File: multitaper.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (676 lines) | stat: -rw-r--r-- 23,628 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# Author : Martin Luessi mluessi@nmr.mgh.harvard.edu (2012)
# License : BSD 3-clause

# Parts of this code were copied from NiTime http://nipy.sourceforge.net/nitime

import operator
import numpy as np
from scipy import linalg

from ..parallel import parallel_func
from ..utils import sum_squared, warn, verbose, logger
from ..externals.six import string_types


def tridisolve(d, e, b, overwrite_b=True):
    """Symmetric tridiagonal system solver, from Golub and Van Loan p157.

    .. note:: Copied from NiTime.

    Parameters
    ----------
    d : ndarray
      main diagonal stored in d[:]
    e : ndarray
      superdiagonal stored in e[:-1]
    b : ndarray
      RHS vector

    Returns
    -------
    x : ndarray
      Solution to Ax = b (if overwrite_b is False). Otherwise solution is
      stored in previous RHS vector b

    """
    N = len(b)
    # work vectors
    dw = d.copy()
    ew = e.copy()
    if overwrite_b:
        x = b
    else:
        x = b.copy()
    for k in range(1, N):
        # e^(k-1) = e(k-1) / d(k-1)
        # d(k) = d(k) - e^(k-1)e(k-1) / d(k-1)
        t = ew[k - 1]
        ew[k - 1] = t / dw[k - 1]
        dw[k] = dw[k] - t * ew[k - 1]
    for k in range(1, N):
        x[k] = x[k] - ew[k - 1] * x[k - 1]
    x[N - 1] = x[N - 1] / dw[N - 1]
    for k in range(N - 2, -1, -1):
        x[k] = x[k] / dw[k] - ew[k] * x[k + 1]

    if not overwrite_b:
        return x


def tridi_inverse_iteration(d, e, w, x0=None, rtol=1e-8):
    """Perform an inverse iteration.

    This will find the eigenvector corresponding to the given eigenvalue
    in a symmetric tridiagonal system.

    ..note:: Copied from NiTime.

    Parameters
    ----------
    d : ndarray
      main diagonal of the tridiagonal system
    e : ndarray
      offdiagonal stored in e[:-1]
    w : float
      eigenvalue of the eigenvector
    x0 : ndarray
      initial point to start the iteration
    rtol : float
      tolerance for the norm of the difference of iterates

    Returns
    -------
    e: ndarray
      The converged eigenvector
    """
    eig_diag = d - w
    if x0 is None:
        x0 = np.random.randn(len(d))
    x_prev = np.zeros_like(x0)
    norm_x = np.linalg.norm(x0)
    # the eigenvector is unique up to sign change, so iterate
    # until || |x^(n)| - |x^(n-1)| ||^2 < rtol
    x0 /= norm_x
    while np.linalg.norm(np.abs(x0) - np.abs(x_prev)) > rtol:
        x_prev = x0.copy()
        tridisolve(eig_diag, e, x0)
        norm_x = np.linalg.norm(x0)
        x0 /= norm_x
    return x0


def dpss_windows(N, half_nbw, Kmax, low_bias=True, interp_from=None,
                 interp_kind='linear'):
    """Compute Discrete Prolate Spheroidal Sequences.

    Will give of orders [0,Kmax-1] for a given frequency-spacing multiple
    NW and sequence length N.

    .. note:: Copied from NiTime.

    Parameters
    ----------
    N : int
        Sequence length
    half_nbw : float, unitless
        Standardized half bandwidth corresponding to 2 * half_bw = BW*f0
        = BW*N/dt but with dt taken as 1
    Kmax : int
        Number of DPSS windows to return is Kmax (orders 0 through Kmax-1)
    low_bias : Bool
        Keep only tapers with eigenvalues > 0.9
    interp_from : int (optional)
        The dpss can be calculated using interpolation from a set of dpss
        with the same NW and Kmax, but shorter N. This is the length of this
        shorter set of dpss windows.
    interp_kind : str (optional)
        This input variable is passed to scipy.interpolate.interp1d and
        specifies the kind of interpolation as a string ('linear', 'nearest',
        'zero', 'slinear', 'quadratic, 'cubic') or as an integer specifying the
        order of the spline interpolator to use.


