File: test_morph.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (534 lines) | stat: -rw-r--r-- 22,508 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# -*- coding: utf-8 -*-
# Author: Tommy Clausner <Tommy.Clausner@gmail.com>
#
# License: BSD (3-clause)
import os.path as op

import pytest
import numpy as np
from numpy.testing import (assert_array_less, assert_allclose,
                           assert_array_equal)
from scipy.spatial.distance import cdist

import mne
from mne import (SourceEstimate, VolSourceEstimate, VectorSourceEstimate,
                 read_evokeds, SourceMorph, compute_source_morph,
                 read_source_morph, read_source_estimate,
                 read_forward_solution, grade_to_vertices, morph_data,
                 setup_volume_source_space, make_forward_solution,
                 make_sphere_model, make_ad_hoc_cov)
from mne.datasets import testing
from mne.minimum_norm import (apply_inverse, read_inverse_operator,
                              make_inverse_operator)
from mne.source_space import get_volume_labels_from_aseg
from mne.utils import (run_tests_if_main, requires_nibabel, _TempDir,
                       requires_dipy, requires_h5py, requires_version)
from mne.fixes import _get_args

# Setup paths

data_path = testing.data_path(download=False)
sample_dir = op.join(data_path, 'MEG', 'sample')
subjects_dir = op.join(data_path, 'subjects')
fname_evoked = op.join(sample_dir, 'sample_audvis-ave.fif')
fname_trans = op.join(sample_dir, 'sample_audvis_trunc-trans.fif')
fname_inv_vol = op.join(sample_dir,
                        'sample_audvis_trunc-meg-vol-7-meg-inv.fif')
fname_fwd_vol = op.join(sample_dir,
                        'sample_audvis_trunc-meg-vol-7-fwd.fif')
fname_vol = op.join(sample_dir,
                    'sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w')
fname_inv_surf = op.join(sample_dir,
                         'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif')
fname_fmorph = op.join(data_path, 'MEG', 'sample',
                       'fsaverage_audvis_trunc-meg')
fname_smorph = op.join(sample_dir, 'sample_audvis_trunc-meg')
fname_t1 = op.join(subjects_dir, 'sample', 'mri', 'T1.mgz')
fname_brain = op.join(subjects_dir, 'sample', 'mri', 'brain.mgz')
fname_stc = op.join(sample_dir, 'fsaverage_audvis_trunc-meg')


def _real_vec_stc():
    inv = read_inverse_operator(fname_inv_surf)
    evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01)
    return apply_inverse(evoked, inv, pick_ori='vector')


def test_sourcemorph_consistency():
    """Test SourceMorph class consistency."""
    assert _get_args(SourceMorph.__init__)[1:] == \
        mne.morph._SOURCE_MORPH_ATTRIBUTES


@requires_version('scipy', '0.13')  # SciPy 0.13 reduction bug
@testing.requires_testing_data
def test_sparse_morph():
    """Test sparse morphing."""
    rng = np.random.RandomState(0)
    vertices_fs = [np.sort(rng.permutation(np.arange(10242))[:4]),
                   np.sort(rng.permutation(np.arange(10242))[:6])]
    data = rng.randn(10, 1)
    stc_fs = SourceEstimate(data, vertices_fs, 1, 1, 'fsaverage')
    spheres_fs = [mne.read_surface(op.join(
        subjects_dir, 'fsaverage', 'surf', '%s.sphere.reg' % hemi))[0]
        for hemi in ('lh', 'rh')]
    spheres_sample = [mne.read_surface(op.join(
        subjects_dir, 'sample', 'surf', '%s.sphere.reg' % hemi))[0]
        for hemi in ('lh', 'rh')]
    morph_fs_sample = compute_source_morph(
        stc_fs, 'fsaverage', 'sample', sparse=True, spacing=None,
        subjects_dir=subjects_dir)
    stc_sample = morph_fs_sample.apply(stc_fs)
    offset = 0
    orders = list()
    for v1, s1, v2, s2 in zip(stc_fs.vertices, spheres_fs,
                              stc_sample.vertices, spheres_sample):
        dists = cdist(s1[v1], s2[v2])
        order = np.argmin(dists, axis=-1)
        assert_array_less(dists[np.arange(len(order)), order], 1.5)  # mm
        orders.append(order + offset)
        offset += len(order)
    assert_allclose(stc_fs.data, stc_sample.data[np.concatenate(orders)])
    # Return
    morph_sample_fs = compute_source_morph(
        stc_sample, 'sample', 'fsaverage', sparse=True, spacing=None,
        subjects_dir=subjects_dir)
    stc_fs_return = morph_sample_fs.apply(stc_sample)
    offset = 0
    orders = list()
    for v1, s, v2 in zip(stc_fs.vertices, spheres_fs, stc_fs_return.vertices):
        dists = cdist(s[v1], s[v2])
        order = np.argmin(dists, axis=-1)
        assert_array_less(dists[np.arange(len(order)), order], 1.5)  # mm
        orders.append(order + offset)
        offset += len(order)
    assert_allclose(stc_fs.data, stc_fs_return.data[np.concatenate(orders)])


