1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
|
from __future__ import print_function
import os
import os.path as op
from unittest import SkipTest
import pytest
import numpy as np
from numpy.testing import assert_array_equal, assert_allclose, assert_equal
from mne.datasets import testing
from mne import (read_source_spaces, vertex_to_mni, write_source_spaces,
setup_source_space, setup_volume_source_space,
add_source_space_distances, read_bem_surfaces,
morph_source_spaces, SourceEstimate, make_sphere_model,
head_to_mni, read_trans, compute_source_morph)
from mne.utils import (_TempDir, requires_fs_or_nibabel, requires_nibabel,
requires_freesurfer, run_subprocess,
requires_mne, requires_version, run_tests_if_main)
from mne.surface import _accumulate_normals, _triangle_neighbors
from mne.source_space import _get_mri_header, _get_mgz_header, _read_talxfm
from mne.source_estimate import _get_src_type
from mne.transforms import apply_trans, invert_transform
from mne.externals.six.moves import zip
from mne.source_space import (get_volume_labels_from_aseg, SourceSpaces,
get_volume_labels_from_src,
_compare_source_spaces)
from mne.io.constants import FIFF
data_path = testing.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
fname_mri = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz')
fname = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif')
fname_vol = op.join(subjects_dir, 'sample', 'bem',
'sample-volume-7mm-src.fif')
fname_bem = op.join(data_path, 'subjects', 'sample', 'bem',
'sample-1280-bem.fif')
fname_fs = op.join(subjects_dir, 'fsaverage', 'bem', 'fsaverage-ico-5-src.fif')
fname_morph = op.join(subjects_dir, 'sample', 'bem',
'sample-fsaverage-ico-5-src.fif')
trans_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-trans.fif')
base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
fname_small = op.join(base_dir, 'small-src.fif.gz')
rng = np.random.RandomState(0)
@testing.requires_testing_data
@requires_nibabel(vox2ras_tkr=True)
def test_mgz_header():
"""Test MGZ header reading."""
header = _get_mgz_header(fname_mri)
mri_hdr = _get_mri_header(fname_mri)
assert_allclose(mri_hdr.get_data_shape(), header['dims'])
assert_allclose(mri_hdr.get_vox2ras_tkr(), header['vox2ras_tkr'])
assert_allclose(mri_hdr.get_ras2vox(), header['ras2vox'])
@requires_version('scipy', '0.11')
def test_add_patch_info():
"""Test adding patch info to source space."""
# let's setup a small source space
src = read_source_spaces(fname_small)
src_new = read_source_spaces(fname_small)
for s in src_new:
s['nearest'] = None
s['nearest_dist'] = None
s['pinfo'] = None
# test that no patch info is added for small dist_limit
try:
add_source_space_distances(src_new, dist_limit=0.00001)
except RuntimeError: # what we throw when scipy version is wrong
pass
else:
assert all(s['nearest'] is None for s in src_new)
assert all(s['nearest_dist'] is None for s in src_new)
assert all(s['pinfo'] is None for s in src_new)
# now let's use one that works
add_source_space_distances(src_new)
for s1, s2 in zip(src, src_new):
assert_array_equal(s1['nearest'], s2['nearest'])
assert_allclose(s1['nearest_dist'], s2['nearest_dist'], atol=1e-7)
assert_equal(len(s1['pinfo']), len(s2['pinfo']))
for p1, p2 in zip(s1['pinfo'], s2['pinfo']):
assert_array_equal(p1, p2)
@testing.requires_testing_data
@requires_version('scipy', '0.11')
def test_add_source_space_distances_limited():
"""Test adding distances to source space with a dist_limit."""