    Returns
    -------
    v, e : tuple,
        v is an array of DPSS windows shaped (Kmax, N)
        e are the eigenvalues

    Notes
    -----
    Tridiagonal form of DPSS calculation from:

    Slepian, D. Prolate spheroidal wave functions, Fourier analysis, and
    uncertainty V: The discrete case. Bell System Technical Journal,
    Volume 57 (1978), 1371430
    """
    from scipy import interpolate
    from ..filter import next_fast_len
    # This np.int32 business works around a weird Windows bug, see
    # gh-5039 and https://github.com/scipy/scipy/pull/8608
    Kmax = np.int32(operator.index(Kmax))
    N = np.int32(operator.index(N))
    W = float(half_nbw) / N
    nidx = np.arange(N, dtype='d')

    # In this case, we create the dpss windows of the smaller size
    # (interp_from) and then interpolate to the larger size (N)
    if interp_from is not None:
        if interp_from > N:
            e_s = 'In dpss_windows, interp_from is: %s ' % interp_from
            e_s += 'and N is: %s. ' % N
            e_s += 'Please enter interp_from smaller than N.'
            raise ValueError(e_s)
        dpss = []
        d, e = dpss_windows(interp_from, half_nbw, Kmax, low_bias=False)
        for this_d in d:
            x = np.arange(this_d.shape[-1])
            tmp = interpolate.interp1d(x, this_d, kind=interp_kind)
            d_temp = tmp(np.linspace(0, this_d.shape[-1] - 1, N,
                                     endpoint=False))

            # Rescale:
            d_temp = d_temp / np.sqrt(sum_squared(d_temp))

            dpss.append(d_temp)

        dpss = np.array(dpss)

    else:
        # here we want to set up an optimization problem to find a sequence
        # whose energy is maximally concentrated within band [-W,W].
        # Thus, the measure lambda(T,W) is the ratio between the energy within
        # that band, and the total energy. This leads to the eigen-system
        # (A - (l1)I)v = 0, where the eigenvector corresponding to the largest
        # eigenvalue is the sequence with maximally concentrated energy. The
        # collection of eigenvectors of this system are called Slepian
        # sequences, or discrete prolate spheroidal sequences (DPSS). Only the
        # first K, K = 2NW/dt orders of DPSS will exhibit good spectral
        # concentration
        # [see http://en.wikipedia.org/wiki/Spectral_concentration_problem]

        # Here I set up an alternative symmetric tri-diagonal eigenvalue
        # problem such that
        # (B - (l2)I)v = 0, and v are our DPSS (but eigenvalues l2 != l1)
        # the main diagonal = ([N-1-2*t]/2)**2 cos(2PIW), t=[0,1,2,...,N-1]
        # and the first off-diagonal = t(N-t)/2, t=[1,2,...,N-1]
        # [see Percival and Walden, 1993]
        diagonal = ((N - 1 - 2 * nidx) / 2.) ** 2 * np.cos(2 * np.pi * W)
        off_diag = np.zeros_like(nidx)
        off_diag[:-1] = nidx[1:] * (N - nidx[1:]) / 2.
        # put the diagonals in LAPACK "packed" storage
        ab = np.zeros((2, N), 'd')
        ab[1] = diagonal
        ab[0, 1:] = off_diag[:-1]
        # only calculate the highest Kmax eigenvalues
        w = linalg.eigvals_banded(ab, select='i',
                                  select_range=(N - Kmax, N - 1))
        w = w[::-1]

        # find the corresponding eigenvectors via inverse iteration
        t = np.linspace(0, np.pi, N)
        dpss = np.zeros((Kmax, N), 'd')
        for k in range(Kmax):
            dpss[k] = tridi_inverse_iteration(diagonal, off_diag, w[k],
                                              x0=np.sin((k + 1) * t))