@requires_version('scipy', '0.13')  # SciPy 0.12 zero-length reduction bug
@testing.requires_testing_data
def test_xhemi_morph():
    """Test cross-hemisphere morphing."""
    stc = read_source_estimate(fname_stc, subject='sample')
    # smooth 1 for speed where possible
    smooth = 4
    spacing = 4
    n_grade_verts = 2562
    stc = compute_source_morph(
        stc, 'sample', 'fsaverage_sym', smooth=smooth, warn=False,
        spacing=spacing, subjects_dir=subjects_dir).apply(stc)
    morph = compute_source_morph(
        stc, 'fsaverage_sym', 'fsaverage_sym', smooth=1, xhemi=True,
        warn=False, spacing=[stc.vertices[0], []],
        subjects_dir=subjects_dir)
    stc_xhemi = morph.apply(stc)
    assert stc_xhemi.data.shape[0] == n_grade_verts
    assert stc_xhemi.rh_data.shape[0] == 0
    assert len(stc_xhemi.vertices[1]) == 0
    assert stc_xhemi.lh_data.shape[0] == n_grade_verts
    assert len(stc_xhemi.vertices[0]) == n_grade_verts
    # complete reversal mapping
    morph = compute_source_morph(
        stc, 'fsaverage_sym', 'fsaverage_sym', smooth=smooth, xhemi=True,
        warn=False, spacing=stc.vertices, subjects_dir=subjects_dir)
    mm = morph.morph_mat
    assert mm.shape == (n_grade_verts * 2,) * 2
    assert mm.size > n_grade_verts * 2
    assert mm[:n_grade_verts, :n_grade_verts].size == 0  # L to L
    assert mm[n_grade_verts:, n_grade_verts:].size == 0  # R to L
    assert mm[n_grade_verts:, :n_grade_verts].size > n_grade_verts  # L to R
    assert mm[:n_grade_verts, n_grade_verts:].size > n_grade_verts  # R to L
    # more complicated reversal mapping
    vertices_use = [stc.vertices[0], np.arange(10242)]
    n_src_verts = len(vertices_use[1])
    assert vertices_use[0].shape == (n_grade_verts,)
    assert vertices_use[1].shape == (n_src_verts,)
    # ensure it's sufficiently diffirent to manifest round-trip errors
    assert np.in1d(vertices_use[1], stc.vertices[1]).mean() < 0.3
    morph = compute_source_morph(
        stc, 'fsaverage_sym', 'fsaverage_sym', smooth=smooth, xhemi=True,
        warn=False, spacing=vertices_use, subjects_dir=subjects_dir)
    mm = morph.morph_mat
    assert mm.shape == (n_grade_verts + n_src_verts, n_grade_verts * 2)
    assert mm[:n_grade_verts, :n_grade_verts].size == 0
    assert mm[n_grade_verts:, n_grade_verts:].size == 0
    assert mm[:n_grade_verts, n_grade_verts:].size > n_grade_verts
    assert mm[n_grade_verts:, :n_grade_verts].size > n_src_verts
    # morph forward then back
    stc_xhemi = morph.apply(stc)
    morph = compute_source_morph(
        stc_xhemi, 'fsaverage_sym', 'fsaverage_sym', smooth=smooth,
        xhemi=True, warn=False, spacing=stc.vertices,
        subjects_dir=subjects_dir)
    stc_return = morph.apply(stc_xhemi)
    for hi in range(2):
        assert_array_equal(stc_return.vertices[hi], stc.vertices[hi])
    correlation = np.corrcoef(stc.data.ravel(), stc_return.data.ravel())[0, 1]
    assert correlation > 0.9  # not great b/c of sparse grade + small smooth


