File: test_transforms.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (378 lines) | stat: -rw-r--r-- 13,863 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
import os.path as op

import pytest
import numpy as np
from numpy.testing import assert_array_equal, assert_equal, assert_allclose

from mne.datasets import testing
from mne import read_trans, write_trans
from mne.io import read_info
from mne.utils import _TempDir, run_tests_if_main
from mne.transforms import (invert_transform, _get_trans,
                            rotation, rotation3d, rotation_angles, _find_trans,
                            combine_transforms, apply_trans, translation,
                            get_ras_to_neuromag_trans, _pol_to_cart,
                            quat_to_rot, rot_to_quat, _angle_between_quats,
                            _find_vector_rotation, _sph_to_cart, _cart_to_sph,
                            _topo_to_sph, _average_quats,
                            _SphericalSurfaceWarp as SphericalSurfaceWarp,
                            rotation3d_align_z_axis, _read_fs_xfm,
                            _write_fs_xfm)

data_path = testing.data_path(download=False)
fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-trans.fif')
fname_eve = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc_raw-eve.fif')

base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
fname_trans = op.join(base_dir, 'sample-audvis-raw-trans.txt')
test_fif_fname = op.join(base_dir, 'test_raw.fif')
ctf_fname = op.join(base_dir, 'test_ctf_raw.fif')
hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')


def test_tps():
    """Test TPS warping."""
    az = np.linspace(0., 2 * np.pi, 20, endpoint=False)
    pol = np.linspace(0, np.pi, 12)[1:-1]
    sph = np.array(np.meshgrid(1, az, pol, indexing='ij'))
    sph.shape = (3, -1)
    assert_equal(sph.shape[1], 200)
    source = _sph_to_cart(sph.T)
    destination = source.copy()
    destination *= 2
    destination[:, 0] += 1
    # fit with 100 points
    warp = SphericalSurfaceWarp()
    assert 'no ' in repr(warp)
    warp.fit(source[::3], destination[::2])
    assert 'oct5' in repr(warp)
    destination_est = warp.transform(source)
    assert_allclose(destination_est, destination, atol=1e-3)


@testing.requires_testing_data
def test_get_trans():
    """Test converting '-trans.txt' to '-trans.fif'."""
    trans = read_trans(fname)
    trans = invert_transform(trans)  # starts out as head->MRI, so invert
    trans_2 = _get_trans(fname_trans)[0]
    assert trans.__eq__(trans_2, atol=1e-5)


@testing.requires_testing_data
def test_io_trans():
    """Test reading and writing of trans files."""
    tempdir = _TempDir()
    os.mkdir(op.join(tempdir, 'sample'))
    pytest.raises(RuntimeError, _find_trans, 'sample', subjects_dir=tempdir)
    trans0 = read_trans(fname)
    fname1 = op.join(tempdir, 'sample', 'test-trans.fif')
    trans0.save(fname1)
    assert fname1 == _find_trans('sample', subjects_dir=tempdir)
    trans1 = read_trans(fname1)

    # check all properties
    assert trans0 == trans1

    # check reading non -trans.fif files
    pytest.raises(IOError, read_trans, fname_eve)

    # check warning on bad filenames
    fname2 = op.join(tempdir, 'trans-test-bad-name.fif')
    with pytest.warns(RuntimeWarning, match='-trans.fif'):
        write_trans(fname2, trans0)


def test_get_ras_to_neuromag_trans():
    """Test the coordinate transformation from ras to neuromag."""
    # create model points in neuromag-like space
    rng = np.random.RandomState(0)
    anterior = [0, 1, 0]
    left = [-1, 0, 0]
    right = [.8, 0, 0]
    up = [0, 0, 1]
    rand_pts = rng.uniform(-1, 1, (3, 3))
    pts = np.vstack((anterior, left, right, up, rand_pts))

    # change coord system
    rx, ry, rz, tx, ty, tz = rng.uniform(-2 * np.pi, 2 * np.pi, 6)
    trans = np.dot(translation(tx, ty, tz), rotation(rx, ry, rz))
    pts_changed = apply_trans(trans, pts)