    # By convention (Percival and Walden, 1993 pg 379)
    # * symmetric tapers (k=0,2,4,...) should have a positive average.
    # * antisymmetric tapers should begin with a positive lobe
    fix_symmetric = (dpss[0::2].sum(axis=1) < 0)
    for i, f in enumerate(fix_symmetric):
        if f:
            dpss[2 * i] *= -1
    # rather than test the sign of one point, test the sign of the
    # linear slope up to the first (largest) peak
    pk = np.argmax(np.abs(dpss[1::2, :N // 2]), axis=1)
    for i, p in enumerate(pk):
        if np.sum(dpss[2 * i + 1, :p]) < 0:
            dpss[2 * i + 1] *= -1

    # Now find the eigenvalues of the original spectral concentration problem
    # Use the autocorr sequence technique from Percival and Walden, 1993 pg 390

    # compute autocorr using FFT (same as nitime.utils.autocorr(dpss) * N)
    rxx_size = 2 * N - 1
    n_fft = next_fast_len(rxx_size)
    dpss_fft = np.fft.rfft(dpss, n_fft)
    dpss_rxx = np.fft.irfft(dpss_fft * dpss_fft.conj(), n_fft)
    dpss_rxx = dpss_rxx[:, :N]

    r = 4 * W * np.sinc(2 * W * nidx)
    r[0] = 2 * W
    eigvals = np.dot(dpss_rxx, r)

    if low_bias:
        idx = (eigvals > 0.9)
        if not idx.any():
            warn('Could not properly use low_bias, keeping lowest-bias taper')
            idx = [np.argmax(eigvals)]
        dpss, eigvals = dpss[idx], eigvals[idx]
    assert len(dpss) > 0  # should never happen
    assert dpss.shape[1] == N  # old nitime bug
    return dpss, eigvals


def _psd_from_mt_adaptive(x_mt, eigvals, freq_mask, max_iter=150,
                          return_weights=False):
    r"""Use iterative procedure to compute the PSD from tapered spectra.

    .. note:: Modified from NiTime.

    Parameters
    ----------
    x_mt : array, shape=(n_signals, n_tapers, n_freqs)
       The DFTs of the tapered sequences (only positive frequencies)
    eigvals : array, length n_tapers
       The eigenvalues of the DPSS tapers
    freq_mask : array
        Frequency indices to keep
    max_iter : int
       Maximum number of iterations for weight computation
    return_weights : bool
       Also return the weights

    Returns
    -------
    psd : array, shape=(n_signals, np.sum(freq_mask))
        The computed PSDs
    weights : array shape=(n_signals, n_tapers, np.sum(freq_mask))
        The weights used to combine the tapered spectra

    Notes
    -----
    The weights to use for making the multitaper estimate, such that
    :math:`S_{mt} = \sum_{k} |w_k|^2S_k^{mt} / \sum_{k} |w_k|^2`
    """
    n_signals, n_tapers, n_freqs = x_mt.shape

    if len(eigvals) != n_tapers:
        raise ValueError('Need one eigenvalue for each taper')

    if n_tapers < 3:
        raise ValueError('Not enough tapers to compute adaptive weights.')

    rt_eig = np.sqrt(eigvals)

    # estimate the variance from an estimate with fixed weights
    psd_est = _psd_from_mt(x_mt, rt_eig[np.newaxis, :, np.newaxis])
    x_var = np.trapz(psd_est, dx=np.pi / n_freqs) / (2 * np.pi)
    del psd_est

    # allocate space for output
    psd = np.empty((n_signals, np.sum(freq_mask)))

    # only keep the frequencies of interest
    x_mt = x_mt[:, :, freq_mask]

    if return_weights:
        weights = np.empty((n_signals, n_tapers, psd.shape[1]))

    for i, (xk, var) in enumerate(zip(x_mt, x_var)):
        # combine the SDFs in the traditional way in order to estimate
        # the variance of the timeseries

        # The process is to iteratively switch solving for the following
        # two expressions:
        # (1) Adaptive Multitaper SDF:
        # S^{mt}(f) = [ sum |d_k(f)|^2 S_k(f) ]/ sum |d_k(f)|^2
        #
        # (2) Weights
        # d_k(f) = [sqrt(lam_k) S^{mt}(f)] / [lam_k S^{mt}(f) + E{B_k(f)}]
        #
        # Where lam_k are the eigenvalues corresponding to the DPSS tapers,
        # and the expected value of the broadband bias function
        # E{B_k(f)} is replaced by its full-band integration
        # (1/2pi) int_{-pi}^{pi} E{B_k(f)} = sig^2(1-lam_k)