@requires_h5py
@testing.requires_testing_data
def test_surface_vector_source_morph():
    """Test surface and vector source estimate morph."""
    tempdir = _TempDir()

    inverse_operator_surf = read_inverse_operator(fname_inv_surf)

    stc_surf = read_source_estimate(fname_smorph, subject='sample')
    stc_surf.crop(0.09, 0.1)  # for faster computation

    stc_vec = _real_vec_stc()

    source_morph_surf = compute_source_morph(
        inverse_operator_surf['src'], subjects_dir=subjects_dir,
        smooth=1, warn=False)  # smooth 1 for speed
    assert source_morph_surf.subject_from == 'sample'
    assert source_morph_surf.subject_to == 'fsaverage'
    assert source_morph_surf.kind == 'surface'
    assert isinstance(source_morph_surf.src_data, dict)
    assert isinstance(source_morph_surf.src_data['vertices_from'], list)
    assert isinstance(source_morph_surf, SourceMorph)
    stc_surf_morphed = source_morph_surf.apply(stc_surf)
    assert isinstance(stc_surf_morphed, SourceEstimate)
    stc_vec_morphed = source_morph_surf.apply(stc_vec)
    with pytest.raises(ValueError, match='Only volume source estimates'):
        source_morph_surf.apply(stc_surf, output='nifti1')

    # check if correct class after morphing
    assert isinstance(stc_surf_morphed, SourceEstimate)
    assert isinstance(stc_vec_morphed, VectorSourceEstimate)

    # check __repr__
    assert 'surface' in repr(source_morph_surf)

    # check loading and saving for surf
    source_morph_surf.save(op.join(tempdir, '42.h5'))

    source_morph_surf_r = read_source_morph(op.join(tempdir, '42.h5'))

    assert (all([read == saved for read, saved in
                 zip(sorted(source_morph_surf_r.__dict__),
                     sorted(source_morph_surf.__dict__))]))

    # check wrong subject correction
    stc_surf.subject = None
    assert isinstance(source_morph_surf.apply(stc_surf), SourceEstimate)


@requires_h5py
@requires_nibabel()
@requires_dipy()
@pytest.mark.slowtest
@testing.requires_testing_data
def test_volume_source_morph():
    """Test volume source estimate morph, special cases and exceptions."""
    import nibabel as nib
    tempdir = _TempDir()
    inverse_operator_vol = read_inverse_operator(fname_inv_vol)
    stc_vol = read_source_estimate(fname_vol, 'sample')

    # check for invalid input type
    with pytest.raises(TypeError, match='src must be an instance of'):
        compute_source_morph(src=42)

    # check for raising an error if neither
    # inverse_operator_vol['src'][0]['subject_his_id'] nor subject_from is set,
    # but attempting to perform a volume morph
    src = inverse_operator_vol['src']
    src[0]['subject_his_id'] = None

    with pytest.raises(ValueError, match='subject_from could not be inferred'):
        compute_source_morph(src=src, subjects_dir=subjects_dir)

    # check infer subject_from from src[0]['subject_his_id']
    src[0]['subject_his_id'] = 'sample'

    with pytest.raises(ValueError, match='Inter-hemispheric morphing'):
        compute_source_morph(src=src, subjects_dir=subjects_dir, xhemi=True)

    with pytest.raises(ValueError, match='Only surface.*sparse morph'):
        compute_source_morph(src=src, sparse=True, subjects_dir=subjects_dir)

