File: test_source_estimate.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (918 lines) | stat: -rw-r--r-- 35,881 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
from copy import deepcopy
import os.path as op

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_allclose, assert_equal)
import pytest
from scipy.fftpack import fft
from scipy import sparse

from mne.datasets import testing
from mne import (stats, SourceEstimate, VectorSourceEstimate,
                 VolSourceEstimate, Label, read_source_spaces,
                 read_evokeds, MixedSourceEstimate, find_events, Epochs,
                 read_source_estimate, extract_label_time_course,
                 spatio_temporal_tris_connectivity,
                 spatio_temporal_src_connectivity,
                 spatial_inter_hemi_connectivity,
                 spatial_src_connectivity, spatial_tris_connectivity,
                 SourceSpaces)
from mne.source_estimate import grade_to_tris, _get_vol_mask

from mne.minimum_norm import (read_inverse_operator, apply_inverse,
                              apply_inverse_epochs)
from mne.label import read_labels_from_annot, label_sign_flip
from mne.utils import (_TempDir, requires_pandas, requires_sklearn,
                       requires_h5py, run_tests_if_main, requires_nibabel)
from mne.io import read_raw_fif

data_path = testing.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
fname_inv = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif')
fname_evoked = op.join(data_path, 'MEG', 'sample',
                       'sample_audvis_trunc-ave.fif')
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_t1 = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz')
fname_src = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
fname_src_fs = op.join(data_path, 'subjects', 'fsaverage', 'bem',
                       'fsaverage-ico-5-src.fif')
fname_src_3 = op.join(data_path, 'subjects', 'sample', 'bem',
                      'sample-oct-4-src.fif')
fname_stc = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg')
fname_vol = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w')
fname_vsrc = op.join(data_path, 'MEG', 'sample',
                     'sample_audvis_trunc-meg-vol-7-fwd.fif')
fname_inv_vol = op.join(data_path, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-vol-7-meg-inv.fif')
rng = np.random.RandomState(0)


@testing.requires_testing_data
def test_spatial_inter_hemi_connectivity():
    """Test spatial connectivity between hemispheres."""
    # trivial cases
    conn = spatial_inter_hemi_connectivity(fname_src_3, 5e-6)
    assert_equal(conn.data.size, 0)
    conn = spatial_inter_hemi_connectivity(fname_src_3, 5e6)
    assert_equal(conn.data.size, np.prod(conn.shape) // 2)
    # actually interesting case (1cm), should be between 2 and 10% of verts
    src = read_source_spaces(fname_src_3)
    conn = spatial_inter_hemi_connectivity(src, 10e-3)
    conn = conn.tocsr()
    n_src = conn.shape[0]
    assert (n_src * 0.02 < conn.data.size < n_src * 0.10)
    assert_equal(conn[:src[0]['nuse'], :src[0]['nuse']].data.size, 0)
    assert_equal(conn[-src[1]['nuse']:, -src[1]['nuse']:].data.size, 0)
    c = (conn.T + conn) / 2. - conn
    c.eliminate_zeros()
    assert_equal(c.data.size, 0)
    # check locations
    upper_right = conn[:src[0]['nuse'], src[0]['nuse']:].toarray()
    assert_equal(upper_right.sum(), conn.sum() // 2)
    good_labels = ['S_pericallosal', 'Unknown', 'G_and_S_cingul-Mid-Post',
                   'G_cuneus']
    for hi, hemi in enumerate(('lh', 'rh')):
        has_neighbors = src[hi]['vertno'][np.where(np.any(upper_right,
                                                          axis=1 - hi))[0]]
        labels = read_labels_from_annot('sample', 'aparc.a2009s', hemi,
                                        subjects_dir=subjects_dir)
        use_labels = [l.name[:-3] for l in labels
                      if np.in1d(l.vertices, has_neighbors).any()]
        assert (set(use_labels) - set(good_labels) == set())


@pytest.mark.slowtest
@testing.requires_testing_data
@requires_h5py
def test_volume_stc():
    """Test volume STCs."""
    tempdir = _TempDir()
    N = 100
    data = np.arange(N)[:, np.newaxis]
    datas = [data, data, np.arange(2)[:, np.newaxis]]
    vertno = np.arange(N)
    vertnos = [vertno, vertno[:, np.newaxis], np.arange(2)[:, np.newaxis]]
    vertno_reads = [vertno, vertno, np.arange(2)]
    for data, vertno, vertno_read in zip(datas, vertnos, vertno_reads):
        stc = VolSourceEstimate(data, vertno, 0, 1)
        fname_temp = op.join(tempdir, 'temp-vl.stc')
        stc_new = stc
        for _ in range(2):
            stc_new.save(fname_temp)
            stc_new = read_source_estimate(fname_temp)
            assert (isinstance(stc_new, VolSourceEstimate))
            assert_array_equal(vertno_read, stc_new.vertices)
            assert_array_almost_equal(stc.data, stc_new.data)

