1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
|
from copy import deepcopy
import os.path as op
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_allclose, assert_equal)
import pytest
from scipy.fftpack import fft
from scipy import sparse
from mne.datasets import testing
from mne import (stats, SourceEstimate, VectorSourceEstimate,
VolSourceEstimate, Label, read_source_spaces,
read_evokeds, MixedSourceEstimate, find_events, Epochs,
read_source_estimate, extract_label_time_course,
spatio_temporal_tris_connectivity,
spatio_temporal_src_connectivity,
spatial_inter_hemi_connectivity,
spatial_src_connectivity, spatial_tris_connectivity,
SourceSpaces)
from mne.source_estimate import grade_to_tris, _get_vol_mask
from mne.minimum_norm import (read_inverse_operator, apply_inverse,
apply_inverse_epochs)
from mne.label import read_labels_from_annot, label_sign_flip
from mne.utils import (_TempDir, requires_pandas, requires_sklearn,
requires_h5py, run_tests_if_main, requires_nibabel)
from mne.io import read_raw_fif
data_path = testing.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
fname_inv = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif')
fname_evoked = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-ave.fif')
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_t1 = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz')
fname_src = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
fname_src_fs = op.join(data_path, 'subjects', 'fsaverage', 'bem',
'fsaverage-ico-5-src.fif')
fname_src_3 = op.join(data_path, 'subjects', 'sample', 'bem',
'sample-oct-4-src.fif')
fname_stc = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg')
fname_vol = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w')
fname_vsrc = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-vol-7-fwd.fif')
fname_inv_vol = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-vol-7-meg-inv.fif')
rng = np.random.RandomState(0)
@testing.requires_testing_data
def test_spatial_inter_hemi_connectivity():
"""Test spatial connectivity between hemispheres."""
# trivial cases
conn = spatial_inter_hemi_connectivity(fname_src_3, 5e-6)
assert_equal(conn.data.size, 0)
conn = spatial_inter_hemi_connectivity(fname_src_3, 5e6)
assert_equal(conn.data.size, np.prod(conn.shape) // 2)
# actually interesting case (1cm), should be between 2 and 10% of verts
src = read_source_spaces(fname_src_3)
conn = spatial_inter_hemi_connectivity(src, 10e-3)
conn = conn.tocsr()
n_src = conn.shape[0]
assert (n_src * 0.02 < conn.data.size < n_src * 0.10)
assert_equal(conn[:src[0]['nuse'], :src[0]['nuse']].data.size, 0)
assert_equal(conn[-src[1]['nuse']:, -src[1]['nuse']:].data.size, 0)
c = (conn.T + conn) / 2. - conn
c.eliminate_zeros()
assert_equal(c.data.size, 0)
# check locations
upper_right = conn[:src[0]['nuse'], src[0]['nuse']:].toarray()
assert_equal(upper_right.sum(), conn.sum() // 2)
good_labels = ['S_pericallosal', 'Unknown', 'G_and_S_cingul-Mid-Post',
'G_cuneus']
for hi, hemi in enumerate(('lh', 'rh')):
has_neighbors = src[hi]['vertno'][np.where(np.any(upper_right,
axis=1 - hi))[0]]
labels = read_labels_from_annot('sample', 'aparc.a2009s', hemi,
subjects_dir=subjects_dir)
use_labels = [l.name[:-3] for l in labels
if np.in1d(l.vertices, has_neighbors).any()]
assert (set(use_labels) - set(good_labels) == set())
@pytest.mark.slowtest
@testing.requires_testing_data
@requires_h5py
def test_volume_stc():
"""Test volume STCs."""
tempdir = _TempDir()
N = 100
data = np.arange(N)[:, np.newaxis]
datas = [data, data, np.arange(2)[:, np.newaxis]]
vertno = np.arange(N)
vertnos = [vertno, vertno[:, np.newaxis], np.arange(2)[:, np.newaxis]]
vertno_reads = [vertno, vertno, np.arange(2)]
for data, vertno, vertno_read in zip(datas, vertnos, vertno_reads):
stc = VolSourceEstimate(data, vertno, 0, 1)
fname_temp = op.join(tempdir, 'temp-vl.stc')
stc_new = stc
for _ in range(2):
stc_new.save(fname_temp)
stc_new = read_source_estimate(fname_temp)
assert (isinstance(stc_new, VolSourceEstimate))
assert_array_equal(vertno_read, stc_new.vertices)
assert_array_almost_equal(stc.data, stc_new.data)
# now let's actually read a MNE-C processed file
stc = read_source_estimate(fname_vol, 'sample')
assert (isinstance(stc, VolSourceEstimate))
assert ('sample' in repr(stc))
stc_new = stc
pytest.raises(ValueError, stc.save, fname_vol, ftype='whatever')
for ftype in ['w', 'h5']:
for _ in range(2):
fname_temp = op.join(tempdir, 'temp-vol.%s' % ftype)
stc_new.save(fname_temp, ftype=ftype)
stc_new = read_source_estimate(fname_temp)
assert (isinstance(stc_new, VolSourceEstimate))
assert_array_equal(stc.vertices, stc_new.vertices)
assert_array_almost_equal(stc.data, stc_new.data)
@requires_nibabel()
@testing.requires_testing_data
def test_stc_as_volume():
"""Test previous volume source estimate morph."""