    # terrible quality buts fast
    zooms = 20
    kwargs = dict(zooms=zooms, niter_sdr=(1,), niter_affine=(1,))
    source_morph_vol = compute_source_morph(
        subjects_dir=subjects_dir, src=inverse_operator_vol['src'], **kwargs)
    shape = (13,) * 3  # for the given zooms

    assert source_morph_vol.subject_from == 'sample'

    # the brain used in sample data has shape (255, 255, 255)
    assert tuple(source_morph_vol.sdr_morph.domain_shape) == shape

    assert tuple(source_morph_vol.pre_affine.domain_shape) == shape

    # proofs the above
    assert_array_equal(source_morph_vol.zooms, (zooms,) * 3)

    # assure proper src shape
    mri_size = (src[0]['mri_height'], src[0]['mri_depth'], src[0]['mri_width'])
    assert source_morph_vol.src_data['src_shape_full'] == mri_size

    fwd = read_forward_solution(fname_fwd_vol)
    source_morph_vol = compute_source_morph(
        fwd['src'], 'sample', 'sample', subjects_dir=subjects_dir,
        **kwargs)

    # check wrong subject_to
    with pytest.raises(IOError, match='cannot read file'):
        compute_source_morph(fwd['src'], 'sample', '42',
                             subjects_dir=subjects_dir)

    # two different ways of saving
    source_morph_vol.save(op.join(tempdir, 'vol'))

    # check loading
    source_morph_vol_r = read_source_morph(
        op.join(tempdir, 'vol-morph.h5'))

    # check for invalid file name handling ()
    with pytest.raises(IOError, match='not found'):
        read_source_morph(op.join(tempdir, '42'))

    # check morph
    stc_vol_morphed = source_morph_vol.apply(stc_vol)

    # check output as NIfTI
    assert isinstance(source_morph_vol.apply(stc_vol, output='nifti2'),
                      nib.Nifti2Image)

    # check for subject_from mismatch
    source_morph_vol_r.subject_from = '42'
    with pytest.raises(ValueError, match='subject_from must match'):
        source_morph_vol_r.apply(stc_vol_morphed)

    # check if nifti is in grid morph space with voxel_size == spacing
    img_morph_res = source_morph_vol.apply(stc_vol, output='nifti1')

    # assure morph spacing
    assert isinstance(img_morph_res, nib.Nifti1Image)
    assert img_morph_res.header.get_zooms()[:3] == (zooms,) * 3

    # assure src shape
    img_mri_res = source_morph_vol.apply(stc_vol, output='nifti1',
                                         mri_resolution=True)
    assert isinstance(img_mri_res, nib.Nifti1Image)
    assert (img_mri_res.shape == (src[0]['mri_height'], src[0]['mri_depth'],
                                  src[0]['mri_width']) +
            (img_mri_res.shape[3],))

    # check if nifti is defined resolution with voxel_size == (5., 5., 5.)
    img_any_res = source_morph_vol.apply(stc_vol, output='nifti1',
                                         mri_resolution=(5., 5., 5.))
    assert isinstance(img_any_res, nib.Nifti1Image)
    assert img_any_res.header.get_zooms()[:3] == (5., 5., 5.)

    # check if morph outputs correct data
    assert isinstance(stc_vol_morphed, VolSourceEstimate)

    # check if loaded and saved objects contain the same
    assert (all([read == saved for read, saved in
                 zip(sorted(source_morph_vol_r.__dict__),
                     sorted(source_morph_vol.__dict__))]))

    # check __repr__
    assert 'volume' in repr(source_morph_vol)

    # check Nifti2Image
    assert isinstance(
        source_morph_vol.apply(stc_vol, mri_resolution=True,
                               mri_space=True, output='nifti2'),
        nib.Nifti2Image)