    # now let's actually read a MNE-C processed file
    stc = read_source_estimate(fname_vol, 'sample')
    assert (isinstance(stc, VolSourceEstimate))

    assert ('sample' in repr(stc))
    stc_new = stc
    pytest.raises(ValueError, stc.save, fname_vol, ftype='whatever')
    for ftype in ['w', 'h5']:
        for _ in range(2):
            fname_temp = op.join(tempdir, 'temp-vol.%s' % ftype)
            stc_new.save(fname_temp, ftype=ftype)
            stc_new = read_source_estimate(fname_temp)
            assert (isinstance(stc_new, VolSourceEstimate))
            assert_array_equal(stc.vertices, stc_new.vertices)
            assert_array_almost_equal(stc.data, stc_new.data)


@requires_nibabel()
@testing.requires_testing_data
def test_stc_as_volume():
    """Test previous volume source estimate morph."""
    import nibabel as nib
    inverse_operator_vol = read_inverse_operator(fname_inv_vol)

    # Apply inverse operator
    stc_vol = read_source_estimate(fname_vol, 'sample')

    img = stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=True,
                            dest='42')
    t1_img = nib.load(fname_t1)
    # always assure nifti and dimensionality
    assert isinstance(img, nib.Nifti1Image)
    assert img.header.get_zooms()[:3] == t1_img.header.get_zooms()[:3]

    img = stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=False)

    assert isinstance(img, nib.Nifti1Image)
    assert img.shape[:3] == inverse_operator_vol['src'][0]['shape'][:3]

    with pytest.raises(ValueError, match='invalid output'):
        stc_vol.as_volume(inverse_operator_vol['src'], format='42')


@testing.requires_testing_data
@requires_nibabel()
def test_save_vol_stc_as_nifti():
    """Save the stc as a nifti file and export."""
    import nibabel as nib
    tempdir = _TempDir()
    src = read_source_spaces(fname_vsrc)
    vol_fname = op.join(tempdir, 'stc.nii.gz')

    # now let's actually read a MNE-C processed file
    stc = read_source_estimate(fname_vol, 'sample')
    assert (isinstance(stc, VolSourceEstimate))

    stc.save_as_volume(vol_fname, src,
                       dest='surf', mri_resolution=False)
    with pytest.warns(None):  # nib<->numpy
        img = nib.load(vol_fname)
    assert (img.shape == src[0]['shape'] + (len(stc.times),))

    with pytest.warns(None):  # nib<->numpy
        t1_img = nib.load(fname_t1)
    stc.save_as_volume(op.join(tempdir, 'stc.nii.gz'), src,
                       dest='mri', mri_resolution=True)
    with pytest.warns(None):  # nib<->numpy
        img = nib.load(vol_fname)
    assert (img.shape == t1_img.shape + (len(stc.times),))
    assert_allclose(img.affine, t1_img.affine, atol=1e-5)

    # export without saving
    img = stc.as_volume(src, dest='mri', mri_resolution=True)
    assert (img.shape == t1_img.shape + (len(stc.times),))
    assert_allclose(img.affine, t1_img.affine, atol=1e-5)

    src = SourceSpaces([src[0], src[0]])
    stc = VolSourceEstimate(np.r_[stc.data, stc.data],
                            [stc.vertices, stc.vertices],
                            tmin=stc.tmin, tstep=stc.tstep, subject='sample')
    img = stc.as_volume(src, dest='mri', mri_resolution=False)
    assert (img.shape == src[0]['shape'] + (len(stc.times),))


@testing.requires_testing_data
def test_expand():
    """Test stc expansion."""
    stc_ = read_source_estimate(fname_stc, 'sample')
    vec_stc_ = VectorSourceEstimate(np.zeros((stc_.data.shape[0], 3,
                                              stc_.data.shape[1])),
                                    stc_.vertices, stc_.tmin, stc_.tstep,
                                    stc_.subject)

    for stc in [stc_, vec_stc_]:
        assert ('sample' in repr(stc))
        labels_lh = read_labels_from_annot('sample', 'aparc', 'lh',
                                           subjects_dir=subjects_dir)
        new_label = labels_lh[0] + labels_lh[1]
        stc_limited = stc.in_label(new_label)
        stc_new = stc_limited.copy()
        stc_new.data.fill(0)
        for label in labels_lh[:2]:
            stc_new += stc.in_label(label).expand(stc_limited.vertices)
        pytest.raises(TypeError, stc_new.expand, stc_limited.vertices[0])
        pytest.raises(ValueError, stc_new.expand, [stc_limited.vertices[0]])
        # make sure we can't add unless vertno agree
        pytest.raises(ValueError, stc.__add__, stc.in_label(labels_lh[0]))


