File: psd.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (297 lines) | stat: -rw-r--r-- 11,492 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Authors : Alexandre Gramfort, alexandre.gramfort@telecom-paristech.fr (2011)
#           Denis A. Engemann <denis.engemann@gmail.com>
# License : BSD 3-clause

import numpy as np

from ..parallel import parallel_func
from ..io.pick import _pick_data_channels
from ..utils import logger, verbose, _time_mask
from ..fixes import get_spectrogram
from .multitaper import psd_array_multitaper


def _psd_func(epoch, noverlap, n_per_seg, nfft, fs, freq_mask, func):
    """Aux function."""
    return func(epoch, fs=fs, nperseg=n_per_seg, noverlap=noverlap,
                nfft=nfft, window='hamming')[2][..., freq_mask, :]


def _check_nfft(n, n_fft, n_per_seg, n_overlap):
    """Ensure n_fft, n_per_seg and n_overlap make sense."""
    if n_per_seg is None and n_fft > n:
        raise ValueError(('If n_per_seg is None n_fft is not allowed to be > '
                          'n_times. If you want zero-padding, you have to set '
                          'n_per_seg to relevant length. Got n_fft of %d while'
                          ' signal length is %d.') % (n_fft, n))
    n_per_seg = n_fft if n_per_seg is None or n_per_seg > n_fft else n_per_seg
    n_per_seg = n if n_per_seg > n else n_per_seg
    if n_overlap >= n_per_seg:
        raise ValueError(('n_overlap cannot be greater than n_per_seg (or '
                          'n_fft). Got n_overlap of %d while n_per_seg is '
                          '%d.') % (n_overlap, n_per_seg))
    return n_fft, n_per_seg, n_overlap


def _check_psd_data(inst, tmin, tmax, picks, proj, reject_by_annotation=False):
    """Check PSD data / pull arrays from inst."""
    from ..io.base import BaseRaw
    from ..epochs import BaseEpochs
    from ..evoked import Evoked
    if not isinstance(inst, (BaseEpochs, BaseRaw, Evoked)):
        raise ValueError('epochs must be an instance of Epochs, Raw, or'
                         'Evoked. Got type {0}'.format(type(inst)))

    time_mask = _time_mask(inst.times, tmin, tmax, sfreq=inst.info['sfreq'])
    if picks is None:
        picks = _pick_data_channels(inst.info, with_ref_meg=False)
    if proj:
        # Copy first so it's not modified
        inst = inst.copy().apply_proj()

    sfreq = inst.info['sfreq']
    if isinstance(inst, BaseRaw):
        start, stop = np.where(time_mask)[0][[0, -1]]
        rba = 'NaN' if reject_by_annotation else None
        data = inst.get_data(picks, start, stop + 1, reject_by_annotation=rba)
    elif isinstance(inst, BaseEpochs):
        data = inst.get_data()[:, picks][:, :, time_mask]
    else:  # Evoked
        data = inst.data[picks][:, time_mask]

    return data, sfreq


@verbose
def psd_array_welch(x, sfreq, fmin=0, fmax=np.inf, n_fft=256, n_overlap=0,
                    n_per_seg=None, n_jobs=1, verbose=None):
    """Compute power spectral density (PSD) using Welch's method.

    Parameters
    ----------
    x : array, shape=(..., n_times)
        The data to compute PSD from.
    sfreq : float
        The sampling frequency.
    fmin : float
        The lower frequency of interest.
    fmax : float
        The upper frequency of interest.
    n_fft : int
        The length of FFT used, must be ``>= n_per_seg`` (default: 256).
        The segments will be zero-padded if ``n_fft > n_per_seg``.
    n_overlap : int
        The number of points of overlap between segments. Will be adjusted
        to be <= n_per_seg. The default value is 0.
    n_per_seg : int | None
        Length of each Welch segment (windowed with a Hamming window). Defaults
        to None, which sets n_per_seg equal to n_fft.
    n_jobs : int
        Number of CPUs to use in the computation.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    psds : ndarray, shape (..., n_freqs) or
        The power spectral densities. All dimensions up to the last will
        be the same as input.
    freqs : ndarray, shape (n_freqs,)
        The frequencies.

    Notes
    -----
    .. versionadded:: 0.14.0
    """
    spectrogram = get_spectrogram()
    dshape = x.shape[:-1]
    n_times = x.shape[-1]
    x = x.reshape(-1, n_times)

    # Prep the PSD
    n_fft, n_per_seg, n_overlap = _check_nfft(n_times, n_fft, n_per_seg,
                                              n_overlap)
    win_size = n_fft / float(sfreq)
    logger.info("Effective window size : %0.3f (s)" % win_size)
    freqs = np.arange(n_fft // 2 + 1, dtype=float) * (sfreq / n_fft)
    freq_mask = (freqs >= fmin) & (freqs <= fmax)
    freqs = freqs[freq_mask]

    # Parallelize across first N-1 dimensions
    parallel, my_psd_func, n_jobs = parallel_func(_psd_func, n_jobs=n_jobs)
    x_splits = np.array_split(x, n_jobs)
    f_spectrogram = parallel(my_psd_func(d, noverlap=n_overlap, nfft=n_fft,
                                         fs=sfreq, freq_mask=freq_mask,
                                         func=spectrogram, n_per_seg=n_per_seg)
                             for d in x_splits)

    # Combining, reducing windows and reshaping to original data shape
    psds = np.concatenate([np.nanmean(f_s, axis=-1)
                           for f_s in f_spectrogram], axis=0)
    psds.shape = dshape + (-1,)
    return psds, freqs


@verbose
def psd_welch(inst, fmin=0, fmax=np.inf, tmin=None, tmax=None, n_fft=256,
              n_overlap=0, n_per_seg=None, picks=None, proj=False, n_jobs=1,
              reject_by_annotation=True, verbose=None):
    """Compute the power spectral density (PSD) using Welch's method.