tempdir = _TempDir()
src = read_source_spaces(fname)
src_new = read_source_spaces(fname)
del src_new[0]['dist']
del src_new[1]['dist']
n_do = 200 # limit this for speed
src_new[0]['vertno'] = src_new[0]['vertno'][:n_do].copy()
src_new[1]['vertno'] = src_new[1]['vertno'][:n_do].copy()
out_name = op.join(tempdir, 'temp-src.fif')
try:
add_source_space_distances(src_new, dist_limit=0.007)
except RuntimeError: # what we throw when scipy version is wrong
raise SkipTest('dist_limit requires scipy > 0.13')
write_source_spaces(out_name, src_new)
src_new = read_source_spaces(out_name)
for so, sn in zip(src, src_new):
assert_array_equal(so['dist_limit'], np.array([-0.007], np.float32))
assert_array_equal(sn['dist_limit'], np.array([0.007], np.float32))
do = so['dist']
dn = sn['dist']
# clean out distances > 0.007 in C code
do.data[do.data > 0.007] = 0
do.eliminate_zeros()
# make sure we have some comparable distances
assert np.sum(do.data < 0.007) > 400
# do comparison over the region computed
d = (do - dn)[:sn['vertno'][n_do - 1]][:, :sn['vertno'][n_do - 1]]
assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-6)
@pytest.mark.slowtest
@testing.requires_testing_data
@requires_version('scipy', '0.11')
def test_add_source_space_distances():
"""Test adding distances to source space."""
tempdir = _TempDir()
src = read_source_spaces(fname)
src_new = read_source_spaces(fname)
del src_new[0]['dist']
del src_new[1]['dist']
n_do = 19 # limit this for speed
src_new[0]['vertno'] = src_new[0]['vertno'][:n_do].copy()
src_new[1]['vertno'] = src_new[1]['vertno'][:n_do].copy()
out_name = op.join(tempdir, 'temp-src.fif')
n_jobs = 2
assert n_do % n_jobs != 0
add_source_space_distances(src_new, n_jobs=n_jobs)
write_source_spaces(out_name, src_new)
src_new = read_source_spaces(out_name)
# iterate over both hemispheres
for so, sn in zip(src, src_new):
v = so['vertno'][:n_do]
assert_array_equal(so['dist_limit'], np.array([-0.007], np.float32))
assert_array_equal(sn['dist_limit'], np.array([np.inf], np.float32))
do = so['dist']
dn = sn['dist']
# clean out distances > 0.007 in C code (some residual), and Python
ds = list()
for d in [do, dn]:
d.data[d.data > 0.007] = 0
d = d[v][:, v]
d.eliminate_zeros()
ds.append(d)
# make sure we actually calculated some comparable distances
assert np.sum(ds[0].data < 0.007) > 10
# do comparison
d = ds[0] - ds[1]
assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-9)
@testing.requires_testing_data
@requires_mne
def test_discrete_source_space():
"""Test setting up (and reading/writing) discrete source spaces."""
tempdir = _TempDir()
src = read_source_spaces(fname)
v = src[0]['vertno']
# let's make a discrete version with the C code, and with ours
temp_name = op.join(tempdir, 'temp-src.fif')
try:
# save
temp_pos = op.join(tempdir, 'temp-pos.txt')
np.savetxt(temp_pos, np.c_[src[0]['rr'][v], src[0]['nn'][v]])
# let's try the spherical one (no bem or surf supplied)
run_subprocess(['mne_volume_source_space', '--meters',
'--pos', temp_pos, '--src', temp_name])
src_c = read_source_spaces(temp_name)
pos_dict = dict(rr=src[0]['rr'][v], nn=src[0]['nn'][v])
src_new = setup_volume_source_space(None, pos=pos_dict)
_compare_source_spaces(src_c, src_new, mode='approx')
assert_allclose(src[0]['rr'][v], src_new[0]['rr'],
rtol=1e-3, atol=1e-6)
assert_allclose(src[0]['nn'][v], src_new[0]['nn'],
rtol=1e-3, atol=1e-6)
# now do writing
write_source_spaces(temp_name, src_c, overwrite=True)
src_c2 = read_source_spaces(temp_name)
finally:
if op.isfile(temp_name):
os.remove(temp_name)
_compare_source_spaces(src_c, src_c2)
# now do MRI
pytest.raises(ValueError, setup_volume_source_space, 'sample',
pos=pos_dict, mri=fname_mri)
assert repr(src_new) == repr(src_c)
assert src_new.kind == 'discrete'
assert _get_src_type(src_new, None) == 'discrete'
@pytest.mark.slowtest
@testing.requires_testing_data
def test_volume_source_space():
"""Test setting up volume source spaces."""