    # Degenerate conditions
    with pytest.raises(TypeError, match='output must be'):
        source_morph_vol.apply(stc_vol, output=1)
    with pytest.raises(ValueError, match='subject_from does not match'):
        compute_source_morph(src=src, subject_from='42')
    with pytest.raises(ValueError, match='output must be one of'):
        source_morph_vol.apply(stc_vol, output='42')
    with pytest.raises(TypeError, match='subject_to must'):
        compute_source_morph(src, 'sample', None,
                             subjects_dir=subjects_dir)
    # Check if not morphed, but voxel size not boolean, raise ValueError.
    # Note that this check requires dipy to not raise the dipy ImportError
    # before checking if the actual voxel size error will raise.
    with pytest.raises(ValueError, match='Cannot infer original voxel size'):
        stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=4)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_morph_stc_dense():
    """Test morphing stc."""
    subject_from = 'sample'
    subject_to = 'fsaverage'
    stc_from = read_source_estimate(fname_smorph, subject='sample')
    stc_to = read_source_estimate(fname_fmorph)
    # make sure we can specify grade
    stc_from.crop(0.09, 0.1)  # for faster computation
    stc_to.crop(0.09, 0.1)  # for faster computation
    assert_array_equal(stc_to.time_as_index([0.09, 0.1], use_rounding=True),
                       [0, len(stc_to.times) - 1])

    # After dep change this to:
    # stc_to1 = compute_source_morph(
    #     subject_to=subject_to, spacing=3, smooth=12, src=stc_from,
    #     subjects_dir=subjects_dir).apply(stc_from)
    with pytest.deprecated_call():
        stc_to1 = stc_from.morph(
            subject_to=subject_to, grade=3, smooth=12,
            subjects_dir=subjects_dir)
    assert_allclose(stc_to.data, stc_to1.data, atol=1e-5)

    mean_from = stc_from.data.mean(axis=0)
    mean_to = stc_to1.data.mean(axis=0)
    assert np.corrcoef(mean_to, mean_from).min() > 0.999

    vertices_to = grade_to_vertices(subject_to, grade=3,
                                    subjects_dir=subjects_dir)

    # make sure we can fill by morphing
    with pytest.warns(RuntimeWarning, match='consider increasing'):
        morph = compute_source_morph(
            stc_from, subject_from, subject_to, spacing=None, smooth=1,
            subjects_dir=subjects_dir)
    # after deprecation change this to:
    # stc_to5 = morph.apply(stc_from)
    with pytest.deprecated_call():
        stc_to5 = stc_from.morph_precomputed(
            morph_mat=morph.morph_mat, subject_to=subject_to,
            vertices_to=morph.vertices_to)
    assert stc_to5.data.shape[0] == 163842 + 163842
    # after deprecation delete this
    with pytest.deprecated_call():
        stc_to6 = morph_data(
            subject_from, subject_to, stc_from, grade=None, smooth=1,
            subjects_dir=subjects_dir)
    assert_allclose(stc_to6.data, stc_to5.data)

    # Morph vector data
    stc_vec = _real_vec_stc()
    stc_vec_to1 = compute_source_morph(
        stc_vec, subject_from, subject_to, subjects_dir=subjects_dir,
        spacing=vertices_to, smooth=1, warn=False).apply(stc_vec)
    assert stc_vec_to1.subject == subject_to
    assert stc_vec_to1.tmin == stc_vec.tmin
    assert stc_vec_to1.tstep == stc_vec.tstep
    assert len(stc_vec_to1.lh_vertno) == 642
    assert len(stc_vec_to1.rh_vertno) == 642

    # Degenerate conditions

    # Morphing to a density that is too high should raise an informative error
    # (here we need to push to grade=6, but for some subjects even grade=5
    # will break)
    with pytest.raises(ValueError, match='Cannot use icosahedral grade 6 '):
        compute_source_morph(
            stc_to1, subject_from=subject_to, subject_to=subject_from,
            spacing=6, subjects_dir=subjects_dir)
    del stc_to1

    with pytest.raises(ValueError, match='smooth.* has to be at least 1'):
        compute_source_morph(
            stc_from, subject_from, subject_to, spacing=5, smooth=-1,
            subjects_dir=subjects_dir)

    # subject from mismatch
    with pytest.raises(ValueError, match="does not match source space subj"):
        compute_source_morph(stc_from, subject_from='foo',
                             subjects_dir=subjects_dir)

    # only one set of vertices
    with pytest.raises(ValueError, match="grade.*list must have two elements"):
        compute_source_morph(
            stc_from, subject_from=subject_from, spacing=[vertices_to[0]],
            subjects_dir=subjects_dir)


