1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
# Authors : Denis A. Engemann <denis.engemann@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License : BSD 3-clause
from copy import deepcopy
import math
import numpy as np
from scipy import fftpack
# XXX explore cuda optimization at some point.
from ..io.pick import _pick_data_channels, pick_info
from ..utils import verbose, warn
from ..parallel import parallel_func, check_n_jobs
from .tfr import AverageTFR, _get_data
def _check_input_st(x_in, n_fft):
"""Aux function."""
# flatten to 2 D and memorize original shape
n_times = x_in.shape[-1]
def _is_power_of_two(n):
return not (n > 0 and ((n & (n - 1))))
if n_fft is None or (not _is_power_of_two(n_fft) and n_times > n_fft):
# Compute next power of 2
n_fft = 2 ** int(math.ceil(math.log(n_times, 2)))
elif n_fft < n_times:
raise ValueError("n_fft cannot be smaller than signal size. "
"Got %s < %s." % (n_fft, n_times))
if n_times < n_fft:
warn('The input signal is shorter ({0}) than "n_fft" ({1}). '
'Applying zero padding.'.format(x_in.shape[-1], n_fft))
zero_pad = n_fft - n_times
pad_array = np.zeros(x_in.shape[:-1] + (zero_pad,), x_in.dtype)
x_in = np.concatenate((x_in, pad_array), axis=-1)
else:
zero_pad = 0
return x_in, n_fft, zero_pad
def _precompute_st_windows(n_samp, start_f, stop_f, sfreq, width):
"""Precompute stockwell Gaussian windows (in the freq domain)."""
tw = fftpack.fftfreq(n_samp, 1. / sfreq) / n_samp
tw = np.r_[tw[:1], tw[1:][::-1]]
k = width # 1 for classical stowckwell transform
f_range = np.arange(start_f, stop_f, 1)
windows = np.empty((len(f_range), len(tw)), dtype=np.complex)
for i_f, f in enumerate(f_range):
if f == 0.:
window = np.ones(len(tw))
else:
window = ((f / (np.sqrt(2. * np.pi) * k)) *
np.exp(-0.5 * (1. / k ** 2.) * (f ** 2.) * tw ** 2.))
window /= window.sum() # normalisation
windows[i_f] = fftpack.fft(window)
return windows
def _st(x, start_f, windows):
"""Compute ST based on Ali Moukadem MATLAB code (used in tests)."""
n_samp = x.shape[-1]
ST = np.empty(x.shape[:-1] + (len(windows), n_samp), dtype=np.complex)
# do the work
Fx = fftpack.fft(x)
XF = np.concatenate([Fx, Fx], axis=-1)
for i_f, window in enumerate(windows):
f = start_f + i_f
ST[..., i_f, :] = fftpack.ifft(XF[..., f:f + n_samp] * window)
return ST
def _st_power_itc(x, start_f, compute_itc, zero_pad, decim, W):
"""Aux function."""
n_samp = x.shape[-1]
n_out = (n_samp - zero_pad)
n_out = n_out // decim + bool(n_out % decim)
psd = np.empty((len(W), n_out))
itc = np.empty_like(psd) if compute_itc else None
X = fftpack.fft(x)
XX = np.concatenate([X, X], axis=-1)
for i_f, window in enumerate(W):
f = start_f + i_f
ST = fftpack.ifft(XX[:, f:f + n_samp] * window)
if zero_pad > 0:
TFR = ST[:, :-zero_pad:decim]
else:
TFR = ST[:, ::decim]
TFR_abs = np.abs(TFR)
TFR_abs[TFR_abs == 0] = 1.
if compute_itc:
TFR /= TFR_abs
itc[i_f] = np.abs(np.mean(TFR, axis=0))
TFR_abs *= TFR_abs
psd[i_f] = np.mean(TFR_abs, axis=0)
return psd, itc
def tfr_array_stockwell(data, sfreq, fmin=None, fmax=None, n_fft=None,
width=1.0, decim=1, return_itc=False, n_jobs=1):
"""Compute power and intertrial coherence using Stockwell (S) transform.
See [1]_, [2]_, [3]_, [4]_ for more information.
Parameters
----------
data : ndarray
The signal to transform. Any dimensionality supported as long
as the last dimension is time.
sfreq : float
The sampling frequency.
fmin : None, float
The minimum frequency to include. If None defaults to the minimum fft
frequency greater than zero.
fmax : None, float
The maximum frequency to include. If None defaults to the maximum fft.
n_fft : int | None
The length of the windows used for FFT. If None, it defaults to the
next power of 2 larger than the signal length.
width : float
The width of the Gaussian window. If < 1, increased temporal
resolution, if > 1, increased frequency resolution. Defaults to 1.
(classical S-Transform).
decim : int
The decimation factor on the time axis. To reduce memory usage.
return_itc : bool
Return intertrial coherence (ITC) as well as averaged power.
n_jobs : int
Number of parallel jobs to use.
Returns
-------
st_power : ndarray
The multitaper power of the Stockwell transformed data.
