shape[0] == n_grade_verts
assert len(stc_xhemi.vertices[0]) == n_grade_verts
# complete reversal mapping
morph = compute_source_morph(
stc, 'fsaverage_sym', 'fsaverage_sym', smooth=smooth, xhemi=True,
warn=False, spacing=stc.vertices, subjects_dir=subjects_dir)
mm = morph.morph_mat
assert mm.shape == (n_grade_verts * 2,) * 2
assert mm.size > n_grade_verts * 2
assert mm[:n_grade_verts, :n_grade_verts].size == 0 # L to L
assert mm[n_grade_verts:, n_grade_verts:].size == 0 # R to L
assert mm[n_grade_verts:, :n_grade_verts].size > n_grade_verts # L to R
assert mm[:n_grade_verts, n_grade_verts:].size > n_grade_verts # R to L
# more complicated reversal mapping
vertices_use = [stc.vertices[0], np.arange(10242)]
n_src_verts = len(vertices_use[1])
assert vertices_use[0].shape == (n_grade_verts,)
assert vertices_use[1].shape == (n_src_verts,)
# ensure it's sufficiently diffirent to manifest round-trip errors
assert np.in1d(vertices_use[1], stc.vertices[1]).mean() < 0.3
morph = compute_source_morph(
stc, 'fsaverage_sym', 'fsaverage_sym', smooth=smooth, xhemi=True,
warn=False, spacing=vertices_use, subjects_dir=subjects_dir)
mm = morph.morph_mat
assert mm.shape == (n_grade_verts + n_src_verts, n_grade_verts * 2)
assert mm[:n_grade_verts, :n_grade_verts].size == 0
assert mm[n_grade_verts:, n_grade_verts:].size == 0
assert mm[:n_grade_verts, n_grade_verts:].size > n_grade_verts
assert mm[n_grade_verts:, :n_grade_verts].size > n_src_verts
# morph forward then back
stc_xhemi = morph.apply(stc)
morph = compute_source_morph(
stc_xhemi, 'fsaverage_sym', 'fsaverage_sym', smooth=smooth,
xhemi=True, warn=False, spacing=stc.vertices,
subjects_dir=subjects_dir)
stc_return = morph.apply(stc_xhemi)
for hi in range(2):
assert_array_equal(stc_return.vertices[hi], stc.vertices[hi])
correlation = np.corrcoef(stc.data.ravel(), stc_return.data.ravel())[0, 1]
assert correlation > 0.9 # not great b/c of sparse grade + small smooth
@requires_h5py
@testing.requires_testing_data
def test_surface_vector_source_morph():
"""Test surface and vector source estimate morph."""
tempdir = _TempDir()
inverse_operator_surf = read_inverse_operator(fname_inv_surf)
stc_surf = read_source_estimate(fname_smorph, subject='sample')
stc_surf.crop(0.09, 0.1) # for faster computation
stc_vec = _real_vec_stc()
source_morph_surf = compute_source_morph(
inverse_operator_surf['src'], subjects_dir=subjects_dir,
smooth=1, warn=False) # smooth 1 for speed
assert source_morph_surf.subject_from == 'sample'
assert source_morph_surf.subject_to == 'fsaverage'
assert source_morph_surf.kind == 'surface'
assert isinstance(source_morph_surf.src_data, dict)
assert isinstance(source_morph_surf.src_data['vertices_from'], list)
assert isinstance(source_morph_surf, SourceMorph)
stc_surf_morphed = source_morph_surf.apply(stc_surf)
assert isinstance(stc_surf_morphed, SourceEstimate)
stc_vec_morphed = source_morph_surf.apply(stc_vec)
with pytest.raises(ValueError, match='Only volume source estimates'):
source_morph_surf.apply(stc_surf, output='nifti1')
# check if correct class after morphing
assert isinstance(stc_surf_morphed, SourceEstimate)
assert isinstance(stc_vec_morphed, VectorSourceEstimate)
# check __repr__
assert 'surface' in repr(source_morph_surf)
# check loading and saving for surf
source_morph_surf.save(op.join(tempdir, '42.h5'))
source_morph_surf_r = read_source_morph(op.join(tempdir, '42.h5'))
assert (all([read == saved for read, saved in
zip(sorted(source_morph_surf_r.__dict__),
sorted(source_morph_surf.__dict__))]))
# check wrong subject correction
stc_surf.subject = None
assert isinstance(source_morph_surf.apply(stc_surf), SourceEstimate)
@requires_h5py
@requires_nibabel()
@requires_dipy()
@pytest.mark.slowtest
@testing.requires_testing_data
def test_volume_source_morph():
"""Test volume source estimate morph, special cases and exceptions."""