def _fake_stc(n_time=10):
    verts = [np.arange(10), np.arange(90)]
    return SourceEstimate(np.random.rand(100, n_time), verts, 0, 1e-1, 'foo')


def _fake_vec_stc(n_time=10):
    verts = [np.arange(10), np.arange(90)]
    return VectorSourceEstimate(np.random.rand(100, 3, n_time), verts, 0, 1e-1,
                                'foo')


def _real_vec_stc():
    inv = read_inverse_operator(fname_inv)
    evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01)
    return apply_inverse(evoked, inv, pick_ori='vector')


def _test_stc_integrety(stc):
    """Test consistency of tmin, tstep, data.shape[-1] and times."""
    n_times = len(stc.times)
    assert_equal(stc._data.shape[-1], n_times)
    assert_array_equal(stc.times, stc.tmin + np.arange(n_times) * stc.tstep)


def test_stc_attributes():
    """Test STC attributes."""
    stc = _fake_stc(n_time=10)
    vec_stc = _fake_vec_stc(n_time=10)

    _test_stc_integrety(stc)
    assert_array_almost_equal(
        stc.times, [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])

    def attempt_times_mutation(stc):
        stc.times -= 1

    def attempt_assignment(stc, attr, val):
        setattr(stc, attr, val)

    # .times is read-only
    pytest.raises(ValueError, attempt_times_mutation, stc)
    pytest.raises(ValueError, attempt_assignment, stc, 'times', [1])

    # Changing .tmin or .tstep re-computes .times
    stc.tmin = 1
    assert (type(stc.tmin) == float)
    assert_array_almost_equal(
        stc.times, [1., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])

    stc.tstep = 1
    assert (type(stc.tstep) == float)
    assert_array_almost_equal(
        stc.times, [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])

    # tstep <= 0 is not allowed
    pytest.raises(ValueError, attempt_assignment, stc, 'tstep', 0)
    pytest.raises(ValueError, attempt_assignment, stc, 'tstep', -1)

    # Changing .data re-computes .times
    stc.data = np.random.rand(100, 5)
    assert_array_almost_equal(
        stc.times, [1., 2., 3., 4., 5.])

    # .data must match the number of vertices
    pytest.raises(ValueError, attempt_assignment, stc, 'data', [[1]])
    pytest.raises(ValueError, attempt_assignment, stc, 'data', None)

    # .data much match number of dimensions
    pytest.raises(ValueError, attempt_assignment, stc, 'data', np.arange(100))
    pytest.raises(ValueError, attempt_assignment, vec_stc, 'data',
                  [np.arange(100)])
    pytest.raises(ValueError, attempt_assignment, vec_stc, 'data',
                  [[[np.arange(100)]]])

    # .shape attribute must also work when ._data is None
    stc._kernel = np.zeros((2, 2))
    stc._sens_data = np.zeros((2, 3))
    stc._data = None
    assert_equal(stc.shape, (2, 3))


def test_io_stc():
    """Test IO for STC files."""
    tempdir = _TempDir()
    stc = _fake_stc()
    stc.save(op.join(tempdir, "tmp.stc"))
    stc2 = read_source_estimate(op.join(tempdir, "tmp.stc"))

    assert_array_almost_equal(stc.data, stc2.data)
    assert_array_almost_equal(stc.tmin, stc2.tmin)
    assert_equal(len(stc.vertices), len(stc2.vertices))
    for v1, v2 in zip(stc.vertices, stc2.vertices):
        assert_array_almost_equal(v1, v2)
    assert_array_almost_equal(stc.tstep, stc2.tstep)


@requires_h5py
def test_io_stc_h5():
    """Test IO for STC files using HDF5."""
    for stc in [_fake_stc(), _fake_vec_stc()]:
        tempdir = _TempDir()
        pytest.raises(ValueError, stc.save, op.join(tempdir, 'tmp'),
                      ftype='foo')
        out_name = op.join(tempdir, 'tmp')
        stc.save(out_name, ftype='h5')
        stc.save(out_name, ftype='h5')  # test overwrite
        stc3 = read_source_estimate(out_name)
        stc4 = read_source_estimate(out_name + '-stc')
        stc5 = read_source_estimate(out_name + '-stc.h5')
        pytest.raises(RuntimeError, read_source_estimate, out_name,
                      subject='bar')
        for stc_new in stc3, stc4, stc5:
            assert_equal(stc_new.subject, stc.subject)
            assert_array_equal(stc_new.data, stc.data)
            assert_array_equal(stc_new.tmin, stc.tmin)
            assert_array_equal(stc_new.tstep, stc.tstep)
            assert_equal(len(stc_new.vertices), len(stc.vertices))
            for v1, v2 in zip(stc_new.vertices, stc.vertices):
                assert_array_equal(v1, v2)