import nibabel as nib
inverse_operator_vol = read_inverse_operator(fname_inv_vol)
# Apply inverse operator
stc_vol = read_source_estimate(fname_vol, 'sample')
img = stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=True,
dest='42')
t1_img = nib.load(fname_t1)
# always assure nifti and dimensionality
assert isinstance(img, nib.Nifti1Image)
assert img.header.get_zooms()[:3] == t1_img.header.get_zooms()[:3]
img = stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=False)
assert isinstance(img, nib.Nifti1Image)
assert img.shape[:3] == inverse_operator_vol['src'][0]['shape'][:3]
with pytest.raises(ValueError, match='invalid output'):
stc_vol.as_volume(inverse_operator_vol['src'], format='42')
@testing.requires_testing_data
@requires_nibabel()
def test_save_vol_stc_as_nifti():
"""Save the stc as a nifti file and export."""
import nibabel as nib
tempdir = _TempDir()
src = read_source_spaces(fname_vsrc)
vol_fname = op.join(tempdir, 'stc.nii.gz')
# now let's actually read a MNE-C processed file
stc = read_source_estimate(fname_vol, 'sample')
assert (isinstance(stc, VolSourceEstimate))
stc.save_as_volume(vol_fname, src,
dest='surf', mri_resolution=False)
with pytest.warns(None): # nib<->numpy
img = nib.load(vol_fname)
assert (img.shape == src[0]['shape'] + (len(stc.times),))
with pytest.warns(None): # nib<->numpy
t1_img = nib.load(fname_t1)
stc.save_as_volume(op.join(tempdir, 'stc.nii.gz'), src,
dest='mri', mri_resolution=True)
with pytest.warns(None): # nib<->numpy
img = nib.load(vol_fname)
assert (img.shape == t1_img.shape + (len(stc.times),))
assert_allclose(img.affine, t1_img.affine, atol=1e-5)
# export without saving
img = stc.as_volume(src, dest='mri', mri_resolution=True)
assert (img.shape == t1_img.shape + (len(stc.times),))
assert_allclose(img.affine, t1_img.affine, atol=1e-5)
src = SourceSpaces([src[0], src[0]])
stc = VolSourceEstimate(np.r_[stc.data, stc.data],
[stc.vertices, stc.vertices],
tmin=stc.tmin, tstep=stc.tstep, subject='sample')
img = stc.as_volume(src, dest='mri', mri_resolution=False)
assert (img.shape == src[0]['shape'] + (len(stc.times),))
@testing.requires_testing_data
def test_expand():
"""Test stc expansion."""
stc_ = read_source_estimate(fname_stc, 'sample')
vec_stc_ = VectorSourceEstimate(np.zeros((stc_.data.shape[0], 3,
stc_.data.shape[1])),
stc_.vertices, stc_.tmin, stc_.tstep,
stc_.subject)
for stc in [stc_, vec_stc_]:
assert ('sample' in repr(stc))
labels_lh = read_labels_from_annot('sample', 'aparc', 'lh',
subjects_dir=subjects_dir)
new_label = labels_lh[0] + labels_lh[1]
stc_limited = stc.in_label(new_label)
stc_new = stc_limited.copy()
stc_new.data.fill(0)
for label in labels_lh[:2]:
stc_new += stc.in_label(label).expand(stc_limited.vertices)
pytest.raises(TypeError, stc_new.expand, stc_limited.vertices[0])
pytest.raises(ValueError, stc_new.expand, [stc_limited.vertices[0]])
# make sure we can't add unless vertno agree
pytest.raises(ValueError, stc.__add__, stc.in_label(labels_lh[0]))
def _fake_stc(n_time=10):
verts = [np.arange(10), np.arange(90)]
return SourceEstimate(np.random.rand(100, n_time), verts, 0, 1e-1, 'foo')
def _fake_vec_stc(n_time=10):
verts = [np.arange(10), np.arange(90)]
return VectorSourceEstimate(np.random.rand(100, 3, n_time), verts, 0, 1e-1,
'foo')
def _real_vec_stc():
inv = read_inverse_operator(fname_inv)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01)
return apply_inverse(evoked, inv, pick_ori='vector')
def _test_stc_integrety(stc):
"""Test consistency of tmin, tstep, data.shape[-1] and times."""
