1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
|
# Author : Martin Luessi mluessi@nmr.mgh.harvard.edu (2012)
# License : BSD 3-clause
# Parts of this code were copied from NiTime http://nipy.sourceforge.net/nitime
import operator
import numpy as np
from scipy import linalg
from ..parallel import parallel_func
from ..utils import sum_squared, warn, verbose, logger
from ..externals.six import string_types
def tridisolve(d, e, b, overwrite_b=True):
"""Symmetric tridiagonal system solver, from Golub and Van Loan p157.
.. note:: Copied from NiTime.
Parameters
----------
d : ndarray
main diagonal stored in d[:]
e : ndarray
superdiagonal stored in e[:-1]
b : ndarray
RHS vector
Returns
-------
x : ndarray
Solution to Ax = b (if overwrite_b is False). Otherwise solution is
stored in previous RHS vector b
"""
N = len(b)
# work vectors
dw = d.copy()
ew = e.copy()
if overwrite_b:
x = b
else:
x = b.copy()
for k in range(1, N):
# e^(k-1) = e(k-1) / d(k-1)
# d(k) = d(k) - e^(k-1)e(k-1) / d(k-1)
t = ew[k - 1]
ew[k - 1] = t / dw[k - 1]
dw[k] = dw[k] - t * ew[k - 1]
for k in range(1, N):
x[k] = x[k] - ew[k - 1] * x[k - 1]
x[N - 1] = x[N - 1] / dw[N - 1]
for k in range(N - 2, -1, -1):
x[k] = x[k] / dw[k] - ew[k] * x[k + 1]
if not overwrite_b:
return x
def tridi_inverse_iteration(d, e, w, x0=None, rtol=1e-8):
"""Perform an inverse iteration.
This will find the eigenvector corresponding to the given eigenvalue
in a symmetric tridiagonal system.
..note:: Copied from NiTime.
Parameters
----------
d : ndarray
main diagonal of the tridiagonal system
e : ndarray
offdiagonal stored in e[:-1]
w : float
eigenvalue of the eigenvector
x0 : ndarray
initial point to start the iteration
rtol : float
tolerance for the norm of the difference of iterates
Returns
-------
e: ndarray
The converged eigenvector
"""
eig_diag = d - w
if x0 is None:
x0 = np.random.randn(len(d))
x_prev = np.zeros_like(x0)
norm_x = np.linalg.norm(x0)
# the eigenvector is unique up to sign change, so iterate
# until || |x^(n)| - |x^(n-1)| ||^2 < rtol
x0 /= norm_x
while np.linalg.norm(np.abs(x0) - np.abs(x_prev)) > rtol:
x_prev = x0.copy()
tridisolve(eig_diag, e, x0)
norm_x = np.linalg.norm(x0)
x0 /= norm_x
return x0
def dpss_windows(N, half_nbw, Kmax, low_bias=True, interp_from=None,
interp_kind='linear'):
"""Compute Discrete Prolate Spheroidal Sequences.
Will give of orders [0,Kmax-1] for a given frequency-spacing multiple
NW and sequence length N.
.. note:: Copied from NiTime.
Parameters
----------
N : int
Sequence length
half_nbw : float, unitless
Standardized half bandwidth corresponding to 2 * half_bw = BW*f0
= BW*N/dt but with dt taken as 1
Kmax : int
Number of DPSS windows to return is Kmax (orders 0 through Kmax-1)
low_bias : Bool
Keep only tapers with eigenvalues > 0.9
interp_from : int (optional)
The dpss can be calculated using interpolation from a set of dpss
with the same NW and Kmax, but shorter N. This is the length of this
shorter set of dpss windows.
interp_kind : str (optional)
This input variable is passed to scipy.interpolate.interp1d and
specifies the kind of interpolation as a string ('linear', 'nearest',
'zero', 'slinear', 'quadratic, 'cubic') or as an integer specifying the
order of the spline interpolator to use.