import nibabel as nib
tempdir = _TempDir()
inverse_operator_vol = read_inverse_operator(fname_inv_vol)
stc_vol = read_source_estimate(fname_vol, 'sample')
# check for invalid input type
with pytest.raises(TypeError, match='src must be an instance of'):
compute_source_morph(src=42)
# check for raising an error if neither
# inverse_operator_vol['src'][0]['subject_his_id'] nor subject_from is set,
# but attempting to perform a volume morph
src = inverse_operator_vol['src']
src[0]['subject_his_id'] = None
with pytest.raises(ValueError, match='subject_from could not be inferred'):
compute_source_morph(src=src, subjects_dir=subjects_dir)
# check infer subject_from from src[0]['subject_his_id']
src[0]['subject_his_id'] = 'sample'
with pytest.raises(ValueError, match='Inter-hemispheric morphing'):
compute_source_morph(src=src, subjects_dir=subjects_dir, xhemi=True)
with pytest.raises(ValueError, match='Only surface.*sparse morph'):
compute_source_morph(src=src, sparse=True, subjects_dir=subjects_dir)
# terrible quality buts fast
zooms = 20
kwargs = dict(zooms=zooms, niter_sdr=(1,), niter_affine=(1,))
source_morph_vol = compute_source_morph(
subjects_dir=subjects_dir, src=inverse_operator_vol['src'], **kwargs)
shape = (13,) * 3 # for the given zooms
assert source_morph_vol.subject_from == 'sample'
# the brain used in sample data has shape (255, 255, 255)
assert tuple(source_morph_vol.sdr_morph.domain_shape) == shape
assert tuple(source_morph_vol.pre_affine.domain_shape) == shape
# proofs the above
assert_array_equal(source_morph_vol.zooms, (zooms,) * 3)
# assure proper src shape
mri_size = (src[0]['mri_height'], src[0]['mri_depth'], src[0]['mri_width'])
assert source_morph_vol.src_data['src_shape_full'] == mri_size
fwd = read_forward_solution(fname_fwd_vol)
source_morph_vol = compute_source_morph(
fwd['src'], 'sample', 'sample', subjects_dir=subjects_dir,
**kwargs)
# check wrong subject_to
with pytest.raises(IOError, match='cannot read file'):
compute_source_morph(fwd['src'], 'sample', '42',
subjects_dir=subjects_dir)
# two different ways of saving
source_morph_vol.save(op.join(tempdir, 'vol'))
# check loading
source_morph_vol_r = read_source_morph(
op.join(tempdir, 'vol-morph.h5'))
# check for invalid file name handling ()
with pytest.raises(IOError, match='not found'):
read_source_morph(op.join(tempdir, '42'))
# check morph
stc_vol_morphed = source_morph_vol.apply(stc_vol)
# check output as NIfTI
assert isinstance(source_morph_vol.apply(stc_vol, output='nifti2'),
nib.Nifti2Image)
# check for subject_from mismatch
source_morph_vol_r.subject_from = '42'
with pytest.raises(ValueError, match='subject_from must match'):
source_morph_vol_r.apply(stc_vol_morphed)
# check if nifti is in grid morph space with voxel_size == spacing
img_morph_res = source_morph_vol.apply(stc_vol, output='nifti1')
# assure morph spacing
assert isinstance(img_morph_res, nib.Nifti1Image)
assert img_morph_res.header.get_zooms()[:3] == (zooms,) * 3
# assure src shape
img_mri_res = source_morph_vol.apply(stc_vol, output='nifti1',
mri_resolution=True)
assert isinstance(img_mri_res, nib.Nifti1Image)
assert (img_mri_res.shape == (src[0]['mri_height'], src[0]['mri_depth'],
src[0]['mri_width']) +
(img_mri_res.shape[3],))
# check if nifti is defined resolution with voxel_size == (5., 5., 5.)
img_any_res = source_morph_vol.apply(stc_vol, output='nifti1',
mri_resolution=(5., 5., 5.))
assert isinstance(img_any_res, nib.Nifti1Image)
assert img_any_res.header.get_zooms()[:3] == (5., 5., 5.)