n_times = len(stc.times)
assert_equal(stc._data.shape[-1], n_times)
assert_array_equal(stc.times, stc.tmin + np.arange(n_times) * stc.tstep)
def test_stc_attributes():
"""Test STC attributes."""
stc = _fake_stc(n_time=10)
vec_stc = _fake_vec_stc(n_time=10)
_test_stc_integrety(stc)
assert_array_almost_equal(
stc.times, [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
def attempt_times_mutation(stc):
stc.times -= 1
def attempt_assignment(stc, attr, val):
setattr(stc, attr, val)
# .times is read-only
pytest.raises(ValueError, attempt_times_mutation, stc)
pytest.raises(ValueError, attempt_assignment, stc, 'times', [1])
# Changing .tmin or .tstep re-computes .times
stc.tmin = 1
assert (type(stc.tmin) == float)
assert_array_almost_equal(
stc.times, [1., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])
stc.tstep = 1
assert (type(stc.tstep) == float)
assert_array_almost_equal(
stc.times, [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
# tstep <= 0 is not allowed
pytest.raises(ValueError, attempt_assignment, stc, 'tstep', 0)
pytest.raises(ValueError, attempt_assignment, stc, 'tstep', -1)
# Changing .data re-computes .times
stc.data = np.random.rand(100, 5)
assert_array_almost_equal(
stc.times, [1., 2., 3., 4., 5.])
# .data must match the number of vertices
pytest.raises(ValueError, attempt_assignment, stc, 'data', [[1]])
pytest.raises(ValueError, attempt_assignment, stc, 'data', None)
# .data much match number of dimensions
pytest.raises(ValueError, attempt_assignment, stc, 'data', np.arange(100))
pytest.raises(ValueError, attempt_assignment, vec_stc, 'data',
[np.arange(100)])
pytest.raises(ValueError, attempt_assignment, vec_stc, 'data',
[[[np.arange(100)]]])
# .shape attribute must also work when ._data is None
stc._kernel = np.zeros((2, 2))
stc._sens_data = np.zeros((2, 3))
stc._data = None
assert_equal(stc.shape, (2, 3))
def test_io_stc():
"""Test IO for STC files."""
tempdir = _TempDir()
stc = _fake_stc()
stc.save(op.join(tempdir, "tmp.stc"))
stc2 = read_source_estimate(op.join(tempdir, "tmp.stc"))
assert_array_almost_equal(stc.data, stc2.data)
assert_array_almost_equal(stc.tmin, stc2.tmin)
assert_equal(len(stc.vertices), len(stc2.vertices))
for v1, v2 in zip(stc.vertices, stc2.vertices):
assert_array_almost_equal(v1, v2)
assert_array_almost_equal(stc.tstep, stc2.tstep)
@requires_h5py
def test_io_stc_h5():
"""Test IO for STC files using HDF5."""
for stc in [_fake_stc(), _fake_vec_stc()]:
tempdir = _TempDir()
pytest.raises(ValueError, stc.save, op.join(tempdir, 'tmp'),
ftype='foo')
out_name = op.join(tempdir, 'tmp')
stc.save(out_name, ftype='h5')
stc.save(out_name, ftype='h5') # test overwrite
stc3 = read_source_estimate(out_name)
stc4 = read_source_estimate(out_name + '-stc')
stc5 = read_source_estimate(out_name + '-stc.h5')
pytest.raises(RuntimeError, read_source_estimate, out_name,
subject='bar')
for stc_new in stc3, stc4, stc5:
assert_equal(stc_new.subject, stc.subject)
assert_array_equal(stc_new.data, stc.data)
assert_array_equal(stc_new.tmin, stc.tmin)
assert_array_equal(stc_new.tstep, stc.tstep)
assert_equal(len(stc_new.vertices), len(stc.vertices))
for v1, v2 in zip(stc_new.vertices, stc.vertices):
assert_array_equal(v1, v2)
def test_io_w():
"""Test IO for w files."""