Returns
-------
v, e : tuple,
v is an array of DPSS windows shaped (Kmax, N)
e are the eigenvalues
Notes
-----
Tridiagonal form of DPSS calculation from:
Slepian, D. Prolate spheroidal wave functions, Fourier analysis, and
uncertainty V: The discrete case. Bell System Technical Journal,
Volume 57 (1978), 1371430
"""
from scipy import interpolate
from ..filter import next_fast_len
# This np.int32 business works around a weird Windows bug, see
# gh-5039 and https://github.com/scipy/scipy/pull/8608
Kmax = np.int32(operator.index(Kmax))
N = np.int32(operator.index(N))
W = float(half_nbw) / N
nidx = np.arange(N, dtype='d')
# In this case, we create the dpss windows of the smaller size
# (interp_from) and then interpolate to the larger size (N)
if interp_from is not None:
if interp_from > N:
e_s = 'In dpss_windows, interp_from is: %s ' % interp_from
e_s += 'and N is: %s. ' % N
e_s += 'Please enter interp_from smaller than N.'
raise ValueError(e_s)
dpss = []
d, e = dpss_windows(interp_from, half_nbw, Kmax, low_bias=False)
for this_d in d:
x = np.arange(this_d.shape[-1])
tmp = interpolate.interp1d(x, this_d, kind=interp_kind)
d_temp = tmp(np.linspace(0, this_d.shape[-1] - 1, N,
endpoint=False))
# Rescale:
d_temp = d_temp / np.sqrt(sum_squared(d_temp))
dpss.append(d_temp)
dpss = np.array(dpss)
else:
# here we want to set up an optimization problem to find a sequence
# whose energy is maximally concentrated within band [-W,W].
# Thus, the measure lambda(T,W) is the ratio between the energy within
# that band, and the total energy. This leads to the eigen-system
# (A - (l1)I)v = 0, where the eigenvector corresponding to the largest
# eigenvalue is the sequence with maximally concentrated energy. The
# collection of eigenvectors of this system are called Slepian
# sequences, or discrete prolate spheroidal sequences (DPSS). Only the
# first K, K = 2NW/dt orders of DPSS will exhibit good spectral
# concentration
# [see http://en.wikipedia.org/wiki/Spectral_concentration_problem]
# Here I set up an alternative symmetric tri-diagonal eigenvalue
# problem such that
# (B - (l2)I)v = 0, and v are our DPSS (but eigenvalues l2 != l1)
# the main diagonal = ([N-1-2*t]/2)**2 cos(2PIW), t=[0,1,2,...,N-1]
# and the first off-diagonal = t(N-t)/2, t=[1,2,...,N-1]
# [see Percival and Walden, 1993]
diagonal = ((N - 1 - 2 * nidx) / 2.) ** 2 * np.cos(2 * np.pi * W)
off_diag = np.zeros_like(nidx)
off_diag[:-1] = nidx[1:] * (N - nidx[1:]) / 2.
# put the diagonals in LAPACK "packed" storage
ab = np.zeros((2, N), 'd')
ab[1] = diagonal
ab[0, 1:] = off_diag[:-1]
# only calculate the highest Kmax eigenvalues
w = linalg.eigvals_banded(ab, select='i',
select_range=(N - Kmax, N - 1))
w = w[::-1]
# find the corresponding eigenvectors via inverse iteration
t = np.linspace(0, np.pi, N)
dpss = np.zeros((Kmax, N), 'd')
for k in range(Kmax):
dpss[k] = tridi_inverse_iteration(diagonal, off_diag, w[k],
x0=np.sin((k + 1) * t))