    # transform back into original space
    nas, lpa, rpa = pts_changed[:3]
    hsp_trans = get_ras_to_neuromag_trans(nas, lpa, rpa)
    pts_restored = apply_trans(hsp_trans, pts_changed)

    err = "Neuromag transformation failed"
    assert_allclose(pts_restored, pts, atol=1e-6, err_msg=err)


def _cartesian_to_sphere(x, y, z):
    """Convert using old function."""
    hypotxy = np.hypot(x, y)
    r = np.hypot(hypotxy, z)
    elev = np.arctan2(z, hypotxy)
    az = np.arctan2(y, x)
    return az, elev, r


def _sphere_to_cartesian(theta, phi, r):
    """Convert using old function."""
    z = r * np.sin(phi)
    rcos_phi = r * np.cos(phi)
    x = rcos_phi * np.cos(theta)
    y = rcos_phi * np.sin(theta)
    return x, y, z


def test_sph_to_cart():
    """Test conversion between sphere and cartesian."""
    # Simple test, expected value (11, 0, 0)
    r, theta, phi = 11., 0., np.pi / 2.
    z = r * np.cos(phi)
    rsin_phi = r * np.sin(phi)
    x = rsin_phi * np.cos(theta)
    y = rsin_phi * np.sin(theta)
    coord = _sph_to_cart(np.array([[r, theta, phi]]))[0]
    assert_allclose(coord, (x, y, z), atol=1e-7)
    assert_allclose(coord, (r, 0, 0), atol=1e-7)
    rng = np.random.RandomState(0)
    # round-trip test
    coords = rng.randn(10, 3)
    assert_allclose(_sph_to_cart(_cart_to_sph(coords)), coords, atol=1e-5)
    # equivalence tests to old versions
    for coord in coords:
        sph = _cart_to_sph(coord[np.newaxis])
        cart = _sph_to_cart(sph)
        sph_old = np.array(_cartesian_to_sphere(*coord))
        cart_old = _sphere_to_cartesian(*sph_old)
        sph_old[1] = np.pi / 2. - sph_old[1]  # new convention
        assert_allclose(sph[0], sph_old[[2, 0, 1]], atol=1e-7)
        assert_allclose(cart[0], cart_old, atol=1e-7)
        assert_allclose(cart[0], coord, atol=1e-7)


def _polar_to_cartesian(theta, r):
    """Transform polar coordinates to cartesian."""
    x = r * np.cos(theta)
    y = r * np.sin(theta)
    return x, y


def test_polar_to_cartesian():
    """Test helper transform function from polar to cartesian."""
    r = 1
    theta = np.pi
    # expected values are (-1, 0)
    x = r * np.cos(theta)
    y = r * np.sin(theta)
    coord = _pol_to_cart(np.array([[r, theta]]))[0]
    # np.pi is an approx since pi is irrational
    assert_allclose(coord, (x, y), atol=1e-7)
    assert_allclose(coord, (-1, 0), atol=1e-7)
    assert_allclose(coord, _polar_to_cartesian(theta, r), atol=1e-7)
    rng = np.random.RandomState(0)
    r = rng.randn(10)
    theta = rng.rand(10) * (2 * np.pi)
    polar = np.array((r, theta)).T
    assert_allclose([_polar_to_cartesian(p[1], p[0]) for p in polar],
                    _pol_to_cart(polar), atol=1e-7)


def _topo_to_sphere(theta, radius):
    """Convert using old function."""
    sph_phi = (0.5 - radius) * 180
    sph_theta = -theta
    return sph_phi, sph_theta