        # start with an estimate from incomplete data--the first 2 tapers
        psd_iter = _psd_from_mt(xk[:2, :], rt_eig[:2, np.newaxis])

        err = np.zeros_like(xk)
        for n in range(max_iter):
            d_k = (psd_iter / (eigvals[:, np.newaxis] * psd_iter +
                   (1 - eigvals[:, np.newaxis]) * var))
            d_k *= rt_eig[:, np.newaxis]
            # Test for convergence -- this is overly conservative, since
            # iteration only stops when all frequencies have converged.
            # A better approach is to iterate separately for each freq, but
            # that is a nonvectorized algorithm.
            # Take the RMS difference in weights from the previous iterate
            # across frequencies. If the maximum RMS error across freqs is
            # less than 1e-10, then we're converged
            err -= d_k
            if np.max(np.mean(err ** 2, axis=0)) < 1e-10:
                break

            # update the iterative estimate with this d_k
            psd_iter = _psd_from_mt(xk, d_k)
            err = d_k

        if n == max_iter - 1:
            warn('Iterative multi-taper PSD computation did not converge.')

        psd[i, :] = psd_iter

        if return_weights:
            weights[i, :, :] = d_k

    if return_weights:
        return psd, weights
    else:
        return psd


def _psd_from_mt(x_mt, weights):
    """Compute PSD from tapered spectra.

    Parameters
    ----------
    x_mt : array
        Tapered spectra
    weights : array
        Weights used to combine the tapered spectra

    Returns
    -------
    psd : array
        The computed PSD
    """
    psd = weights * x_mt
    psd *= psd.conj()
    psd = psd.real.sum(axis=-2)
    psd *= 2 / (weights * weights.conj()).real.sum(axis=-2)
    return psd


def _csd_from_mt(x_mt, y_mt, weights_x, weights_y):
    """Compute CSD from tapered spectra.

    Parameters
    ----------
    x_mt : array
        Tapered spectra for x
    y_mt : array
        Tapered spectra for y
    weights_x : array
        Weights used to combine the tapered spectra of x_mt
    weights_y : array
        Weights used to combine the tapered spectra of y_mt

    Returns
    -------
    psd: array
        The computed PSD
    """
    csd = np.sum(weights_x * x_mt * (weights_y * y_mt).conj(), axis=-2)
    denom = (np.sqrt((weights_x * weights_x.conj()).real.sum(axis=-2)) *
             np.sqrt((weights_y * weights_y.conj()).real.sum(axis=-2)))
    csd *= 2 / denom
    return csd


def _mt_spectra(x, dpss, sfreq, n_fft=None):
    """Compute tapered spectra.

    Parameters
    ----------
    x : array, shape=(..., n_times)
        Input signal
    dpss : array, shape=(n_tapers, n_times)
        The tapers
    sfreq : float
        The sampling frequency
    n_fft : int | None
        Length of the FFT. If None, the number of samples in the input signal
        will be used.

    Returns
    -------
    x_mt : array, shape=(..., n_tapers, n_times)
        The tapered spectra
    freqs : array
        The frequency points in Hz of the spectra
    """
    if n_fft is None:
        n_fft = x.shape[1]

    # remove mean (do not use in-place subtraction as it may modify input x)
    x = x - np.mean(x, axis=-1, keepdims=True)

    # only keep positive frequencies
    freqs = np.fft.rfftfreq(n_fft, 1. / sfreq)

    # The following is equivalent to this, but uses less memory:
    # x_mt = fftpack.fft(x[:, np.newaxis, :] * dpss, n=n_fft)
    n_tapers = dpss.shape[0] if dpss.ndim > 1 else 1
    x_mt = np.zeros(x.shape[:-1] + (n_tapers, len(freqs)),
                    dtype=np.complex128)
    for idx, sig in enumerate(x):
        x_mt[idx] = np.fft.rfft(sig[..., np.newaxis, :] * dpss, n=n_fft)
    # Adjust DC and maybe Nyquist, depending on one-sided transform
    x_mt[:, :, 0] /= np.sqrt(2.)
    if x.shape[1] % 2 == 0:
        x_mt[:, :, -1] /= np.sqrt(2.)
    return x_mt, freqs