def test_io_w():
    """Test IO for w files."""
    tempdir = _TempDir()
    stc = _fake_stc(n_time=1)
    w_fname = op.join(tempdir, 'fake')
    stc.save(w_fname, ftype='w')
    src = read_source_estimate(w_fname)
    src.save(op.join(tempdir, 'tmp'), ftype='w')
    src2 = read_source_estimate(op.join(tempdir, 'tmp-lh.w'))
    assert_array_almost_equal(src.data, src2.data)
    assert_array_almost_equal(src.lh_vertno, src2.lh_vertno)
    assert_array_almost_equal(src.rh_vertno, src2.rh_vertno)


def test_stc_arithmetic():
    """Test arithmetic for STC files."""
    stc = _fake_stc()
    data = stc.data.copy()
    vec_stc = _fake_vec_stc()
    vec_data = vec_stc.data.copy()

    out = list()
    for a in [data, stc, vec_data, vec_stc]:
        a = a + a * 3 + 3 * a - a ** 2 / 2

        a += a
        a -= a
        with np.errstate(invalid='ignore'):
            a /= 2 * a
        a *= -a

        a += 2
        a -= 1
        a *= -1
        a /= 2
        b = 2 + a
        b = 2 - a
        b = +a
        assert_array_equal(b.data, a.data)
        with np.errstate(invalid='ignore'):
            a **= 3
        out.append(a)

    assert_array_equal(out[0], out[1].data)
    assert_array_equal(out[2], out[3].data)
    assert_array_equal(stc.sqrt().data, np.sqrt(stc.data))
    assert_array_equal(vec_stc.sqrt().data, np.sqrt(vec_stc.data))
    assert_array_equal(abs(stc).data, abs(stc.data))
    assert_array_equal(abs(vec_stc).data, abs(vec_stc.data))

    stc_sum = stc.sum()
    assert_array_equal(stc_sum.data, stc.data.sum(1, keepdims=True))
    stc_mean = stc.mean()
    assert_array_equal(stc_mean.data, stc.data.mean(1, keepdims=True))
    vec_stc_mean = vec_stc.mean()
    assert_array_equal(vec_stc_mean.data, vec_stc.data.mean(2, keepdims=True))


@pytest.mark.slowtest
@testing.requires_testing_data
def test_stc_methods():
    """Test stc methods lh_data, rh_data, bin(), resample()."""
    stc_ = read_source_estimate(fname_stc)

    # Make a vector version of the above source estimate
    x = stc_.data[:, np.newaxis, :]
    yz = np.zeros((x.shape[0], 2, x.shape[2]))
    vec_stc_ = VectorSourceEstimate(
        np.concatenate((x, yz), 1),
        stc_.vertices, stc_.tmin, stc_.tstep, stc_.subject
    )

    for stc in [stc_, vec_stc_]:
        # lh_data / rh_data
        assert_array_equal(stc.lh_data, stc.data[:len(stc.lh_vertno)])
        assert_array_equal(stc.rh_data, stc.data[len(stc.lh_vertno):])

        # bin
        binned = stc.bin(.12)
        a = np.mean(stc.data[..., :np.searchsorted(stc.times, .12)], axis=-1)
        assert_array_equal(a, binned.data[..., 0])

        stc = read_source_estimate(fname_stc)
        stc.subject = 'sample'
        label_lh = read_labels_from_annot('sample', 'aparc', 'lh',
                                          subjects_dir=subjects_dir)[0]
        label_rh = read_labels_from_annot('sample', 'aparc', 'rh',
                                          subjects_dir=subjects_dir)[0]
        label_both = label_lh + label_rh
        for label in (label_lh, label_rh, label_both):
            assert (isinstance(stc.shape, tuple) and len(stc.shape) == 2)
            stc_label = stc.in_label(label)
            if label.hemi != 'both':
                if label.hemi == 'lh':
                    verts = stc_label.vertices[0]
                else:  # label.hemi == 'rh':
                    verts = stc_label.vertices[1]
                n_vertices_used = len(label.get_vertices_used(verts))
                assert_equal(len(stc_label.data), n_vertices_used)
        stc_lh = stc.in_label(label_lh)
        pytest.raises(ValueError, stc_lh.in_label, label_rh)
        label_lh.subject = 'foo'
        pytest.raises(RuntimeError, stc.in_label, label_lh)

        stc_new = deepcopy(stc)
        o_sfreq = 1.0 / stc.tstep
        # note that using no padding for this STC reduces edge ringing...
        stc_new.resample(2 * o_sfreq, npad=0)
        assert (stc_new.data.shape[1] == 2 * stc.data.shape[1])
        assert (stc_new.tstep == stc.tstep / 2)
        stc_new.resample(o_sfreq, npad=0)
        assert (stc_new.data.shape[1] == stc.data.shape[1])
        assert (stc_new.tstep == stc.tstep)
        assert_array_almost_equal(stc_new.data, stc.data, 5)