def test_topo_to_sph():
    """Test topo to sphere conversion."""
    rng = np.random.RandomState(0)
    angles = rng.rand(10) * 360
    radii = rng.rand(10)
    angles[0] = 30
    radii[0] = 0.25
    # new way
    sph = _topo_to_sph(np.array([angles, radii]).T)
    new = _sph_to_cart(sph)
    new[:, [0, 1]] = new[:, [1, 0]] * [-1, 1]
    # old way
    for ii, (angle, radius) in enumerate(zip(angles, radii)):
        sph_phi, sph_theta = _topo_to_sphere(angle, radius)
        if ii == 0:
            assert_allclose(_topo_to_sphere(angle, radius), [45, -30])
        azimuth = sph_theta / 180.0 * np.pi
        elevation = sph_phi / 180.0 * np.pi
        assert_allclose(sph[ii], [1., azimuth, np.pi / 2. - elevation],
                        atol=1e-7)
        r = np.ones_like(radius)
        x, y, z = _sphere_to_cartesian(azimuth, elevation, r)
        pos = [-y, x, z]
        if ii == 0:
            expected = np.array([1. / 2., np.sqrt(3) / 2., 1.])
            expected /= np.sqrt(2)
            assert_allclose(pos, expected, atol=1e-7)
        assert_allclose(pos, new[ii], atol=1e-7)


def test_rotation():
    """Test conversion between rotation angles and transformation matrix."""
    tests = [(0, 0, 1), (.5, .5, .5), (np.pi, 0, -1.5)]
    for rot in tests:
        x, y, z = rot
        m = rotation3d(x, y, z)
        m4 = rotation(x, y, z)
        assert_array_equal(m, m4[:3, :3])
        back = rotation_angles(m)
        assert_equal(back, rot)
        back4 = rotation_angles(m4)
        assert_equal(back4, rot)


def test_rotation3d_align_z_axis():
    """Test rotation3d_align_z_axis."""
    # The more complex z axis fails the assert presumably due to tolerance
    #
    inp_zs = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, -1],
              [-0.75071668, -0.62183808,  0.22302888]]

    exp_res = [[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]],
               [[1., 0., 0.], [0., 0., 1.], [0., -1., 0.]],
               [[0., 0., 1.], [0., 1., 0.], [-1., 0., 0.]],
               [[1., 0., 0.], [0., -1., 0.], [0., 0., -1.]],
               [[0.53919688, -0.38169517, -0.75071668],
                [-0.38169517, 0.683832, -0.62183808],
                [0.75071668, 0.62183808, 0.22302888]]]

    for res, z in zip(exp_res, inp_zs):
        assert_allclose(res, rotation3d_align_z_axis(z), atol=1e-7)


@testing.requires_testing_data
def test_combine():
    """Test combining transforms."""
    trans = read_trans(fname)
    inv = invert_transform(trans)
    combine_transforms(trans, inv, trans['from'], trans['from'])
    pytest.raises(RuntimeError, combine_transforms, trans, inv,
                  trans['to'], trans['from'])
    pytest.raises(RuntimeError, combine_transforms, trans, inv,
                  trans['from'], trans['to'])
    pytest.raises(RuntimeError, combine_transforms, trans, trans,
                  trans['from'], trans['to'])


def test_quaternions():
    """Test quaternion calculations."""
    rots = [np.eye(3)]
    for fname in [test_fif_fname, ctf_fname, hp_fif_fname]:
        rots += [read_info(fname)['dev_head_t']['trans'][:3, :3]]
    # nasty numerical cases
    rots += [np.array([
        [-0.99978541, -0.01873462, -0.00898756],
        [-0.01873462, 0.62565561, 0.77987608],
        [-0.00898756, 0.77987608, -0.62587152],
    ])]
    rots += [np.array([
        [0.62565561, -0.01873462, 0.77987608],
        [-0.01873462, -0.99978541, -0.00898756],
        [0.77987608, -0.00898756, -0.62587152],
    ])]
    rots += [np.array([
        [-0.99978541, -0.00898756, -0.01873462],
        [-0.00898756, -0.62587152, 0.77987608],
        [-0.01873462, 0.77987608, 0.62565561],
    ])]
    for rot in rots:
        assert_allclose(rot, quat_to_rot(rot_to_quat(rot)),
                        rtol=1e-5, atol=1e-5)
        rot = rot[np.newaxis, np.newaxis, :, :]
        assert_allclose(rot, quat_to_rot(rot_to_quat(rot)),
                        rtol=1e-5, atol=1e-5)