tempdir = _TempDir()
src = read_source_spaces(fname_vol)
temp_name = op.join(tempdir, 'temp-src.fif')
surf = read_bem_surfaces(fname_bem, s_id=FIFF.FIFFV_BEM_SURF_ID_BRAIN)
surf['rr'] *= 1e3 # convert to mm
# The one in the testing dataset (uses bem as bounds)
for bem, surf in zip((fname_bem, None), (None, surf)):
src_new = setup_volume_source_space(
'sample', pos=7.0, bem=bem, surface=surf, mri='T1.mgz',
subjects_dir=subjects_dir)
write_source_spaces(temp_name, src_new, overwrite=True)
src[0]['subject_his_id'] = 'sample' # XXX: to make comparison pass
_compare_source_spaces(src, src_new, mode='approx')
del src_new
src_new = read_source_spaces(temp_name)
_compare_source_spaces(src, src_new, mode='approx')
pytest.raises(IOError, setup_volume_source_space, 'sample',
pos=7.0, bem=None, surface='foo', # bad surf
mri=fname_mri, subjects_dir=subjects_dir)
assert repr(src) == repr(src_new)
assert src.kind == 'volume'
# Spheres
sphere = make_sphere_model(r0=(0., 0., 0.), head_radius=0.1,
relative_radii=(0.9, 1.0), sigmas=(0.33, 1.0))
src = setup_volume_source_space(pos=10)
src_new = setup_volume_source_space(pos=10, sphere=sphere)
_compare_source_spaces(src, src_new, mode='exact')
pytest.raises(ValueError, setup_volume_source_space, sphere='foo')
# Need a radius
sphere = make_sphere_model(head_radius=None)
pytest.raises(ValueError, setup_volume_source_space, sphere=sphere)
@testing.requires_testing_data
@requires_mne
def test_other_volume_source_spaces():
"""Test setting up other volume source spaces."""
# these are split off because they require the MNE tools, and
# Travis doesn't seem to like them
# let's try the spherical one (no bem or surf supplied)
tempdir = _TempDir()
temp_name = op.join(tempdir, 'temp-src.fif')
run_subprocess(['mne_volume_source_space',
'--grid', '7.0',
'--src', temp_name,
'--mri', fname_mri])
src = read_source_spaces(temp_name)
src_new = setup_volume_source_space(None, pos=7.0, mri=fname_mri,
subjects_dir=subjects_dir)
# we use a more accurate elimination criteria, so let's fix the MNE-C
# source space
assert len(src_new[0]['vertno']) == 7497
assert len(src) == 1
assert len(src_new) == 1
good_mask = np.in1d(src[0]['vertno'], src_new[0]['vertno'])
src[0]['inuse'][src[0]['vertno'][~good_mask]] = 0
assert src[0]['inuse'].sum() == 7497
src[0]['vertno'] = src[0]['vertno'][good_mask]
assert len(src[0]['vertno']) == 7497
src[0]['nuse'] = len(src[0]['vertno'])
assert src[0]['nuse'] == 7497
_compare_source_spaces(src_new, src, mode='approx')
assert 'volume, shape' in repr(src)
del src
del src_new
pytest.raises(ValueError, setup_volume_source_space, 'sample', pos=7.0,
sphere=[1., 1.], mri=fname_mri, # bad sphere
subjects_dir=subjects_dir)
# now without MRI argument, it should give an error when we try
# to read it
run_subprocess(['mne_volume_source_space',
'--grid', '7.0',
'--src', temp_name])
pytest.raises(ValueError, read_source_spaces, temp_name)
@testing.requires_testing_data
def test_triangle_neighbors():
"""Test efficient vertex neighboring triangles for surfaces."""