@testing.requires_testing_data
def test_center_of_mass():
    """Test computing the center of mass on an stc."""
    stc = read_source_estimate(fname_stc)
    pytest.raises(ValueError, stc.center_of_mass, 'sample')
    stc.lh_data[:] = 0
    vertex, hemi, t = stc.center_of_mass('sample', subjects_dir=subjects_dir)
    assert (hemi == 1)
    # XXX Should design a fool-proof test case, but here were the
    # results:
    assert_equal(vertex, 124791)
    assert_equal(np.round(t, 2), 0.12)


@testing.requires_testing_data
def test_extract_label_time_course():
    """Test extraction of label time courses from stc."""
    n_stcs = 3
    n_times = 50

    src = read_inverse_operator(fname_inv)['src']
    vertices = [src[0]['vertno'], src[1]['vertno']]
    n_verts = len(vertices[0]) + len(vertices[1])

    # get some labels
    labels_lh = read_labels_from_annot('sample', hemi='lh',
                                       subjects_dir=subjects_dir)
    labels_rh = read_labels_from_annot('sample', hemi='rh',
                                       subjects_dir=subjects_dir)
    labels = list()
    labels.extend(labels_lh[:5])
    labels.extend(labels_rh[:4])

    n_labels = len(labels)

    label_means = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times))
    label_maxs = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times))

    # compute the mean with sign flip
    label_means_flipped = np.zeros_like(label_means)
    for i, label in enumerate(labels):
        label_means_flipped[i] = i * np.mean(label_sign_flip(label, src))

    # generate some stc's with known data
    stcs = list()
    for i in range(n_stcs):
        data = np.zeros((n_verts, n_times))
        # set the value of the stc within each label
        for j, label in enumerate(labels):
            if label.hemi == 'lh':
                idx = np.intersect1d(vertices[0], label.vertices)
                idx = np.searchsorted(vertices[0], idx)
            elif label.hemi == 'rh':
                idx = np.intersect1d(vertices[1], label.vertices)
                idx = len(vertices[0]) + np.searchsorted(vertices[1], idx)
            data[idx] = label_means[j]

        this_stc = SourceEstimate(data, vertices, 0, 1)
        stcs.append(this_stc)

    # test some invalid inputs
    pytest.raises(ValueError, extract_label_time_course, stcs, labels,
                  src, mode='notamode')

    # have an empty label
    empty_label = labels[0].copy()
    empty_label.vertices += 1000000
    pytest.raises(ValueError, extract_label_time_course, stcs, empty_label,
                  src, mode='mean')

    # but this works:
    with pytest.warns(RuntimeWarning, match='does not contain any vertices'):
        tc = extract_label_time_course(stcs, empty_label, src, mode='mean',
                                       allow_empty=True)
    for arr in tc:
        assert (arr.shape == (1, n_times))
        assert_array_equal(arr, np.zeros((1, n_times)))

    # test the different modes
    modes = ['mean', 'mean_flip', 'pca_flip', 'max']

    for mode in modes:
        label_tc = extract_label_time_course(stcs, labels, src, mode=mode)
        label_tc_method = [stc.extract_label_time_course(labels, src,
                           mode=mode) for stc in stcs]
        assert (len(label_tc) == n_stcs)
        assert (len(label_tc_method) == n_stcs)
        for tc1, tc2 in zip(label_tc, label_tc_method):
            assert (tc1.shape == (n_labels, n_times))
            assert (tc2.shape == (n_labels, n_times))
            assert (np.allclose(tc1, tc2, rtol=1e-8, atol=1e-16))
            if mode == 'mean':
                assert_array_almost_equal(tc1, label_means)
            if mode == 'mean_flip':
                assert_array_almost_equal(tc1, label_means_flipped)
            if mode == 'max':
                assert_array_almost_equal(tc1, label_maxs)

    # test label with very few vertices (check SVD conditionals)
    label = Label(vertices=src[0]['vertno'][:2], hemi='lh')
    x = label_sign_flip(label, src)
    assert (len(x) == 2)
    label = Label(vertices=[], hemi='lh')
    x = label_sign_flip(label, src)
    assert (x.size == 0)


def _my_trans(data):
    """FFT that adds an additional dimension by repeating result."""
    data_t = fft(data)
    data_t = np.concatenate([data_t[:, :, None], data_t[:, :, None]], axis=2)
    return data_t, None


def test_transform_data():
    """Test applying linear (time) transform to data."""
    # make up some data
    n_sensors, n_vertices, n_times = 10, 20, 4
    kernel = rng.randn(n_vertices, n_sensors)
    sens_data = rng.randn(n_sensors, n_times)

    vertices = np.arange(n_vertices)
    data = np.dot(kernel, sens_data)

    for idx, tmin_idx, tmax_idx in\
            zip([None, np.arange(n_vertices // 2, n_vertices)],
                [None, 1], [None, 3]):