tempdir = _TempDir()
stc = _fake_stc(n_time=1)
w_fname = op.join(tempdir, 'fake')
stc.save(w_fname, ftype='w')
src = read_source_estimate(w_fname)
src.save(op.join(tempdir, 'tmp'), ftype='w')
src2 = read_source_estimate(op.join(tempdir, 'tmp-lh.w'))
assert_array_almost_equal(src.data, src2.data)
assert_array_almost_equal(src.lh_vertno, src2.lh_vertno)
assert_array_almost_equal(src.rh_vertno, src2.rh_vertno)
def test_stc_arithmetic():
"""Test arithmetic for STC files."""
stc = _fake_stc()
data = stc.data.copy()
vec_stc = _fake_vec_stc()
vec_data = vec_stc.data.copy()
out = list()
for a in [data, stc, vec_data, vec_stc]:
a = a + a * 3 + 3 * a - a ** 2 / 2
a += a
a -= a
with np.errstate(invalid='ignore'):
a /= 2 * a
a *= -a
a += 2
a -= 1
a *= -1
a /= 2
b = 2 + a
b = 2 - a
b = +a
assert_array_equal(b.data, a.data)
with np.errstate(invalid='ignore'):
a **= 3
out.append(a)
assert_array_equal(out[0], out[1].data)
assert_array_equal(out[2], out[3].data)
assert_array_equal(stc.sqrt().data, np.sqrt(stc.data))
assert_array_equal(vec_stc.sqrt().data, np.sqrt(vec_stc.data))
assert_array_equal(abs(stc).data, abs(stc.data))
assert_array_equal(abs(vec_stc).data, abs(vec_stc.data))
stc_sum = stc.sum()
assert_array_equal(stc_sum.data, stc.data.sum(1, keepdims=True))
stc_mean = stc.mean()
assert_array_equal(stc_mean.data, stc.data.mean(1, keepdims=True))
vec_stc_mean = vec_stc.mean()
assert_array_equal(vec_stc_mean.data, vec_stc.data.mean(2, keepdims=True))
@pytest.mark.slowtest
@testing.requires_testing_data
def test_stc_methods():
"""Test stc methods lh_data, rh_data, bin(), resample()."""
stc_ = read_source_estimate(fname_stc)
# Make a vector version of the above source estimate
x = stc_.data[:, np.newaxis, :]
yz = np.zeros((x.shape[0], 2, x.shape[2]))
vec_stc_ = VectorSourceEstimate(
np.concatenate((x, yz), 1),
stc_.vertices, stc_.tmin, stc_.tstep, stc_.subject
)
for stc in [stc_, vec_stc_]:
# lh_data / rh_data
assert_array_equal(stc.lh_data, stc.data[:len(stc.lh_vertno)])
assert_array_equal(stc.rh_data, stc.data[len(stc.lh_vertno):])
# bin
binned = stc.bin(.12)
a = np.mean(stc.data[..., :np.searchsorted(stc.times, .12)], axis=-1)
assert_array_equal(a, binned.data[..., 0])
stc = read_source_estimate(fname_stc)
stc.subject = 'sample'
label_lh = read_labels_from_annot('sample', 'aparc', 'lh',
subjects_dir=subjects_dir)[0]
label_rh = read_labels_from_annot('sample', 'aparc', 'rh',
subjects_dir=subjects_dir)[0]
label_both = label_lh + label_rh
for label in (label_lh, label_rh, label_both):
assert (isinstance(stc.shape, tuple) and len(stc.shape) == 2)
stc_label = stc.in_label(label)
if label.hemi != 'both':
if label.hemi == 'lh':
verts = stc_label.vertices[0]
else: # label.hemi == 'rh':
verts = stc_label.vertices[1]
n_vertices_used = len(label.get_vertices_used(verts))
assert_equal(len(stc_label.data), n_vertices_used)
stc_lh = stc.in_label(label_lh)
pytest.raises(ValueError, stc_lh.in_label, label_rh)
label_lh.subject = 'foo'
pytest.raises(RuntimeError, stc.in_label, label_lh)
stc_new = deepcopy(stc)
o_sfreq = 1.0 / stc.tstep
# note that using no padding for this STC reduces edge ringing...
stc_new.resample(2 * o_sfreq, npad=0)
assert (stc_new.data.shape[1] == 2 * stc.data.shape[1])
assert (stc_new.tstep == stc.tstep / 2)
stc_new.resample(o_sfreq, npad=0)
assert (stc_new.data.shape[1] == stc.data.shape[1])
assert (stc_new.tstep == stc.tstep)
assert_array_almost_equal(stc_new.data, stc.data, 5)
@testing.requires_testing_data
def test_center_of_mass():
"""Test computing the center of mass on an stc."""