# By convention (Percival and Walden, 1993 pg 379)
# * symmetric tapers (k=0,2,4,...) should have a positive average.
# * antisymmetric tapers should begin with a positive lobe
fix_symmetric = (dpss[0::2].sum(axis=1) < 0)
for i, f in enumerate(fix_symmetric):
if f:
dpss[2 * i] *= -1
# rather than test the sign of one point, test the sign of the
# linear slope up to the first (largest) peak
pk = np.argmax(np.abs(dpss[1::2, :N // 2]), axis=1)
for i, p in enumerate(pk):
if np.sum(dpss[2 * i + 1, :p]) < 0:
dpss[2 * i + 1] *= -1
# Now find the eigenvalues of the original spectral concentration problem
# Use the autocorr sequence technique from Percival and Walden, 1993 pg 390
# compute autocorr using FFT (same as nitime.utils.autocorr(dpss) * N)
rxx_size = 2 * N - 1
n_fft = next_fast_len(rxx_size)
dpss_fft = np.fft.rfft(dpss, n_fft)
dpss_rxx = np.fft.irfft(dpss_fft * dpss_fft.conj(), n_fft)
dpss_rxx = dpss_rxx[:, :N]
r = 4 * W * np.sinc(2 * W * nidx)
r[0] = 2 * W
eigvals = np.dot(dpss_rxx, r)
if low_bias:
idx = (eigvals > 0.9)
if not idx.any():
warn('Could not properly use low_bias, keeping lowest-bias taper')
idx = [np.argmax(eigvals)]
dpss, eigvals = dpss[idx], eigvals[idx]
assert len(dpss) > 0 # should never happen
assert dpss.shape[1] == N # old nitime bug
return dpss, eigvals
def _psd_from_mt_adaptive(x_mt, eigvals, freq_mask, max_iter=150,
return_weights=False):
r"""Use iterative procedure to compute the PSD from tapered spectra.
.. note:: Modified from NiTime.
Parameters
----------
x_mt : array, shape=(n_signals, n_tapers, n_freqs)
The DFTs of the tapered sequences (only positive frequencies)
eigvals : array, length n_tapers
The eigenvalues of the DPSS tapers
freq_mask : array
Frequency indices to keep
max_iter : int
Maximum number of iterations for weight computation
return_weights : bool
Also return the weights
Returns
-------
psd : array, shape=(n_signals, np.sum(freq_mask))
The computed PSDs
weights : array shape=(n_signals, n_tapers, np.sum(freq_mask))
The weights used to combine the tapered spectra
Notes
-----
The weights to use for making the multitaper estimate, such that
:math:`S_{mt} = \sum_{k} |w_k|^2S_k^{mt} / \sum_{k} |w_k|^2`
"""
n_signals, n_tapers, n_freqs = x_mt.shape
if len(eigvals) != n_tapers:
raise ValueError('Need one eigenvalue for each taper')
if n_tapers < 3:
raise ValueError('Not enough tapers to compute adaptive weights.')
rt_eig = np.sqrt(eigvals)
# estimate the variance from an estimate with fixed weights
psd_est = _psd_from_mt(x_mt, rt_eig[np.newaxis, :, np.newaxis])
x_var = np.trapz(psd_est, dx=np.pi / n_freqs) / (2 * np.pi)
del psd_est
# allocate space for output
psd = np.empty((n_signals, np.sum(freq_mask)))
# only keep the frequencies of interest
x_mt = x_mt[:, :, freq_mask]
if return_weights:
weights = np.empty((n_signals, n_tapers, psd.shape[1]))
for i, (xk, var) in enumerate(zip(x_mt, x_var)):
# combine the SDFs in the traditional way in order to estimate
# the variance of the timeseries
# The process is to iteratively switch solving for the following
# two expressions:
# (1) Adaptive Multitaper SDF:
# S^{mt}(f) = [ sum |d_k(f)|^2 S_k(f) ]/ sum |d_k(f)|^2
#
# (2) Weights
# d_k(f) = [sqrt(lam_k) S^{mt}(f)] / [lam_k S^{mt}(f) + E{B_k(f)}]
#
# Where lam_k are the eigenvalues corresponding to the DPSS tapers,
# and the expected value of the broadband bias function
# E{B_k(f)} is replaced by its full-band integration
# (1/2pi) int_{-pi}^{pi} E{B_k(f)} = sig^2(1-lam_k)
# start with an estimate from incomplete data--the first 2 tapers
psd_iter = _psd_from_mt(xk[:2, :], rt_eig[:2, np.newaxis])
err = np.zeros_like(xk)
for n in range(max_iter):
d_k = (psd_iter / (eigvals[:, np.newaxis] * psd_iter +
(1 - eigvals[:, np.newaxis]) * var))
d_k *= rt_eig[:, np.newaxis]