@requires_version('scipy', '0.13')
@testing.requires_testing_data
def test_morph_stc_sparse():
    """Test morphing stc with sparse=True."""
    subject_from = 'sample'
    subject_to = 'fsaverage'
    # Morph sparse data
    # Make a sparse stc
    stc_from = read_source_estimate(fname_smorph, subject='sample')
    stc_from.vertices[0] = stc_from.vertices[0][[100, 500]]
    stc_from.vertices[1] = stc_from.vertices[1][[200]]
    stc_from._data = stc_from._data[:3]

    stc_to_sparse = compute_source_morph(
        stc_from, subject_from=subject_from, subject_to=subject_to,
        spacing=None, sparse=True, subjects_dir=subjects_dir).apply(stc_from)

    assert_allclose(np.sort(stc_from.data.sum(axis=1)),
                    np.sort(stc_to_sparse.data.sum(axis=1)))
    assert len(stc_from.rh_vertno) == len(stc_to_sparse.rh_vertno)
    assert len(stc_from.lh_vertno) == len(stc_to_sparse.lh_vertno)
    assert stc_to_sparse.subject == subject_to
    assert stc_from.tmin == stc_from.tmin
    assert stc_from.tstep == stc_from.tstep

    stc_from.vertices[0] = np.array([], dtype=np.int64)
    stc_from._data = stc_from._data[:1]

    stc_to_sparse = compute_source_morph(
        stc_from, subject_from, subject_to, spacing=None, sparse=True,
        subjects_dir=subjects_dir).apply(stc_from)

    assert_allclose(np.sort(stc_from.data.sum(axis=1)),
                    np.sort(stc_to_sparse.data.sum(axis=1)))
    assert len(stc_from.rh_vertno) == len(stc_to_sparse.rh_vertno)
    assert len(stc_from.lh_vertno) == len(stc_to_sparse.lh_vertno)
    assert stc_to_sparse.subject == subject_to
    assert stc_from.tmin == stc_from.tmin
    assert stc_from.tstep == stc_from.tstep

    # Degenerate cases
    with pytest.raises(ValueError, match='spacing must be set to None'):
        compute_source_morph(
            stc_from, subject_from=subject_from, subject_to=subject_to,
            spacing=5, sparse=True, subjects_dir=subjects_dir)
    with pytest.raises(ValueError, match='xhemi=True can only be used with'):
        compute_source_morph(
            stc_from, subject_from=subject_from, subject_to=subject_to,
            spacing=None, sparse=True, xhemi=True, subjects_dir=subjects_dir)


@requires_nibabel()
@testing.requires_testing_data
def test_volume_labels_morph(tmpdir):
    """Test generating a source space from volume label."""
    # see gh-5224
    evoked = mne.read_evokeds(fname_evoked)[0].crop(0, 0)
    evoked.pick_channels(evoked.ch_names[:306:8])
    evoked.info.normalize_proj()
    n_ch = len(evoked.ch_names)
    aseg_fname = op.join(subjects_dir, 'sample', 'mri', 'aseg.mgz')
    label_names = get_volume_labels_from_aseg(aseg_fname)
    src = setup_volume_source_space(
        'sample', subjects_dir=subjects_dir, volume_label=label_names[:2],
        mri=aseg_fname)
    assert len(src) == 2
    assert src.kind == 'volume'
    n_src = sum(s['nuse'] for s in src)
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    fwd = make_forward_solution(evoked.info, fname_trans, src, sphere)
    assert fwd['sol']['data'].shape == (n_ch, n_src * 3)
    inv = make_inverse_operator(evoked.info, fwd, make_ad_hoc_cov(evoked.info),
                                loose=1.)
    stc = apply_inverse(evoked, inv)
    assert stc.data.shape == (n_src, 1)
    img = stc.as_volume(src, mri_resolution=True)
    n_on = np.array(img.dataobj).astype(bool).sum()
    assert n_on == 291  # was 291 on `master` before gh-5590
    img = stc.as_volume(src, mri_resolution=False)
    n_on = np.array(img.dataobj).astype(bool).sum()
    assert n_on == 44  # was 20 on `master` before gh-5590


run_tests_if_main()