stc = read_source_estimate(fname_stc)
pytest.raises(ValueError, stc.center_of_mass, 'sample')
stc.lh_data[:] = 0
vertex, hemi, t = stc.center_of_mass('sample', subjects_dir=subjects_dir)
assert (hemi == 1)
# XXX Should design a fool-proof test case, but here were the
# results:
assert_equal(vertex, 124791)
assert_equal(np.round(t, 2), 0.12)
@testing.requires_testing_data
def test_extract_label_time_course():
"""Test extraction of label time courses from stc."""
n_stcs = 3
n_times = 50
src = read_inverse_operator(fname_inv)['src']
vertices = [src[0]['vertno'], src[1]['vertno']]
n_verts = len(vertices[0]) + len(vertices[1])
# get some labels
labels_lh = read_labels_from_annot('sample', hemi='lh',
subjects_dir=subjects_dir)
labels_rh = read_labels_from_annot('sample', hemi='rh',
subjects_dir=subjects_dir)
labels = list()
labels.extend(labels_lh[:5])
labels.extend(labels_rh[:4])
n_labels = len(labels)
label_means = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times))
label_maxs = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times))
# compute the mean with sign flip
label_means_flipped = np.zeros_like(label_means)
for i, label in enumerate(labels):
label_means_flipped[i] = i * np.mean(label_sign_flip(label, src))
# generate some stc's with known data
stcs = list()
for i in range(n_stcs):
data = np.zeros((n_verts, n_times))
# set the value of the stc within each label
for j, label in enumerate(labels):
if label.hemi == 'lh':
idx = np.intersect1d(vertices[0], label.vertices)
idx = np.searchsorted(vertices[0], idx)
elif label.hemi == 'rh':
idx = np.intersect1d(vertices[1], label.vertices)
idx = len(vertices[0]) + np.searchsorted(vertices[1], idx)
data[idx] = label_means[j]
this_stc = SourceEstimate(data, vertices, 0, 1)
stcs.append(this_stc)
# test some invalid inputs
pytest.raises(ValueError, extract_label_time_course, stcs, labels,
src, mode='notamode')
# have an empty label
empty_label = labels[0].copy()
empty_label.vertices += 1000000
pytest.raises(ValueError, extract_label_time_course, stcs, empty_label,
src, mode='mean')
# but this works:
with pytest.warns(RuntimeWarning, match='does not contain any vertices'):
tc = extract_label_time_course(stcs, empty_label, src, mode='mean',
allow_empty=True)
for arr in tc:
assert (arr.shape == (1, n_times))
assert_array_equal(arr, np.zeros((1, n_times)))
# test the different modes
modes = ['mean', 'mean_flip', 'pca_flip', 'max']
for mode in modes:
label_tc = extract_label_time_course(stcs, labels, src, mode=mode)
label_tc_method = [stc.extract_label_time_course(labels, src,
mode=mode) for stc in stcs]
assert (len(label_tc) == n_stcs)
assert (len(label_tc_method) == n_stcs)
for tc1, tc2 in zip(label_tc, label_tc_method):
assert (tc1.shape == (n_labels, n_times))
assert (tc2.shape == (n_labels, n_times))
assert (np.allclose(tc1, tc2, rtol=1e-8, atol=1e-16))
if mode == 'mean':
assert_array_almost_equal(tc1, label_means)
if mode == 'mean_flip':
assert_array_almost_equal(tc1, label_means_flipped)
if mode == 'max':
assert_array_almost_equal(tc1, label_maxs)
# test label with very few vertices (check SVD conditionals)
label = Label(vertices=src[0]['vertno'][:2], hemi='lh')
x = label_sign_flip(label, src)
assert (len(x) == 2)
label = Label(vertices=[], hemi='lh')
x = label_sign_flip(label, src)
assert (x.size == 0)
def _my_trans(data):
"""FFT that adds an additional dimension by repeating result."""
data_t = fft(data)
data_t = np.concatenate([data_t[:, :, None], data_t[:, :, None]], axis=2)
return data_t, None
def test_transform_data():
"""Test applying linear (time) transform to data."""