# check if morph outputs correct data
assert isinstance(stc_vol_morphed, VolSourceEstimate)
# check if loaded and saved objects contain the same
assert (all([read == saved for read, saved in
zip(sorted(source_morph_vol_r.__dict__),
sorted(source_morph_vol.__dict__))]))
# check __repr__
assert 'volume' in repr(source_morph_vol)
# check Nifti2Image
assert isinstance(
source_morph_vol.apply(stc_vol, mri_resolution=True,
mri_space=True, output='nifti2'),
nib.Nifti2Image)
# Degenerate conditions
with pytest.raises(TypeError, match='output must be'):
source_morph_vol.apply(stc_vol, output=1)
with pytest.raises(ValueError, match='subject_from does not match'):
compute_source_morph(src=src, subject_from='42')
with pytest.raises(ValueError, match='output must be one of'):
source_morph_vol.apply(stc_vol, output='42')
with pytest.raises(TypeError, match='subject_to must'):
compute_source_morph(src, 'sample', None,
subjects_dir=subjects_dir)
# Check if not morphed, but voxel size not boolean, raise ValueError.
# Note that this check requires dipy to not raise the dipy ImportError
# before checking if the actual voxel size error will raise.
with pytest.raises(ValueError, match='Cannot infer original voxel size'):
stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=4)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_morph_stc_dense():
"""Test morphing stc."""
subject_from = 'sample'
subject_to = 'fsaverage'
stc_from = read_source_estimate(fname_smorph, subject='sample')
stc_to = read_source_estimate(fname_fmorph)
# make sure we can specify grade
stc_from.crop(0.09, 0.1) # for faster computation
stc_to.crop(0.09, 0.1) # for faster computation
assert_array_equal(stc_to.time_as_index([0.09, 0.1], use_rounding=True),
[0, len(stc_to.times) - 1])
# After dep change this to:
# stc_to1 = compute_source_morph(
# subject_to=subject_to, spacing=3, smooth=12, src=stc_from,
# subjects_dir=subjects_dir).apply(stc_from)
with pytest.deprecated_call():
stc_to1 = stc_from.morph(
subject_to=subject_to, grade=3, smooth=12,
subjects_dir=subjects_dir)
assert_allclose(stc_to.data, stc_to1.data, atol=1e-5)
mean_from = stc_from.data.mean(axis=0)
mean_to = stc_to1.data.mean(axis=0)
assert np.corrcoef(mean_to, mean_from).min() > 0.999
vertices_to = grade_to_vertices(subject_to, grade=3,
subjects_dir=subjects_dir)
# make sure we can fill by morphing
with pytest.warns(RuntimeWarning, match='consider increasing'):
morph = compute_source_morph(
stc_from, subject_from, subject_to, spacing=None, smooth=1,
subjects_dir=subjects_dir)
# after deprecation change this to:
# stc_to5 = morph.apply(stc_from)
with pytest.deprecated_call():
stc_to5 = stc_from.morph_precomputed(
morph_mat=morph.morph_mat, subject_to=subject_to,
vertices_to=morph.vertices_to)
assert stc_to5.data.shape[0] == 163842 + 163842
# after deprecation delete this
with pytest.deprecated_call():
stc_to6 = morph_data(
subject_from, subject_to, stc_from, grade=None, smooth=1,
subjects_dir=subjects_dir)
assert_allclose(stc_to6.data, stc_to5.data)
# Morph vector data
stc_vec = _real_vec_stc()
stc_vec_to1 = compute_source_morph(
stc_vec, subject_from, subject_to, subjects_dir=subjects_dir,
spacing=vertices_to, smooth=1, warn=False).apply(stc_vec)
assert stc_vec_to1.subject == subject_to
assert stc_vec_to1.tmin == stc_vec.tmin
assert stc_vec_to1.tstep == stc_vec.tstep
assert len(stc_vec_to1.lh_vertno) == 642
assert len(stc_vec_to1.rh_vertno) == 642
# Degenerate conditions
# Morphing to a density that is too high should raise an informative error
# (here we need to push to grade=6, but for some subjects even grade=5
# will break)
with pytest.raises(ValueError, match='Cannot use icosahedral grade 6 '):
compute_source_morph(
stc_to1, subject_from=subject_to, subject_to=subject_from,
spacing=6, subjects_dir=subjects_dir)
del stc_to1
with pytest.raises(ValueError, match='smooth.* has to be at least 1'):
compute_source_morph(
stc_from, subject_from, subject_to, spacing=5, smooth=-1,
subjects_dir=subjects_dir)
# subject from mismatch
with pytest.raises(ValueError, match="does not match source space subj"):
compute_source_morph(stc_from, subject_from='foo',
subjects_dir=subjects_dir)
# only one set of vertices
with pytest.raises(ValueError, match="grade.*list must have two elements"):
compute_source_morph(
stc_from, subject_from=subject_from, spacing=[vertices_to[0]],
subjects_dir=subjects_dir)
@requires_version('scipy', '0.13')
@testing.requires_testing_data
def test_morph_stc_sparse():
"""Test morphing stc with sparse=True."""