this = read_source_spaces(fname)[0]
this['neighbor_tri'] = [list() for _ in range(this['np'])]
for p in range(this['ntri']):
verts = this['tris'][p]
this['neighbor_tri'][verts[0]].append(p)
this['neighbor_tri'][verts[1]].append(p)
this['neighbor_tri'][verts[2]].append(p)
this['neighbor_tri'] = [np.array(nb, int) for nb in this['neighbor_tri']]
neighbor_tri = _triangle_neighbors(this['tris'], this['np'])
assert all(np.array_equal(nt1, nt2)
for nt1, nt2 in zip(neighbor_tri, this['neighbor_tri']))
def test_accumulate_normals():
"""Test efficient normal accumulation for surfaces."""
# set up comparison
n_pts = int(1.6e5) # approx number in sample source space
n_tris = int(3.2e5)
# use all positive to make a worst-case for cumulative summation
# (real "nn" vectors will have both positive and negative values)
tris = (rng.rand(n_tris, 1) * (n_pts - 2)).astype(int)
tris = np.c_[tris, tris + 1, tris + 2]
tri_nn = rng.rand(n_tris, 3)
this = dict(tris=tris, np=n_pts, ntri=n_tris, tri_nn=tri_nn)
# cut-and-paste from original code in surface.py:
# Find neighboring triangles and accumulate vertex normals
this['nn'] = np.zeros((this['np'], 3))
for p in range(this['ntri']):
# vertex normals
verts = this['tris'][p]
this['nn'][verts, :] += this['tri_nn'][p, :]
nn = _accumulate_normals(this['tris'], this['tri_nn'], this['np'])
# the moment of truth (or reckoning)
assert_allclose(nn, this['nn'], rtol=1e-7, atol=1e-7)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_setup_source_space():
"""Test setting up ico, oct, and all source spaces."""
tempdir = _TempDir()
fname_ico = op.join(data_path, 'subjects', 'fsaverage', 'bem',
'fsaverage-ico-5-src.fif')
# first lets test some input params
pytest.raises(ValueError, setup_source_space, 'sample', spacing='oct',
add_dist=False, subjects_dir=subjects_dir)
pytest.raises(ValueError, setup_source_space, 'sample', spacing='octo',
add_dist=False, subjects_dir=subjects_dir)
pytest.raises(ValueError, setup_source_space, 'sample', spacing='oct6e',
add_dist=False, subjects_dir=subjects_dir)
pytest.raises(ValueError, setup_source_space, 'sample', spacing='7emm',
add_dist=False, subjects_dir=subjects_dir)
pytest.raises(ValueError, setup_source_space, 'sample', spacing='alls',
add_dist=False, subjects_dir=subjects_dir)
# ico 5 (fsaverage) - write to temp file
src = read_source_spaces(fname_ico)
with pytest.warns(None): # sklearn equiv neighbors
src_new = setup_source_space('fsaverage', spacing='ico5',
subjects_dir=subjects_dir, add_dist=False)
_compare_source_spaces(src, src_new, mode='approx')
assert_equal(repr(src), repr(src_new))
assert_equal(repr(src).count('surface ('), 2)
assert_array_equal(src[0]['vertno'], np.arange(10242))
assert_array_equal(src[1]['vertno'], np.arange(10242))
# oct-6 (sample) - auto filename + IO
src = read_source_spaces(fname)
temp_name = op.join(tempdir, 'temp-src.fif')
with pytest.warns(None): # sklearn equiv neighbors
src_new = setup_source_space('sample', spacing='oct6',
subjects_dir=subjects_dir, add_dist=False)
write_source_spaces(temp_name, src_new, overwrite=True)
assert_equal(src_new[0]['nuse'], 4098)
_compare_source_spaces(src, src_new, mode='approx', nearest=False)
src_new = read_source_spaces(temp_name)
_compare_source_spaces(src, src_new, mode='approx', nearest=False)
# all source points - no file writing
src_new = setup_source_space('sample', spacing='all',
subjects_dir=subjects_dir, add_dist=False)
assert src_new[0]['nuse'] == len(src_new[0]['rr'])
assert src_new[1]['nuse'] == len(src_new[1]['rr'])
# dense source space to hit surf['inuse'] lines of _create_surf_spacing
pytest.raises(RuntimeError, setup_source_space, 'sample',
spacing='ico6', subjects_dir=subjects_dir, add_dist=False)
@testing.requires_testing_data
def test_read_source_spaces():
"""Test reading of source space meshes."""