# make up some data
n_sensors, n_vertices, n_times = 10, 20, 4
kernel = rng.randn(n_vertices, n_sensors)
sens_data = rng.randn(n_sensors, n_times)
vertices = np.arange(n_vertices)
data = np.dot(kernel, sens_data)
for idx, tmin_idx, tmax_idx in\
zip([None, np.arange(n_vertices // 2, n_vertices)],
[None, 1], [None, 3]):
if idx is None:
idx_use = slice(None, None)
else:
idx_use = idx
data_f, _ = _my_trans(data[idx_use, tmin_idx:tmax_idx])
for stc_data in (data, (kernel, sens_data)):
stc = VolSourceEstimate(stc_data, vertices=vertices,
tmin=0., tstep=1.)
stc_data_t = stc.transform_data(_my_trans, idx=idx,
tmin_idx=tmin_idx,
tmax_idx=tmax_idx)
assert_allclose(data_f, stc_data_t)
def test_transform():
"""Test applying linear (time) transform to data."""
# make up some data
n_verts_lh, n_verts_rh, n_times = 10, 10, 10
vertices = [np.arange(n_verts_lh), n_verts_lh + np.arange(n_verts_rh)]
data = rng.randn(n_verts_lh + n_verts_rh, n_times)
stc = SourceEstimate(data, vertices=vertices, tmin=-0.1, tstep=0.1)
# data_t.ndim > 2 & copy is True
stcs_t = stc.transform(_my_trans, copy=True)
assert (isinstance(stcs_t, list))
assert_array_equal(stc.times, stcs_t[0].times)
assert_equal(stc.vertices, stcs_t[0].vertices)
data = np.concatenate((stcs_t[0].data[:, :, None],
stcs_t[1].data[:, :, None]), axis=2)
data_t = stc.transform_data(_my_trans)
assert_array_equal(data, data_t) # check against stc.transform_data()
# data_t.ndim > 2 & copy is False
pytest.raises(ValueError, stc.transform, _my_trans, copy=False)
# data_t.ndim = 2 & copy is True
tmp = deepcopy(stc)
stc_t = stc.transform(np.abs, copy=True)
assert (isinstance(stc_t, SourceEstimate))
assert_array_equal(stc.data, tmp.data) # xfrm doesn't modify original?
# data_t.ndim = 2 & copy is False
times = np.round(1000 * stc.times)
verts = np.arange(len(stc.lh_vertno),
len(stc.lh_vertno) + len(stc.rh_vertno), 1)
verts_rh = stc.rh_vertno
tmin_idx = np.searchsorted(times, 0)
tmax_idx = np.searchsorted(times, 501) # Include 500ms in the range
data_t = stc.transform_data(np.abs, idx=verts, tmin_idx=tmin_idx,
tmax_idx=tmax_idx)
stc.transform(np.abs, idx=verts, tmin=-50, tmax=500, copy=False)
assert (isinstance(stc, SourceEstimate))
assert_equal(stc.tmin, 0.)
assert_equal(stc.times[-1], 0.5)
assert_equal(len(stc.vertices[0]), 0)
assert_equal(stc.vertices[1], verts_rh)
assert_array_equal(stc.data, data_t)
times = np.round(1000 * stc.times)
tmin_idx, tmax_idx = np.searchsorted(times, 0), np.searchsorted(times, 250)
data_t = stc.transform_data(np.abs, tmin_idx=tmin_idx, tmax_idx=tmax_idx)
stc.transform(np.abs, tmin=0, tmax=250, copy=False)
assert_equal(stc.tmin, 0.)
assert_equal(stc.times[-1], 0.2)
assert_array_equal(stc.data, data_t)
@requires_sklearn
def test_spatio_temporal_tris_connectivity():
"""Test spatio-temporal connectivity from triangles."""
tris = np.array([[0, 1, 2], [3, 4, 5]])
connectivity = spatio_temporal_tris_connectivity(tris, 2)
x = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
components = stats.cluster_level._get_components(np.array(x), connectivity)
# _get_components works differently now...
old_fmt = [0, 0, -2, -2, -2, -2, 0, -2, -2, -2, -2, 1]
new_fmt = np.array(old_fmt)
new_fmt = [np.nonzero(new_fmt == v)[0]
for v in np.unique(new_fmt[new_fmt >= 0])]
assert len(new_fmt) == len(components)
for c, n in zip(components, new_fmt):
assert_array_equal(c, n)
@testing.requires_testing_data
def test_spatio_temporal_src_connectivity():
"""Test spatio-temporal connectivity from source spaces."""