@verbose
def _compute_mt_params(n_times, sfreq, bandwidth, low_bias, adaptive,
                       interp_from=None, verbose=None):
    """Triage windowing and multitaper parameters."""
    # Compute standardized half-bandwidth
    from scipy.signal import get_window
    if isinstance(bandwidth, string_types):
        logger.info('    Using standard spectrum estimation with "%s" window'
                    % (bandwidth,))
        window_fun = get_window(bandwidth, n_times)[np.newaxis]
        return window_fun, np.ones(1), False

    if bandwidth is not None:
        half_nbw = float(bandwidth) * n_times / (2. * sfreq)
    else:
        half_nbw = 4.
    if half_nbw < 0.5:
        raise ValueError(
            'bandwidth value %s yields a normalized bandwidth of %s < 0.5, '
            'use a value of at least %s'
            % (bandwidth, half_nbw, sfreq / n_times))

    # Compute DPSS windows
    n_tapers_max = int(2 * half_nbw)
    window_fun, eigvals = dpss_windows(n_times, half_nbw, n_tapers_max,
                                       low_bias=low_bias,
                                       interp_from=interp_from)
    logger.info('    Using multitaper spectrum estimation with %d DPSS '
                'windows' % len(eigvals))

    if adaptive and len(eigvals) < 3:
        warn('Not adaptively combining the spectral estimators due to a '
             'low number of tapers (%s < 3).' % (len(eigvals),))
        adaptive = False

    return window_fun, eigvals, adaptive


@verbose
def psd_array_multitaper(x, sfreq, fmin=0, fmax=np.inf, bandwidth=None,
                         adaptive=False, low_bias=True, normalization='length',
                         n_jobs=1, verbose=None):
    """Compute power spectrum density (PSD) using a multi-taper method.

    Parameters
    ----------
    x : array, shape=(..., n_times)
        The data to compute PSD from.
    sfreq : float
        The sampling frequency.
    fmin : float
        The lower frequency of interest.
    fmax : float
        The upper frequency of interest.
    bandwidth : float
        The bandwidth of the multi taper windowing function in Hz.
    adaptive : bool
        Use adaptive weights to combine the tapered spectra into PSD
        (slow, use n_jobs >> 1 to speed up computation).
    low_bias : bool
        Only use tapers with more than 90% spectral concentration within
        bandwidth.
    normalization : str
        Either "full" or "length" (default). If "full", the PSD will
        be normalized by the sampling rate as well as the length of
        the signal (as in nitime).
    n_jobs : int
        Number of parallel jobs to use (only used if adaptive=True).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    psds : ndarray, shape (..., n_freqs) or
        The power spectral densities. All dimensions up to the last will
        be the same as input.
    freqs : array
        The frequency points in Hz of the PSD.

    See Also
    --------
    mne.io.Raw.plot_psd
    mne.Epochs.plot_psd
    csd_multitaper
    psd_multitaper

    Notes
    -----
    .. versionadded:: 0.14.0
    """
    if normalization not in ('length', 'full'):
        raise ValueError('Normalization must be "length" or "full", not %s'
                         % normalization)

    # Reshape data so its 2-D for parallelization
    ndim_in = x.ndim
    x = np.atleast_2d(x)
    n_times = x.shape[-1]
    dshape = x.shape[:-1]
    x = x.reshape(-1, n_times)

    dpss, eigvals, adaptive = _compute_mt_params(
        n_times, sfreq, bandwidth, low_bias, adaptive)