# Test for convergence -- this is overly conservative, since
# iteration only stops when all frequencies have converged.
# A better approach is to iterate separately for each freq, but
# that is a nonvectorized algorithm.
# Take the RMS difference in weights from the previous iterate
# across frequencies. If the maximum RMS error across freqs is
# less than 1e-10, then we're converged
err -= d_k
if np.max(np.mean(err ** 2, axis=0)) < 1e-10:
break
# update the iterative estimate with this d_k
psd_iter = _psd_from_mt(xk, d_k)
err = d_k
if n == max_iter - 1:
warn('Iterative multi-taper PSD computation did not converge.')
psd[i, :] = psd_iter
if return_weights:
weights[i, :, :] = d_k
if return_weights:
return psd, weights
else:
return psd
def _psd_from_mt(x_mt, weights):
"""Compute PSD from tapered spectra.
Parameters
----------
x_mt : array
Tapered spectra
weights : array
Weights used to combine the tapered spectra
Returns
-------
psd : array
The computed PSD
"""
psd = weights * x_mt
psd *= psd.conj()
psd = psd.real.sum(axis=-2)
psd *= 2 / (weights * weights.conj()).real.sum(axis=-2)
return psd
def _csd_from_mt(x_mt, y_mt, weights_x, weights_y):
"""Compute CSD from tapered spectra.
Parameters
----------
x_mt : array
Tapered spectra for x
y_mt : array
Tapered spectra for y
weights_x : array
Weights used to combine the tapered spectra of x_mt
weights_y : array
Weights used to combine the tapered spectra of y_mt
Returns
-------
psd: array
The computed PSD
"""
csd = np.sum(weights_x * x_mt * (weights_y * y_mt).conj(), axis=-2)
denom = (np.sqrt((weights_x * weights_x.conj()).real.sum(axis=-2)) *
np.sqrt((weights_y * weights_y.conj()).real.sum(axis=-2)))
csd *= 2 / denom
return csd
def _mt_spectra(x, dpss, sfreq, n_fft=None):
"""Compute tapered spectra.
Parameters
----------
x : array, shape=(..., n_times)
Input signal
dpss : array, shape=(n_tapers, n_times)
The tapers
sfreq : float
The sampling frequency
n_fft : int | None
Length of the FFT. If None, the number of samples in the input signal
will be used.
Returns
-------
x_mt : array, shape=(..., n_tapers, n_times)
The tapered spectra
freqs : array
The frequency points in Hz of the spectra
"""
if n_fft is None:
n_fft = x.shape[1]
# remove mean (do not use in-place subtraction as it may modify input x)
x = x - np.mean(x, axis=-1, keepdims=True)
# only keep positive frequencies
freqs = np.fft.rfftfreq(n_fft, 1. / sfreq)
# The following is equivalent to this, but uses less memory:
# x_mt = fftpack.fft(x[:, np.newaxis, :] * dpss, n=n_fft)
n_tapers = dpss.shape[0] if dpss.ndim > 1 else 1
x_mt = np.zeros(x.shape[:-1] + (n_tapers, len(freqs)),
dtype=np.complex128)
for idx, sig in enumerate(x):
x_mt[idx] = np.fft.rfft(sig[..., np.newaxis, :] * dpss, n=n_fft)
# Adjust DC and maybe Nyquist, depending on one-sided transform
x_mt[:, :, 0] /= np.sqrt(2.)
if x.shape[1] % 2 == 0:
x_mt[:, :, -1] /= np.sqrt(2.)
return x_mt, freqs
@verbose
def _compute_mt_params(n_times, sfreq, bandwidth, low_bias, adaptive,
interp_from=None, verbose=None):
"""Triage windowing and multitaper parameters."""