tris = np.array([[0, 1, 2], [3, 4, 5]])
src = [dict(), dict()]
connectivity = spatio_temporal_tris_connectivity(tris, 2)
src[0]['use_tris'] = np.array([[0, 1, 2]])
src[1]['use_tris'] = np.array([[0, 1, 2]])
src[0]['vertno'] = np.array([0, 1, 2])
src[1]['vertno'] = np.array([0, 1, 2])
src[0]['type'] = 'surf'
src[1]['type'] = 'surf'
connectivity2 = spatio_temporal_src_connectivity(src, 2)
assert_array_equal(connectivity.todense(), connectivity2.todense())
# add test for dist connectivity
src[0]['dist'] = np.ones((3, 3)) - np.eye(3)
src[1]['dist'] = np.ones((3, 3)) - np.eye(3)
src[0]['vertno'] = [0, 1, 2]
src[1]['vertno'] = [0, 1, 2]
src[0]['type'] = 'surf'
src[1]['type'] = 'surf'
connectivity3 = spatio_temporal_src_connectivity(src, 2, dist=2)
assert_array_equal(connectivity.todense(), connectivity3.todense())
# add test for source space connectivity with omitted vertices
inverse_operator = read_inverse_operator(fname_inv)
src_ = inverse_operator['src']
with pytest.warns(RuntimeWarning, match='will have holes'):
connectivity = spatio_temporal_src_connectivity(src_, n_times=2)
a = connectivity.shape[0] / 2
b = sum([s['nuse'] for s in inverse_operator['src']])
assert (a == b)
assert_equal(grade_to_tris(5).shape, [40960, 3])
@requires_pandas
def test_to_data_frame():
"""Test stc Pandas exporter."""
n_vert, n_times = 10, 5
vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)]
data = rng.randn(n_vert, n_times)
stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1,
subject='sample')
stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1,
subject='sample')
for stc in [stc_surf, stc_vol]:
pytest.raises(ValueError, stc.to_data_frame, index=['foo', 'bar'])
for ncat, ind in zip([1, 0], ['time', ['subject', 'time']]):
df = stc.to_data_frame(index=ind)
assert (df.index.names == ind
if isinstance(ind, list) else [ind])
assert_array_equal(df.values.T[ncat:], stc.data)
# test that non-indexed data were present as categorial variables
assert all([c in ['time', 'subject'] for c in
df.reset_index().columns][:2])
def test_get_peak():
"""Test peak getter."""
n_vert, n_times = 10, 5
vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)]
data = rng.randn(n_vert, n_times)
stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1,
subject='sample')
stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1,
subject='sample')
# Versions with only one time point
stc_surf_1 = SourceEstimate(data[:, :1], vertices=vertices, tmin=0,
tstep=1, subject='sample')
stc_vol_1 = VolSourceEstimate(data[:, :1], vertices=vertices[0], tmin=0,
tstep=1, subject='sample')
for ii, stc in enumerate([stc_surf, stc_vol, stc_surf_1, stc_vol_1]):
pytest.raises(ValueError, stc.get_peak, tmin=-100)
pytest.raises(ValueError, stc.get_peak, tmax=90)
pytest.raises(ValueError, stc.get_peak, tmin=0.002, tmax=0.001)
vert_idx, time_idx = stc.get_peak()
vertno = np.concatenate(stc.vertices) if ii in [0, 2] else stc.vertices
assert (vert_idx in vertno)
assert (time_idx in stc.times)
data_idx, time_idx = stc.get_peak(vert_as_index=True,
time_as_index=True)
assert_equal(data_idx, np.argmax(np.abs(stc.data[:, time_idx])))
assert_equal(time_idx, np.argmax(np.abs(stc.data[data_idx, :])))
@requires_h5py
@testing.requires_testing_data
def test_mixed_stc():
"""Test source estimate from mixed source space."""
N = 90 # number of sources
T = 2 # number of time points
S = 3 # number of source spaces
data = rng.randn(N, T)
vertno = S * [np.arange(N // S)]
# make sure error is raised if vertices are not a list of length >= 2
pytest.raises(ValueError, MixedSourceEstimate, data=data,
vertices=[np.arange(N)])
stc = MixedSourceEstimate(data, vertno, 0, 1)
vol = read_source_spaces(fname_vsrc)
# make sure error is raised for plotting surface with volume source
pytest.raises(ValueError, stc.plot_surface, src=vol)
tempdir = _TempDir()
fname = op.join(tempdir, 'mixed-stc.h5')
stc.save(fname)
stc_out = read_source_estimate(fname)
assert_array_equal(stc_out.vertices, vertno)
assert_array_equal(stc_out.data, data)
assert stc_out.tmin == 0
assert stc_out.tstep == 1
assert isinstance(stc_out, MixedSourceEstimate)
def test_vec_stc():
"""Test vector source estimate."""