src = read_source_spaces(fname, patch_stats=True)
# 3D source space
lh_points = src[0]['rr']
lh_faces = src[0]['tris']
lh_use_faces = src[0]['use_tris']
rh_points = src[1]['rr']
rh_faces = src[1]['tris']
rh_use_faces = src[1]['use_tris']
assert lh_faces.min() == 0
assert lh_faces.max() == lh_points.shape[0] - 1
assert lh_use_faces.min() >= 0
assert lh_use_faces.max() <= lh_points.shape[0] - 1
assert rh_faces.min() == 0
assert rh_faces.max() == rh_points.shape[0] - 1
assert rh_use_faces.min() >= 0
assert rh_use_faces.max() <= rh_points.shape[0] - 1
@pytest.mark.slowtest
@testing.requires_testing_data
def test_write_source_space():
"""Test reading and writing of source spaces."""
tempdir = _TempDir()
src0 = read_source_spaces(fname, patch_stats=False)
write_source_spaces(op.join(tempdir, 'tmp-src.fif'), src0)
src1 = read_source_spaces(op.join(tempdir, 'tmp-src.fif'),
patch_stats=False)
_compare_source_spaces(src0, src1)
# test warnings on bad filenames
src_badname = op.join(tempdir, 'test-bad-name.fif.gz')
with pytest.warns(RuntimeWarning, match='-src.fif'):
write_source_spaces(src_badname, src0)
with pytest.warns(RuntimeWarning, match='-src.fif'):
read_source_spaces(src_badname)
@testing.requires_testing_data
@requires_fs_or_nibabel
def test_vertex_to_mni():
"""Test conversion of vertices to MNI coordinates."""
# obtained using "tksurfer (sample) (l/r)h white"
vertices = [100960, 7620, 150549, 96761]
coords = np.array([[-60.86, -11.18, -3.19], [-36.46, -93.18, -2.36],
[-38.00, 50.08, -10.61], [47.14, 8.01, 46.93]])
hemis = [0, 0, 0, 1]
coords_2 = vertex_to_mni(vertices, hemis, 'sample', subjects_dir)
# less than 1mm error
assert_allclose(coords, coords_2, atol=1.0)
@testing.requires_testing_data
@requires_fs_or_nibabel
def test_head_to_mni():
"""Test conversion of aseg vertices to MNI coordinates."""
# obtained using freeview
coords = np.array([[22.52, 11.24, 17.72], [22.52, 5.46, 21.58],
[16.10, 5.46, 22.23], [21.24, 8.36, 22.23]])
xfm = _read_talxfm('sample', subjects_dir)
coords_MNI = apply_trans(xfm['trans'], coords)
trans = read_trans(trans_fname) # head->MRI (surface RAS)
mri_head_t = invert_transform(trans) # MRI (surface RAS)->head matrix
# obtained from sample_audvis-meg-oct-6-mixed-fwd.fif
coo_right_amygdala = np.array([[0.01745682, 0.02665809, 0.03281873],
[0.01014125, 0.02496262, 0.04233755],
[0.01713642, 0.02505193, 0.04258181],
[0.01720631, 0.03073877, 0.03850075]])
coords_MNI_2 = head_to_mni(coo_right_amygdala, 'sample', mri_head_t,
subjects_dir)
# less than 1mm error
assert_allclose(coords_MNI, coords_MNI_2, atol=10.0)
@testing.requires_testing_data
@requires_freesurfer
@requires_nibabel()
def test_vertex_to_mni_fs_nibabel():
"""Test equivalence of vert_to_mni for nibabel and freesurfer."""