    # decide which frequencies to keep
    freqs = np.fft.rfftfreq(n_times, 1. / sfreq)
    freq_mask = (freqs >= fmin) & (freqs <= fmax)
    freqs = freqs[freq_mask]

    psd = np.zeros((x.shape[0], freq_mask.sum()))
    # Let's go in up to 50 MB chunks of signals to save memory
    n_chunk = max(50000000 // (len(freq_mask) * len(eigvals) * 16), n_jobs)
    offsets = np.concatenate((np.arange(0, x.shape[0], n_chunk), [x.shape[0]]))
    for start, stop in zip(offsets[:-1], offsets[1:]):
        x_mt = _mt_spectra(x[start:stop], dpss, sfreq)[0]
        if not adaptive:
            weights = np.sqrt(eigvals)[np.newaxis, :, np.newaxis]
            psd[start:stop] = _psd_from_mt(x_mt[:, :, freq_mask], weights)
        else:
            n_splits = min(stop - start, n_jobs)
            parallel, my_psd_from_mt_adaptive, n_jobs = \
                parallel_func(_psd_from_mt_adaptive, n_splits)
            out = parallel(my_psd_from_mt_adaptive(x, eigvals, freq_mask)
                           for x in np.array_split(x_mt, n_splits))
            psd[start:stop] = np.concatenate(out)

    if normalization == 'full':
        psd /= sfreq

    # Combining/reshaping to original data shape
    psd.shape = dshape + (-1,)
    if ndim_in == 1:
        psd = psd[0]
    return psd, freqs


@verbose
def tfr_array_multitaper(epoch_data, sfreq, freqs, n_cycles=7.0,
                         zero_mean=True, time_bandwidth=None, use_fft=True,
                         decim=1, output='complex', n_jobs=1,
                         verbose=None):
    """Compute time-frequency transforms using wavelets and multitaper windows.

    Uses Morlet wavelets windowed with multiple DPSS tapers.

    Parameters
    ----------
    epoch_data : array of shape (n_epochs, n_channels, n_times)
        The epochs.
    sfreq : float | int
        Sampling frequency of the data.
    freqs : array-like of floats, shape (n_freqs)
        The frequencies.
    n_cycles : float | array of float
        Number of cycles  in the Morlet wavelet. Fixed number or one per
        frequency. Defaults to 7.0.
    zero_mean : bool
        If True, make sure the wavelets have a mean of zero. Defaults to True.
    time_bandwidth : float
        If None, will be set to 4.0 (3 tapers). Time x (Full) Bandwidth
        product. The number of good tapers (low-bias) is chosen automatically
        based on this to equal floor(time_bandwidth - 1). Defaults to None
    use_fft : bool
        Use the FFT for convolutions or not. Defaults to True.
    decim : int | slice
        To reduce memory usage, decimation factor after time-frequency
        decomposition. Defaults to 1.
        If `int`, returns tfr[..., ::decim].
        If `slice`, returns tfr[..., decim].

        .. note::
            Decimation may create aliasing artifacts, yet decimation
            is done after the convolutions.

    output : str, defaults to 'complex'

        * 'complex' : single trial complex.
        * 'power' : single trial power.
        * 'phase' : single trial phase.
        * 'avg_power' : average of single trial power.
        * 'itc' : inter-trial coherence.
        * 'avg_power_itc' : average of single trial power and inter-trial
          coherence across trials.

    n_jobs : int
        The number of epochs to process at the same time. The parallelization
        is implemented across channels. Defaults to 1.
    verbose : bool, str, int, or None, defaults to None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    out : array
        Time frequency transform of epoch_data. If output is in ['complex',
        'phase', 'power'], then shape of out is (n_epochs, n_chans, n_freqs,
        n_times), else it is (n_chans, n_freqs, n_times). If output is
        'avg_power_itc', the real values code for 'avg_power' and the
        imaginary values code for the 'itc': out = avg_power + i * itc

    See Also
    --------
    mne.time_frequency.tfr_multitaper
    mne.time_frequency.tfr_morlet
    mne.time_frequency.tfr_array_morlet
    mne.time_frequency.tfr_stockwell
    mne.time_frequency.tfr_array_stockwell

    Notes
    -----
    .. versionadded:: 0.14.0
    """
    from .tfr import _compute_tfr
    return _compute_tfr(epoch_data, freqs, sfreq=sfreq,
                        method='multitaper', n_cycles=n_cycles,
                        zero_mean=zero_mean, time_bandwidth=time_bandwidth,
                        use_fft=use_fft, decim=decim, output=output,
                        n_jobs=n_jobs, verbose=verbose)