nn = np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[np.sqrt(1 / 3.)] * 3
])
src = [dict(nn=nn[:2]), dict(nn=nn[2:])]
verts = [np.array([0, 1]), np.array([0, 1])]
data = np.array([
[1, 0, 0],
[0, 2, 0],
[3, 0, 0],
[1, 1, 1],
])[:, :, np.newaxis]
stc = VectorSourceEstimate(data, verts, 0, 1, 'foo')
# Magnitude of the vectors
assert_array_equal(stc.magnitude().data[:, 0], [1, 2, 3, np.sqrt(3)])
# Vector components projected onto the vertex normals
normal = stc.normal(src)
assert_array_equal(normal.data[:, 0], [1, 2, 0, np.sqrt(3)])
@testing.requires_testing_data
def test_epochs_vector_inverse():
"""Test vector inverse consistency between evoked and epochs."""
raw = read_raw_fif(fname_raw)
events = find_events(raw, stim_channel='STI 014')[:2]
reject = dict(grad=2000e-13, mag=4e-12, eog=150e-6)
epochs = Epochs(raw, events, None, 0, 0.01, baseline=None,
reject=reject, preload=True)
assert_equal(len(epochs), 2)
evoked = epochs.average(picks=range(len(epochs.ch_names)))
inv = read_inverse_operator(fname_inv)
method = "MNE"
snr = 3.
lambda2 = 1. / snr ** 2
stcs_epo = apply_inverse_epochs(epochs, inv, lambda2, method=method,
pick_ori='vector', return_generator=False)
stc_epo = np.mean(stcs_epo)
stc_evo = apply_inverse(evoked, inv, lambda2, method=method,
pick_ori='vector')
assert_allclose(stc_epo.data, stc_evo.data, rtol=1e-9, atol=0)
@requires_sklearn
@testing.requires_testing_data
def test_vol_connectivity():
"""Test volume connectivity."""
vol = read_source_spaces(fname_vsrc)
pytest.raises(ValueError, spatial_src_connectivity, vol, dist=1.)
connectivity = spatial_src_connectivity(vol)
n_vertices = vol[0]['inuse'].sum()
assert_equal(connectivity.shape, (n_vertices, n_vertices))
assert (np.all(connectivity.data == 1))
assert (isinstance(connectivity, sparse.coo_matrix))
connectivity2 = spatio_temporal_src_connectivity(vol, n_times=2)
assert_equal(connectivity2.shape, (2 * n_vertices, 2 * n_vertices))
assert (np.all(connectivity2.data == 1))
@testing.requires_testing_data
def test_spatial_src_connectivity():
"""Test spatial connectivity functionality."""
# oct
src = read_source_spaces(fname_src)
assert src[0]['dist'] is not None # distance info
with pytest.warns(RuntimeWarning, match='will have holes'):
con = spatial_src_connectivity(src).toarray()
con_dist = spatial_src_connectivity(src, dist=0.01).toarray()
assert (con == con_dist).mean() > 0.75
# ico
src = read_source_spaces(fname_src_fs)
con = spatial_src_connectivity(src).tocsr()
con_tris = spatial_tris_connectivity(grade_to_tris(5)).tocsr()
assert con.shape == con_tris.shape
assert_array_equal(con.data, con_tris.data)
assert_array_equal(con.indptr, con_tris.indptr)
assert_array_equal(con.indices, con_tris.indices)
# one hemi
con_lh = spatial_src_connectivity(src[:1]).tocsr()
con_lh_tris = spatial_tris_connectivity(grade_to_tris(5)).tocsr()
con_lh_tris = con_lh_tris[:10242, :10242].tocsr()
assert_array_equal(con_lh.data, con_lh_tris.data)
assert_array_equal(con_lh.indptr, con_lh_tris.indptr)
assert_array_equal(con_lh.indices, con_lh_tris.indices)
@requires_sklearn
@requires_nibabel()
@testing.requires_testing_data
def test_vol_mask():
"""Test extraction of volume mask."""
src = read_source_spaces(fname_vsrc)
mask = _get_vol_mask(src)
# Let's use an alternative way that should be equivalent
vertices = src[0]['vertno']
n_vertices = len(vertices)
data = (1 + np.arange(n_vertices))[:, np.newaxis]
stc_tmp = VolSourceEstimate(data, vertices, tmin=0., tstep=1.)
img = stc_tmp.as_volume(src, mri_resolution=False)
img_data = img.get_data()[:, :, :, 0].T
mask_nib = (img_data != 0)
assert_array_equal(img_data[mask_nib], data[:, 0])
assert_array_equal(np.where(mask_nib.ravel())[0], src[0]['vertno'])
assert_array_equal(mask, mask_nib)
assert_array_equal(img_data.shape, mask.shape)
run_tests_if_main()
|