n_check = 1000
subject = 'sample'
vertices = rng.randint(0, 100000, n_check)
hemis = rng.randint(0, 1, n_check)
coords = vertex_to_mni(vertices, hemis, subject, subjects_dir,
'nibabel')
coords_2 = vertex_to_mni(vertices, hemis, subject, subjects_dir,
'freesurfer')
# less than 0.1 mm error
assert_allclose(coords, coords_2, atol=0.1)
@testing.requires_testing_data
@requires_freesurfer
@requires_nibabel()
def test_get_volume_label_names():
"""Test reading volume label names."""
aseg_fname = op.join(subjects_dir, 'sample', 'mri', 'aseg.mgz')
label_names, label_colors = get_volume_labels_from_aseg(aseg_fname,
return_colors=True)
assert_equal(label_names.count('Brain-Stem'), 1)
assert_equal(len(label_colors), len(label_names))
@testing.requires_testing_data
@requires_freesurfer
@requires_nibabel()
def test_source_space_from_label():
"""Test generating a source space from volume label."""
tempdir = _TempDir()
aseg_fname = op.join(subjects_dir, 'sample', 'mri', 'aseg.mgz')
label_names = get_volume_labels_from_aseg(aseg_fname)
volume_label = label_names[int(np.random.rand() * len(label_names))]
# Test pos as dict
pos = dict()
pytest.raises(ValueError, setup_volume_source_space, 'sample', pos=pos,
volume_label=volume_label, mri=aseg_fname)
# Test no mri provided
pytest.raises(RuntimeError, setup_volume_source_space, 'sample', mri=None,
volume_label=volume_label)
# Test invalid volume label
pytest.raises(ValueError, setup_volume_source_space, 'sample',
volume_label='Hello World!', mri=aseg_fname)
src = setup_volume_source_space('sample', subjects_dir=subjects_dir,
volume_label=volume_label, mri=aseg_fname,
add_interpolator=False)
assert_equal(volume_label, src[0]['seg_name'])
# test reading and writing
out_name = op.join(tempdir, 'temp-src.fif')
write_source_spaces(out_name, src)
src_from_file = read_source_spaces(out_name)
_compare_source_spaces(src, src_from_file, mode='approx')
@testing.requires_testing_data
@requires_freesurfer
@requires_nibabel()
def test_read_volume_from_src():
"""Test reading volumes from a mixed source space."""
aseg_fname = op.join(subjects_dir, 'sample', 'mri', 'aseg.mgz')
labels_vol = ['Left-Amygdala',
'Brain-Stem',
'Right-Amygdala']
src = read_source_spaces(fname)
# Setup a volume source space
vol_src = setup_volume_source_space('sample', mri=aseg_fname,
pos=5.0,
bem=fname_bem,
volume_label=labels_vol,
subjects_dir=subjects_dir)
# Generate the mixed source space
src += vol_src
volume_src = get_volume_labels_from_src(src, 'sample', subjects_dir)
volume_label = volume_src[0].name
volume_label = 'Left-' + volume_label.replace('-lh', '')
# Test
assert_equal(volume_label, src[2]['seg_name'])
assert_equal(src[2]['type'], 'vol')
@testing.requires_testing_data
@requires_freesurfer
@requires_nibabel()
def test_combine_source_spaces():
"""Test combining source spaces."""