# Compute standardized half-bandwidth
from scipy.signal import get_window
if isinstance(bandwidth, string_types):
logger.info(' Using standard spectrum estimation with "%s" window'
% (bandwidth,))
window_fun = get_window(bandwidth, n_times)[np.newaxis]
return window_fun, np.ones(1), False
if bandwidth is not None:
half_nbw = float(bandwidth) * n_times / (2. * sfreq)
else:
half_nbw = 4.
if half_nbw < 0.5:
raise ValueError(
'bandwidth value %s yields a normalized bandwidth of %s < 0.5, '
'use a value of at least %s'
% (bandwidth, half_nbw, sfreq / n_times))
# Compute DPSS windows
n_tapers_max = int(2 * half_nbw)
window_fun, eigvals = dpss_windows(n_times, half_nbw, n_tapers_max,
low_bias=low_bias,
interp_from=interp_from)
logger.info(' Using multitaper spectrum estimation with %d DPSS '
'windows' % len(eigvals))
if adaptive and len(eigvals) < 3:
warn('Not adaptively combining the spectral estimators due to a '
'low number of tapers (%s < 3).' % (len(eigvals),))
adaptive = False
return window_fun, eigvals, adaptive
@verbose
def psd_array_multitaper(x, sfreq, fmin=0, fmax=np.inf, bandwidth=None,
adaptive=False, low_bias=True, normalization='length',
n_jobs=1, verbose=None):
"""Compute power spectrum density (PSD) using a multi-taper method.
Parameters
----------
x : array, shape=(..., n_times)
The data to compute PSD from.
sfreq : float
The sampling frequency.
fmin : float
The lower frequency of interest.
fmax : float
The upper frequency of interest.
bandwidth : float
The bandwidth of the multi taper windowing function in Hz.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
low_bias : bool
Only use tapers with more than 90% spectral concentration within
bandwidth.
normalization : str
Either "full" or "length" (default). If "full", the PSD will
be normalized by the sampling rate as well as the length of
the signal (as in nitime).
n_jobs : int
Number of parallel jobs to use (only used if adaptive=True).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
psds : ndarray, shape (..., n_freqs) or
The power spectral densities. All dimensions up to the last will
be the same as input.
freqs : array
The frequency points in Hz of the PSD.