subject_from = 'sample'
subject_to = 'fsaverage'
# Morph sparse data
# Make a sparse stc
stc_from = read_source_estimate(fname_smorph, subject='sample')
stc_from.vertices[0] = stc_from.vertices[0][[100, 500]]
stc_from.vertices[1] = stc_from.vertices[1][[200]]
stc_from._data = stc_from._data[:3]
stc_to_sparse = compute_source_morph(
stc_from, subject_from=subject_from, subject_to=subject_to,
spacing=None, sparse=True, subjects_dir=subjects_dir).apply(stc_from)
assert_allclose(np.sort(stc_from.data.sum(axis=1)),
np.sort(stc_to_sparse.data.sum(axis=1)))
assert len(stc_from.rh_vertno) == len(stc_to_sparse.rh_vertno)
assert len(stc_from.lh_vertno) == len(stc_to_sparse.lh_vertno)
assert stc_to_sparse.subject == subject_to
assert stc_from.tmin == stc_from.tmin
assert stc_from.tstep == stc_from.tstep
stc_from.vertices[0] = np.array([], dtype=np.int64)
stc_from._data = stc_from._data[:1]
stc_to_sparse = compute_source_morph(
stc_from, subject_from, subject_to, spacing=None, sparse=True,
subjects_dir=subjects_dir).apply(stc_from)
assert_allclose(np.sort(stc_from.data.sum(axis=1)),
np.sort(stc_to_sparse.data.sum(axis=1)))
assert len(stc_from.rh_vertno) == len(stc_to_sparse.rh_vertno)
assert len(stc_from.lh_vertno) == len(stc_to_sparse.lh_vertno)
assert stc_to_sparse.subject == subject_to
assert stc_from.tmin == stc_from.tmin
assert stc_from.tstep == stc_from.tstep
# Degenerate cases
with pytest.raises(ValueError, match='spacing must be set to None'):
compute_source_morph(
stc_from, subject_from=subject_from, subject_to=subject_to,
spacing=5, sparse=True, subjects_dir=subjects_dir)
with pytest.raises(ValueError, match='xhemi=True can only be used with'):
compute_source_morph(
stc_from, subject_from=subject_from, subject_to=subject_to,
spacing=None, sparse=True, xhemi=True, subjects_dir=subjects_dir)
@requires_nibabel()
@testing.requires_testing_data
def test_volume_labels_morph(tmpdir):
"""Test generating a source space from volume label."""
# see gh-5224
evoked = mne.read_evokeds(fname_evoked)[0].crop(0, 0)
evoked.pick_channels(evoked.ch_names[:306:8])
evoked.info.normalize_proj()
n_ch = len(evoked.ch_names)
aseg_fname = op.join(subjects_dir, 'sample', 'mri', 'aseg.mgz')
label_names = get_volume_labels_from_aseg(aseg_fname)
src = setup_volume_source_space(
'sample', subjects_dir=subjects_dir, volume_label=label_names[:2],
mri=aseg_fname)
assert len(src) == 2
assert src.kind == 'volume'
n_src = sum(s['nuse'] for s in src)
sphere = make_sphere_model('auto', 'auto', evoked.info)
fwd = make_forward_solution(evoked.info, fname_trans, src, sphere)
assert fwd['sol']['data'].shape == (n_ch, n_src * 3)
inv = make_inverse_operator(evoked.info, fwd, make_ad_hoc_cov(evoked.info),
loose=1.)
stc = apply_inverse(evoked, inv)
assert stc.data.shape == (n_src, 1)
img = stc.as_volume(src, mri_resolution=True)
n_on = np.array(img.dataobj).astype(bool).sum()
assert n_on == 291 # was 291 on `master` before gh-5590
img = stc.as_volume(src, mri_resolution=False)
n_on = np.array(img.dataobj).astype(bool).sum()
assert n_on == 44 # was 20 on `master` before gh-5590
run_tests_if_main()
|