tempdir = _TempDir()
aseg_fname = op.join(subjects_dir, 'sample', 'mri', 'aseg.mgz')
label_names = get_volume_labels_from_aseg(aseg_fname)
volume_labels = [label_names[int(np.random.rand() * len(label_names))]
for ii in range(2)]
# get a surface source space (no need to test creation here)
srf = read_source_spaces(fname, patch_stats=False)
# setup 2 volume source spaces
vol = setup_volume_source_space('sample', subjects_dir=subjects_dir,
volume_label=volume_labels[0],
mri=aseg_fname, add_interpolator=False)
# setup a discrete source space
rr = rng.randint(0, 20, (100, 3)) * 1e-3
nn = np.zeros(rr.shape)
nn[:, -1] = 1
pos = {'rr': rr, 'nn': nn}
disc = setup_volume_source_space('sample', subjects_dir=subjects_dir,
pos=pos, verbose='error')
# combine source spaces
src = srf + vol + disc
# test addition of source spaces
assert_equal(type(src), SourceSpaces)
assert_equal(len(src), 4)
# test reading and writing
src_out_name = op.join(tempdir, 'temp-src.fif')
src.save(src_out_name)
src_from_file = read_source_spaces(src_out_name)
_compare_source_spaces(src, src_from_file, mode='approx')
assert_equal(repr(src), repr(src_from_file))
assert_equal(src.kind, 'mixed')
# test that all source spaces are in MRI coordinates
coord_frames = np.array([s['coord_frame'] for s in src])
assert (coord_frames == FIFF.FIFFV_COORD_MRI).all()
# test errors for export_volume
image_fname = op.join(tempdir, 'temp-image.mgz')
# source spaces with no volume
pytest.raises(ValueError, srf.export_volume, image_fname, verbose='error')
# unrecognized source type
disc2 = disc.copy()
disc2[0]['type'] = 'kitty'
src_unrecognized = src + disc2
pytest.raises(ValueError, src_unrecognized.export_volume, image_fname,
verbose='error')
# unrecognized file type
bad_image_fname = op.join(tempdir, 'temp-image.png')
# vertices outside vol space warning
pytest.raises(ValueError, src.export_volume, bad_image_fname,
verbose='error')
# mixed coordinate frames
disc3 = disc.copy()
disc3[0]['coord_frame'] = 10
src_mixed_coord = src + disc3
pytest.raises(ValueError, src_mixed_coord.export_volume, image_fname,
verbose='error')
@testing.requires_testing_data
def test_morph_source_spaces():
"""Test morphing of source spaces."""
src = read_source_spaces(fname_fs)
src_morph = read_source_spaces(fname_morph)
src_morph_py = morph_source_spaces(src, 'sample',
subjects_dir=subjects_dir)
_compare_source_spaces(src_morph, src_morph_py, mode='approx')
@pytest.mark.slowtest
@testing.requires_testing_data
def test_morphed_source_space_return():
"""Test returning a morphed source space to the original subject."""
# let's create some random data on fsaverage
data = rng.randn(20484, 1)
tmin, tstep = 0, 1.
src_fs = read_source_spaces(fname_fs)
stc_fs = SourceEstimate(data, [s['vertno'] for s in src_fs],
tmin, tstep, 'fsaverage')
n_verts_fs = sum(len(s['vertno']) for s in src_fs)
# Create our morph source space
src_morph = morph_source_spaces(src_fs, 'sample',
subjects_dir=subjects_dir)
n_verts_sample = sum(len(s['vertno']) for s in src_morph)
assert n_verts_fs == n_verts_sample
# Morph the data over using standard methods
stc_morph = compute_source_morph(
src_fs, 'fsaverage', 'sample',
spacing=[s['vertno'] for s in src_morph], smooth=1,
subjects_dir=subjects_dir, warn=False).apply(stc_fs)
assert stc_morph.data.shape[0] == n_verts_sample
# We can now pretend like this was real data we got e.g. from an inverse.
# To be complete, let's remove some vertices
keeps = [np.sort(rng.permutation(np.arange(len(v)))[:len(v) - 10])
for v in stc_morph.vertices]
stc_morph = SourceEstimate(
np.concatenate([stc_morph.lh_data[keeps[0]],
stc_morph.rh_data[keeps[1]]]),
[v[k] for v, k in zip(stc_morph.vertices, keeps)], tmin, tstep,
'sample')
# Return it to the original subject
stc_morph_return = stc_morph.to_original_src(
src_fs, subjects_dir=subjects_dir)
# This should fail (has too many verts in SourceMorph)
with pytest.warns(RuntimeWarning, match='vertices not included'):
morph = compute_source_morph(
src_morph, subject_from='sample',
spacing=stc_morph_return.vertices, smooth=1,
subjects_dir=subjects_dir)
with pytest.raises(ValueError, match='vertices do not match'):
morph.apply(stc_morph)
# Compare to the original data
with pytest.warns(RuntimeWarning, match='vertices not included'):
stc_morph_morph = compute_source_morph(
src=stc_morph, subject_from='sample',
spacing=stc_morph_return.vertices, smooth=1,
subjects_dir=subjects_dir).apply(stc_morph)
assert_equal(stc_morph_return.subject, stc_morph_morph.subject)
for ii in range(2):
assert_array_equal(stc_morph_return.vertices[ii],
stc_morph_morph.vertices[ii])
# These will not match perfectly because morphing pushes data around
corr = np.corrcoef(stc_morph_return.data[:, 0],
stc_morph_morph.data[:, 0])[0, 1]