    # let's make sure our angle function works in some reasonable way
    for ii in range(3):
        for jj in range(3):
            a = np.zeros(3)
            b = np.zeros(3)
            a[ii] = 1.
            b[jj] = 1.
            expected = np.pi if ii != jj else 0.
            assert_allclose(_angle_between_quats(a, b), expected, atol=1e-5)


def test_vector_rotation():
    """Test basic rotation matrix math."""
    x = np.array([1., 0., 0.])
    y = np.array([0., 1., 0.])
    rot = _find_vector_rotation(x, y)
    assert_array_equal(rot,
                       [[0, -1, 0], [1, 0, 0], [0, 0, 1]])
    quat_1 = rot_to_quat(rot)
    quat_2 = rot_to_quat(np.eye(3))
    assert_allclose(_angle_between_quats(quat_1, quat_2), np.pi / 2.)


def test_average_quats():
    """Test averaging of quaternions."""
    sq2 = 1. / np.sqrt(2.)
    quats = np.array([[0, sq2, sq2],
                      [0, sq2, sq2],
                      [0, sq2, 0],
                      [0, 0, sq2],
                      [sq2, 0, 0]], float)
    # In MATLAB:
    # quats = [[0, sq2, sq2, 0]; [0, sq2, sq2, 0];
    #          [0, sq2, 0, sq2]; [0, 0, sq2, sq2]; [sq2, 0, 0, sq2]];
    expected = [quats[0],
                quats[0],
                [0, 0.788675134594813, 0.577350269189626],
                [0, 0.657192299694123, 0.657192299694123],
                [0.100406058540540, 0.616329446922803, 0.616329446922803]]
    # Averaging the first two should give the same thing:
    for lim, ex in enumerate(expected):
        assert_allclose(_average_quats(quats[:lim + 1]), ex, atol=1e-7)
    quats[1] *= -1  # same quaternion (hidden value is zero here)!
    rot_0, rot_1 = quat_to_rot(quats[:2])
    assert_allclose(rot_0, rot_1, atol=1e-7)
    for lim, ex in enumerate(expected):
        assert_allclose(_average_quats(quats[:lim + 1]), ex, atol=1e-7)


@testing.requires_testing_data
def test_fs_xfm():
    """Test reading and writing of Freesurfer transforms."""
    for subject in ('fsaverage', 'sample'):
        fname = op.join(data_path, 'subjects', subject, 'mri', 'transforms',
                        'talairach.xfm')
        xfm, kind = _read_fs_xfm(fname)
        if subject == 'fsaverage':
            assert_allclose(xfm, np.eye(4), atol=1e-5)  # fsaverage is in MNI
        assert kind == 'MNI Transform File'
        tempdir = _TempDir()
        fname_out = op.join(tempdir, 'out.xfm')
        _write_fs_xfm(fname_out, xfm, kind)
        xfm_read, kind_read = _read_fs_xfm(fname_out)
        assert kind_read == kind
        assert_allclose(xfm, xfm_read, rtol=1e-5, atol=1e-5)
        # Some wacky one
        xfm[:3] = np.random.RandomState(0).randn(3, 4)
        _write_fs_xfm(fname_out, xfm, 'foo')
        xfm_read, kind_read = _read_fs_xfm(fname_out)
        assert kind_read == 'foo'
        assert_allclose(xfm, xfm_read, rtol=1e-5, atol=1e-5)
        # degenerate conditions
        with open(fname_out, 'w') as fid:
            fid.write('foo')
        with pytest.raises(ValueError, match='Failed to find'):
            _read_fs_xfm(fname_out)
        _write_fs_xfm(fname_out, xfm[:2], 'foo')
        with pytest.raises(ValueError, match='Could not find'):
            _read_fs_xfm(fname_out)


run_tests_if_main()