        if idx is None:
            idx_use = slice(None, None)
        else:
            idx_use = idx

        data_f, _ = _my_trans(data[idx_use, tmin_idx:tmax_idx])

        for stc_data in (data, (kernel, sens_data)):
            stc = VolSourceEstimate(stc_data, vertices=vertices,
                                    tmin=0., tstep=1.)
            stc_data_t = stc.transform_data(_my_trans, idx=idx,
                                            tmin_idx=tmin_idx,
                                            tmax_idx=tmax_idx)
            assert_allclose(data_f, stc_data_t)


def test_transform():
    """Test applying linear (time) transform to data."""
    # make up some data
    n_verts_lh, n_verts_rh, n_times = 10, 10, 10
    vertices = [np.arange(n_verts_lh), n_verts_lh + np.arange(n_verts_rh)]
    data = rng.randn(n_verts_lh + n_verts_rh, n_times)
    stc = SourceEstimate(data, vertices=vertices, tmin=-0.1, tstep=0.1)

    # data_t.ndim > 2 & copy is True
    stcs_t = stc.transform(_my_trans, copy=True)
    assert (isinstance(stcs_t, list))
    assert_array_equal(stc.times, stcs_t[0].times)
    assert_equal(stc.vertices, stcs_t[0].vertices)

    data = np.concatenate((stcs_t[0].data[:, :, None],
                           stcs_t[1].data[:, :, None]), axis=2)
    data_t = stc.transform_data(_my_trans)
    assert_array_equal(data, data_t)  # check against stc.transform_data()

    # data_t.ndim > 2 & copy is False
    pytest.raises(ValueError, stc.transform, _my_trans, copy=False)

    # data_t.ndim = 2 & copy is True
    tmp = deepcopy(stc)
    stc_t = stc.transform(np.abs, copy=True)
    assert (isinstance(stc_t, SourceEstimate))
    assert_array_equal(stc.data, tmp.data)  # xfrm doesn't modify original?

    # data_t.ndim = 2 & copy is False
    times = np.round(1000 * stc.times)
    verts = np.arange(len(stc.lh_vertno),
                      len(stc.lh_vertno) + len(stc.rh_vertno), 1)
    verts_rh = stc.rh_vertno
    tmin_idx = np.searchsorted(times, 0)
    tmax_idx = np.searchsorted(times, 501)  # Include 500ms in the range
    data_t = stc.transform_data(np.abs, idx=verts, tmin_idx=tmin_idx,
                                tmax_idx=tmax_idx)
    stc.transform(np.abs, idx=verts, tmin=-50, tmax=500, copy=False)
    assert (isinstance(stc, SourceEstimate))
    assert_equal(stc.tmin, 0.)
    assert_equal(stc.times[-1], 0.5)
    assert_equal(len(stc.vertices[0]), 0)
    assert_equal(stc.vertices[1], verts_rh)
    assert_array_equal(stc.data, data_t)

    times = np.round(1000 * stc.times)
    tmin_idx, tmax_idx = np.searchsorted(times, 0), np.searchsorted(times, 250)
    data_t = stc.transform_data(np.abs, tmin_idx=tmin_idx, tmax_idx=tmax_idx)
    stc.transform(np.abs, tmin=0, tmax=250, copy=False)
    assert_equal(stc.tmin, 0.)
    assert_equal(stc.times[-1], 0.2)
    assert_array_equal(stc.data, data_t)


@requires_sklearn
def test_spatio_temporal_tris_connectivity():
    """Test spatio-temporal connectivity from triangles."""
    tris = np.array([[0, 1, 2], [3, 4, 5]])
    connectivity = spatio_temporal_tris_connectivity(tris, 2)
    x = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
    components = stats.cluster_level._get_components(np.array(x), connectivity)
    # _get_components works differently now...
    old_fmt = [0, 0, -2, -2, -2, -2, 0, -2, -2, -2, -2, 1]
    new_fmt = np.array(old_fmt)
    new_fmt = [np.nonzero(new_fmt == v)[0]
               for v in np.unique(new_fmt[new_fmt >= 0])]
    assert len(new_fmt) == len(components)
    for c, n in zip(components, new_fmt):
        assert_array_equal(c, n)