See Also
--------
mne.io.Raw.plot_psd
mne.Epochs.plot_psd
csd_multitaper
psd_multitaper
Notes
-----
.. versionadded:: 0.14.0
"""
if normalization not in ('length', 'full'):
raise ValueError('Normalization must be "length" or "full", not %s'
% normalization)
# Reshape data so its 2-D for parallelization
ndim_in = x.ndim
x = np.atleast_2d(x)
n_times = x.shape[-1]
dshape = x.shape[:-1]
x = x.reshape(-1, n_times)
dpss, eigvals, adaptive = _compute_mt_params(
n_times, sfreq, bandwidth, low_bias, adaptive)
# decide which frequencies to keep
freqs = np.fft.rfftfreq(n_times, 1. / sfreq)
freq_mask = (freqs >= fmin) & (freqs <= fmax)
freqs = freqs[freq_mask]
psd = np.zeros((x.shape[0], freq_mask.sum()))
# Let's go in up to 50 MB chunks of signals to save memory
n_chunk = max(50000000 // (len(freq_mask) * len(eigvals) * 16), n_jobs)
offsets = np.concatenate((np.arange(0, x.shape[0], n_chunk), [x.shape[0]]))
for start, stop in zip(offsets[:-1], offsets[1:]):
x_mt = _mt_spectra(x[start:stop], dpss, sfreq)[0]
if not adaptive:
weights = np.sqrt(eigvals)[np.newaxis, :, np.newaxis]
psd[start:stop] = _psd_from_mt(x_mt[:, :, freq_mask], weights)
else:
n_splits = min(stop - start, n_jobs)
parallel, my_psd_from_mt_adaptive, n_jobs = \
parallel_func(_psd_from_mt_adaptive, n_splits)
out = parallel(my_psd_from_mt_adaptive(x, eigvals, freq_mask)
for x in np.array_split(x_mt, n_splits))
psd[start:stop] = np.concatenate(out)
if normalization == 'full':
psd /= sfreq
# Combining/reshaping to original data shape
psd.shape = dshape + (-1,)
if ndim_in == 1:
psd = psd[0]
return psd, freqs
@verbose
def tfr_array_multitaper(epoch_data, sfreq, freqs, n_cycles=7.0,
zero_mean=True, time_bandwidth=None, use_fft=True,
decim=1, output='complex', n_jobs=1,
verbose=None):
"""Compute time-frequency transforms using wavelets and multitaper windows.
Uses Morlet wavelets windowed with multiple DPSS tapers.
Parameters
----------
epoch_data : array of shape (n_epochs, n_channels, n_times)
The epochs.
sfreq : float | int
Sampling frequency of the data.
freqs : array-like of floats, shape (n_freqs)
The frequencies.
n_cycles : float | array of float
Number of cycles in the Morlet wavelet. Fixed number or one per
frequency. Defaults to 7.0.
zero_mean : bool
If True, make sure the wavelets have a mean of zero. Defaults to True.
time_bandwidth : float
If None, will be set to 4.0 (3 tapers). Time x (Full) Bandwidth
product. The number of good tapers (low-bias) is chosen automatically
based on this to equal floor(time_bandwidth - 1). Defaults to None
use_fft : bool
Use the FFT for convolutions or not. Defaults to True.
decim : int | slice
To reduce memory usage, decimation factor after time-frequency
decomposition. Defaults to 1.
If `int`, returns tfr[..., ::decim].
If `slice`, returns tfr[..., decim].
.. note::
Decimation may create aliasing artifacts, yet decimation
is done after the convolutions.
output : str, defaults to 'complex'
* 'complex' : single trial complex.
* 'power' : single trial power.
* 'phase' : single trial phase.
* 'avg_power' : average of single trial power.
* 'itc' : inter-trial coherence.
* 'avg_power_itc' : average of single trial power and inter-trial
coherence across trials.
n_jobs : int
The number of epochs to process at the same time. The parallelization
is implemented across channels. Defaults to 1.
verbose : bool, str, int, or None, defaults to None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
out : array
Time frequency transform of epoch_data. If output is in ['complex',
'phase', 'power'], then shape of out is (n_epochs, n_chans, n_freqs,
n_times), else it is (n_chans, n_freqs, n_times). If output is
'avg_power_itc', the real values code for 'avg_power' and the
imaginary values code for the 'itc': out = avg_power + i * itc
See Also
--------
mne.time_frequency.tfr_multitaper
mne.time_frequency.tfr_morlet
mne.time_frequency.tfr_array_morlet
mne.time_frequency.tfr_stockwell
mne.time_frequency.tfr_array_stockwell
Notes
-----
.. versionadded:: 0.14.0
"""
from .tfr import _compute_tfr
return _compute_tfr(epoch_data, freqs, sfreq=sfreq,
method='multitaper', n_cycles=n_cycles,
zero_mean=zero_mean, time_bandwidth=time_bandwidth,
use_fft=use_fft, decim=decim, output=output,
n_jobs=n_jobs, verbose=verbose)
|