The last two dimensions are frequency and time.
itc : ndarray
The intertrial coherence. Only returned if return_itc is True.
freqs : ndarray
The frequencies.
References
----------
.. [1] Stockwell, R. G. "Why use the S-transform." AMS Pseudo-differential
operators: Partial differential equations and time-frequency
analysis 52 (2007): 279-309.
.. [2] Moukadem, A., Bouguila, Z., Abdeslam, D. O, and Dieterlen, A.
Stockwell transform optimization applied on the detection of split in
heart sounds (2014). Signal Processing Conference (EUSIPCO), 2013
Proceedings of the 22nd European, pages 2015--2019.
.. [3] Wheat, K., Cornelissen, P. L., Frost, S.J, and Peter C. Hansen
(2010). During Visual Word Recognition, Phonology Is Accessed
within 100 ms and May Be Mediated by a Speech Production
Code: Evidence from Magnetoencephalography. The Journal of
Neuroscience, 30 (15), 5229-5233.
.. [4] K. A. Jones and B. Porjesz and D. Chorlian and M. Rangaswamy and C.
Kamarajan and A. Padmanabhapillai and A. Stimus and H. Begleiter
(2006). S-transform time-frequency analysis of P300 reveals deficits in
individuals diagnosed with alcoholism.
Clinical Neurophysiology 117 2128--2143
See Also
--------
mne.time_frequency.tfr_stockwell
mne.time_frequency.tfr_multitaper
mne.time_frequency.tfr_array_multitaper
mne.time_frequency.tfr_morlet
mne.time_frequency.tfr_array_morlet
"""
n_epochs, n_channels = data.shape[:2]
n_out = data.shape[2] // decim + bool(data.shape[2] % decim)
data, n_fft_, zero_pad = _check_input_st(data, n_fft)
freqs = fftpack.fftfreq(n_fft_, 1. / sfreq)
if fmin is None:
fmin = freqs[freqs > 0][0]
if fmax is None:
fmax = freqs.max()
start_f = np.abs(freqs - fmin).argmin()
stop_f = np.abs(freqs - fmax).argmin()
freqs = freqs[start_f:stop_f]
W = _precompute_st_windows(data.shape[-1], start_f, stop_f, sfreq, width)
n_freq = stop_f - start_f
psd = np.empty((n_channels, n_freq, n_out))
itc = np.empty((n_channels, n_freq, n_out)) if return_itc else None
parallel, my_st, _ = parallel_func(_st_power_itc, n_jobs)
tfrs = parallel(my_st(data[:, c, :], start_f, return_itc, zero_pad,
decim, W)
for c in range(n_channels))
for c, (this_psd, this_itc) in enumerate(iter(tfrs)):
psd[c] = this_psd
if this_itc is not None:
itc[c] = this_itc
return psd, itc, freqs
@verbose
def tfr_stockwell(inst, fmin=None, fmax=None, n_fft=None,
width=1.0, decim=1, return_itc=False, n_jobs=1,
verbose=None):
"""Time-Frequency Representation (TFR) using Stockwell Transform.
Parameters
----------
inst : Epochs | Evoked
The epochs or evoked object.
fmin : None, float
The minimum frequency to include. If None defaults to the minimum fft
frequency greater than zero.
fmax : None, float
The maximum frequency to include. If None defaults to the maximum fft.
n_fft : int | None
The length of the windows used for FFT. If None, it defaults to the
next power of 2 larger than the signal length.
width : float
The width of the Gaussian window. If < 1, increased temporal
resolution, if > 1, increased frequency resolution. Defaults to 1.
(classical S-Transform).
decim : int
The decimation factor on the time axis. To reduce memory usage.
return_itc : bool
Return intertrial coherence (ITC) as well as averaged power.
n_jobs : int
The number of jobs to run in parallel (over channels).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
power : AverageTFR
The averaged power.
itc : AverageTFR
The intertrial coherence. Only returned if return_itc is True.
See Also
--------
mne.time_frequency.tfr_array_stockwell
mne.time_frequency.tfr_multitaper
mne.time_frequency.tfr_array_multitaper
mne.time_frequency.tfr_morlet
mne.time_frequency.tfr_array_morlet
Notes
-----
.. versionadded:: 0.9.0
"""
# verbose dec is used b/c subfunctions are verbose
data = _get_data(inst, return_itc)
picks = _pick_data_channels(inst.info)
info = pick_info(inst.info, picks)
data = data[:, picks, :]
n_jobs = check_n_jobs(n_jobs)
power, itc, freqs = tfr_array_stockwell(data, sfreq=info['sfreq'],
fmin=fmin, fmax=fmax, n_fft=n_fft,
width=width, decim=decim,
return_itc=return_itc,
n_jobs=n_jobs)
times = inst.times[::decim].copy()
nave = len(data)
out = AverageTFR(info, power, times, freqs, nave, method='stockwell-power')
if return_itc:
out = (out, AverageTFR(deepcopy(info), itc, times.copy(),
freqs.copy(), nave, method='stockwell-itc'))
return out
|