@testing.requires_testing_data
def test_spatio_temporal_src_connectivity():
    """Test spatio-temporal connectivity from source spaces."""
    tris = np.array([[0, 1, 2], [3, 4, 5]])
    src = [dict(), dict()]
    connectivity = spatio_temporal_tris_connectivity(tris, 2)
    src[0]['use_tris'] = np.array([[0, 1, 2]])
    src[1]['use_tris'] = np.array([[0, 1, 2]])
    src[0]['vertno'] = np.array([0, 1, 2])
    src[1]['vertno'] = np.array([0, 1, 2])
    src[0]['type'] = 'surf'
    src[1]['type'] = 'surf'
    connectivity2 = spatio_temporal_src_connectivity(src, 2)
    assert_array_equal(connectivity.todense(), connectivity2.todense())
    # add test for dist connectivity
    src[0]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[1]['dist'] = np.ones((3, 3)) - np.eye(3)
    src[0]['vertno'] = [0, 1, 2]
    src[1]['vertno'] = [0, 1, 2]
    src[0]['type'] = 'surf'
    src[1]['type'] = 'surf'
    connectivity3 = spatio_temporal_src_connectivity(src, 2, dist=2)
    assert_array_equal(connectivity.todense(), connectivity3.todense())
    # add test for source space connectivity with omitted vertices
    inverse_operator = read_inverse_operator(fname_inv)
    src_ = inverse_operator['src']
    with pytest.warns(RuntimeWarning, match='will have holes'):
        connectivity = spatio_temporal_src_connectivity(src_, n_times=2)
    a = connectivity.shape[0] / 2
    b = sum([s['nuse'] for s in inverse_operator['src']])
    assert (a == b)

    assert_equal(grade_to_tris(5).shape, [40960, 3])


@requires_pandas
def test_to_data_frame():
    """Test stc Pandas exporter."""
    n_vert, n_times = 10, 5
    vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)]
    data = rng.randn(n_vert, n_times)
    stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1,
                              subject='sample')
    stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1,
                                subject='sample')
    for stc in [stc_surf, stc_vol]:
        pytest.raises(ValueError, stc.to_data_frame, index=['foo', 'bar'])
        for ncat, ind in zip([1, 0], ['time', ['subject', 'time']]):
            df = stc.to_data_frame(index=ind)
            assert (df.index.names == ind
                    if isinstance(ind, list) else [ind])
            assert_array_equal(df.values.T[ncat:], stc.data)
            # test that non-indexed data were present as categorial variables
            assert all([c in ['time', 'subject'] for c in
                        df.reset_index().columns][:2])


def test_get_peak():
    """Test peak getter."""
    n_vert, n_times = 10, 5
    vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)]
    data = rng.randn(n_vert, n_times)
    stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1,
                              subject='sample')
    stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1,
                                subject='sample')

    # Versions with only one time point
    stc_surf_1 = SourceEstimate(data[:, :1], vertices=vertices, tmin=0,
                                tstep=1, subject='sample')
    stc_vol_1 = VolSourceEstimate(data[:, :1], vertices=vertices[0], tmin=0,
                                  tstep=1, subject='sample')

    for ii, stc in enumerate([stc_surf, stc_vol, stc_surf_1, stc_vol_1]):
        pytest.raises(ValueError, stc.get_peak, tmin=-100)
        pytest.raises(ValueError, stc.get_peak, tmax=90)
        pytest.raises(ValueError, stc.get_peak, tmin=0.002, tmax=0.001)

        vert_idx, time_idx = stc.get_peak()
        vertno = np.concatenate(stc.vertices) if ii in [0, 2] else stc.vertices
        assert (vert_idx in vertno)
        assert (time_idx in stc.times)

        data_idx, time_idx = stc.get_peak(vert_as_index=True,
                                          time_as_index=True)
        assert_equal(data_idx, np.argmax(np.abs(stc.data[:, time_idx])))
        assert_equal(time_idx, np.argmax(np.abs(stc.data[data_idx, :])))


@requires_h5py
@testing.requires_testing_data
def test_mixed_stc():
    """Test source estimate from mixed source space."""
    N = 90  # number of sources
    T = 2  # number of time points
    S = 3  # number of source spaces

    data = rng.randn(N, T)
    vertno = S * [np.arange(N // S)]

    # make sure error is raised if vertices are not a list of length >= 2
    pytest.raises(ValueError, MixedSourceEstimate, data=data,
                  vertices=[np.arange(N)])

    stc = MixedSourceEstimate(data, vertno, 0, 1)

    vol = read_source_spaces(fname_vsrc)

    # make sure error is raised for plotting surface with volume source
    pytest.raises(ValueError, stc.plot_surface, src=vol)

    tempdir = _TempDir()
    fname = op.join(tempdir, 'mixed-stc.h5')
    stc.save(fname)
    stc_out = read_source_estimate(fname)
    assert_array_equal(stc_out.vertices, vertno)
    assert_array_equal(stc_out.data, data)
    assert stc_out.tmin == 0
    assert stc_out.tstep == 1
    assert isinstance(stc_out, MixedSourceEstimate)


def test_vec_stc():
    """Test vector source estimate."""
    nn = np.array([
        [1, 0, 0],
        [0, 1, 0],
        [0, 0, 1],
        [np.sqrt(1 / 3.)] * 3
    ])
    src = [dict(nn=nn[:2]), dict(nn=nn[2:])]

    verts = [np.array([0, 1]), np.array([0, 1])]
    data = np.array([
        [1, 0, 0],
        [0, 2, 0],
        [3, 0, 0],
        [1, 1, 1],
    ])[:, :, np.newaxis]
    stc = VectorSourceEstimate(data, verts, 0, 1, 'foo')