assert corr > 0.99, corr
# Explicitly test having two vertices map to the same target vertex. We
# simulate this by having two vertices be at the same position.
src_fs2 = src_fs.copy()
vert1, vert2 = src_fs2[0]['vertno'][:2]
src_fs2[0]['rr'][vert1] = src_fs2[0]['rr'][vert2]
stc_morph_return = stc_morph.to_original_src(
src_fs2, subjects_dir=subjects_dir)
# test to_original_src method result equality
for ii in range(2):
assert_array_equal(stc_morph_return.vertices[ii],
stc_morph_morph.vertices[ii])
# These will not match perfectly because morphing pushes data around
corr = np.corrcoef(stc_morph_return.data[:, 0],
stc_morph_morph.data[:, 0])[0, 1]
assert corr > 0.99, corr
# Degenerate cases
stc_morph.subject = None # no .subject provided
pytest.raises(ValueError, stc_morph.to_original_src,
src_fs, subject_orig='fsaverage', subjects_dir=subjects_dir)
stc_morph.subject = 'sample'
del src_fs[0]['subject_his_id'] # no name in src_fsaverage
pytest.raises(ValueError, stc_morph.to_original_src,
src_fs, subjects_dir=subjects_dir)
src_fs[0]['subject_his_id'] = 'fsaverage' # name mismatch
pytest.raises(ValueError, stc_morph.to_original_src,
src_fs, subject_orig='foo', subjects_dir=subjects_dir)
src_fs[0]['subject_his_id'] = 'sample'
src = read_source_spaces(fname) # wrong source space
pytest.raises(RuntimeError, stc_morph.to_original_src,
src, subjects_dir=subjects_dir)
run_tests_if_main()
# The following code was used to generate small-src.fif.gz.
# Unfortunately the C code bombs when trying to add source space distances,
# possibly due to incomplete "faking" of a smaller surface on our part here.
"""
# -*- coding: utf-8 -*-
import os
import numpy as np
import mne
data_path = mne.datasets.sample.data_path()
src = mne.setup_source_space('sample', fname=None, spacing='oct5')
hemis = ['lh', 'rh']
fnames = [data_path + '/subjects/sample/surf/%s.decimated' % h for h in hemis]
vs = list()
for s, fname in zip(src, fnames):
coords = s['rr'][s['vertno']]
vs.append(s['vertno'])
idx = -1 * np.ones(len(s['rr']))
idx[s['vertno']] = np.arange(s['nuse'])
faces = s['use_tris']
faces = idx[faces]
mne.write_surface(fname, coords, faces)
# we need to move sphere surfaces
spheres = [data_path + '/subjects/sample/surf/%s.sphere' % h for h in hemis]
for s in spheres:
os.rename(s, s + '.bak')
try:
for s, v in zip(spheres, vs):
coords, faces = mne.read_surface(s + '.bak')
coords = coords[v]
mne.write_surface(s, coords, faces)
src = mne.setup_source_space('sample', fname=None, spacing='oct4',
surface='decimated')
finally:
for s in spheres:
os.rename(s + '.bak', s)
fname = 'small-src.fif'
fname_gz = fname + '.gz'
mne.write_source_spaces(fname, src)
mne.utils.run_subprocess(['mne_add_patch_info', '--src', fname,
'--srcp', fname])
mne.write_source_spaces(fname_gz, mne.read_source_spaces(fname))
"""
|