    # Magnitude of the vectors
    assert_array_equal(stc.magnitude().data[:, 0], [1, 2, 3, np.sqrt(3)])

    # Vector components projected onto the vertex normals
    normal = stc.normal(src)
    assert_array_equal(normal.data[:, 0], [1, 2, 0, np.sqrt(3)])


@testing.requires_testing_data
def test_epochs_vector_inverse():
    """Test vector inverse consistency between evoked and epochs."""
    raw = read_raw_fif(fname_raw)
    events = find_events(raw, stim_channel='STI 014')[:2]
    reject = dict(grad=2000e-13, mag=4e-12, eog=150e-6)

    epochs = Epochs(raw, events, None, 0, 0.01, baseline=None,
                    reject=reject, preload=True)

    assert_equal(len(epochs), 2)

    evoked = epochs.average(picks=range(len(epochs.ch_names)))

    inv = read_inverse_operator(fname_inv)

    method = "MNE"
    snr = 3.
    lambda2 = 1. / snr ** 2

    stcs_epo = apply_inverse_epochs(epochs, inv, lambda2, method=method,
                                    pick_ori='vector', return_generator=False)
    stc_epo = np.mean(stcs_epo)

    stc_evo = apply_inverse(evoked, inv, lambda2, method=method,
                            pick_ori='vector')

    assert_allclose(stc_epo.data, stc_evo.data, rtol=1e-9, atol=0)


@requires_sklearn
@testing.requires_testing_data
def test_vol_connectivity():
    """Test volume connectivity."""
    vol = read_source_spaces(fname_vsrc)

    pytest.raises(ValueError, spatial_src_connectivity, vol, dist=1.)

    connectivity = spatial_src_connectivity(vol)
    n_vertices = vol[0]['inuse'].sum()
    assert_equal(connectivity.shape, (n_vertices, n_vertices))
    assert (np.all(connectivity.data == 1))
    assert (isinstance(connectivity, sparse.coo_matrix))

    connectivity2 = spatio_temporal_src_connectivity(vol, n_times=2)
    assert_equal(connectivity2.shape, (2 * n_vertices, 2 * n_vertices))
    assert (np.all(connectivity2.data == 1))


@testing.requires_testing_data
def test_spatial_src_connectivity():
    """Test spatial connectivity functionality."""
    # oct
    src = read_source_spaces(fname_src)
    assert src[0]['dist'] is not None  # distance info
    with pytest.warns(RuntimeWarning, match='will have holes'):
        con = spatial_src_connectivity(src).toarray()
    con_dist = spatial_src_connectivity(src, dist=0.01).toarray()
    assert (con == con_dist).mean() > 0.75
    # ico
    src = read_source_spaces(fname_src_fs)
    con = spatial_src_connectivity(src).tocsr()
    con_tris = spatial_tris_connectivity(grade_to_tris(5)).tocsr()
    assert con.shape == con_tris.shape
    assert_array_equal(con.data, con_tris.data)
    assert_array_equal(con.indptr, con_tris.indptr)
    assert_array_equal(con.indices, con_tris.indices)
    # one hemi
    con_lh = spatial_src_connectivity(src[:1]).tocsr()
    con_lh_tris = spatial_tris_connectivity(grade_to_tris(5)).tocsr()
    con_lh_tris = con_lh_tris[:10242, :10242].tocsr()
    assert_array_equal(con_lh.data, con_lh_tris.data)
    assert_array_equal(con_lh.indptr, con_lh_tris.indptr)
    assert_array_equal(con_lh.indices, con_lh_tris.indices)


@requires_sklearn
@requires_nibabel()
@testing.requires_testing_data
def test_vol_mask():
    """Test extraction of volume mask."""
    src = read_source_spaces(fname_vsrc)
    mask = _get_vol_mask(src)
    # Let's use an alternative way that should be equivalent
    vertices = src[0]['vertno']
    n_vertices = len(vertices)
    data = (1 + np.arange(n_vertices))[:, np.newaxis]
    stc_tmp = VolSourceEstimate(data, vertices, tmin=0., tstep=1.)
    img = stc_tmp.as_volume(src, mri_resolution=False)
    img_data = img.get_data()[:, :, :, 0].T
    mask_nib = (img_data != 0)
    assert_array_equal(img_data[mask_nib], data[:, 0])
    assert_array_equal(np.where(mask_nib.ravel())[0], src[0]['vertno'])
    assert_array_equal(mask, mask_nib)
    assert_array_equal(img_data.shape, mask.shape)


run_tests_if_main()