    Calculates periodograms for a sliding window over the time dimension, then
    averages them together for each channel/epoch.

    Parameters
    ----------
    inst : instance of Epochs or Raw or Evoked
        The data for PSD calculation
    fmin : float
        Min frequency of interest
    fmax : float
        Max frequency of interest
    tmin : float | None
        Min time of interest
    tmax : float | None
        Max time of interest
    n_fft : int
        The length of FFT used, must be ``>= n_per_seg`` (default: 256).
        The segments will be zero-padded if ``n_fft > n_per_seg``.
        If n_per_seg is None, n_fft must be >= number of time points
        in the data.
    n_overlap : int
        The number of points of overlap between segments. Will be adjusted
        to be <= n_per_seg. The default value is 0.
    n_per_seg : int | None
        Length of each Welch segment (windowed with a Hamming window). Defaults
        to None, which sets n_per_seg equal to n_fft.
    picks : array-like of int | None
        The selection of channels to include in the computation.
        If None, take all channels.
    proj : bool
        Apply SSP projection vectors. If inst is ndarray this is not used.
    n_jobs : int
        Number of CPUs to use in the computation.
    reject_by_annotation : bool
        Whether to omit bad segments from the data while computing the
        PSD. If True, annotated segments with a description that starts
        with 'bad' are omitted. Has no effect if ``inst`` is an Epochs or
        Evoked object. Defaults to True.

        .. versionadded:: 0.15.0
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    psds : ndarray, shape (..., n_freqs)
        The power spectral densities. If input is of type Raw,
        then psds will be shape (n_channels, n_freqs), if input is type Epochs
        then psds will be shape (n_epochs, n_channels, n_freqs).
    freqs : ndarray, shape (n_freqs,)
        The frequencies.

    See Also
    --------
    mne.io.Raw.plot_psd
    mne.Epochs.plot_psd
    psd_multitaper
    psd_array_welch

    Notes
    -----
    .. versionadded:: 0.12.0
    """
    # Prep data
    data, sfreq = _check_psd_data(inst, tmin, tmax, picks, proj,
                                  reject_by_annotation=reject_by_annotation)
    return psd_array_welch(data, sfreq, fmin=fmin, fmax=fmax, n_fft=n_fft,
                           n_overlap=n_overlap, n_per_seg=n_per_seg,
                           n_jobs=n_jobs, verbose=verbose)


@verbose
def psd_multitaper(inst, fmin=0, fmax=np.inf, tmin=None, tmax=None,
                   bandwidth=None, adaptive=False, low_bias=True,
                   normalization='length', picks=None, proj=False,
                   n_jobs=1, verbose=None):
    """Compute the power spectral density (PSD) using multitapers.

    Calculates spectral density for orthogonal tapers, then averages them
    together for each channel/epoch. See [1] for a description of the tapers
    and [2] for the general method.

    Parameters
    ----------
    inst : instance of Epochs or Raw or Evoked
        The data for PSD calculation.
    fmin : float
        Min frequency of interest
    fmax : float
        Max frequency of interest
    tmin : float | None
        Min time of interest
    tmax : float | None
        Max time of interest
    bandwidth : float
        The bandwidth of the multi taper windowing function in Hz. The default
        value is a window half-bandwidth of 4.
    adaptive : bool
        Use adaptive weights to combine the tapered spectra into PSD
        (slow, use n_jobs >> 1 to speed up computation).
    low_bias : bool
        Only use tapers with more than 90% spectral concentration within
        bandwidth.
    normalization : str
        Either "full" or "length" (default). If "full", the PSD will
        be normalized by the sampling rate as well as the length of
        the signal (as in nitime).
    picks : array-like of int | None
        The selection of channels to include in the computation.
        If None, take all channels.
    proj : bool
        Apply SSP projection vectors. If inst is ndarray this is not used.
    n_jobs : int
        Number of CPUs to use in the computation.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    psds : ndarray, shape (..., n_freqs)
        The power spectral densities. If input is of type Raw,
        then psds will be shape (n_channels, n_freqs), if input is type Epochs
        then psds will be shape (n_epochs, n_channels, n_freqs).
    freqs : ndarray, shape (n_freqs,)
        The frequencies.

    References
    ----------
    .. [1] Slepian, D. "Prolate spheroidal wave functions, Fourier analysis,
           and uncertainty V: The discrete case." Bell System Technical
           Journal, vol. 57, 1978.

    .. [2] Percival D.B. and Walden A.T. "Spectral Analysis for Physical
           Applications: Multitaper and Conventional Univariate Techniques."
           Cambridge University Press, 1993.

    See Also
    --------
    mne.io.Raw.plot_psd
    mne.Epochs.plot_psd
    psd_array_multitaper
    psd_welch
    csd_multitaper

    Notes
    -----
    .. versionadded:: 0.12.0
    """
    # Prep data
    data, sfreq = _check_psd_data(inst, tmin, tmax, picks, proj)
    return psd_array_multitaper(data, sfreq, fmin=fmin, fmax=fmax,
                                bandwidth=bandwidth, adaptive=adaptive,
                                low_bias=low_bias, normalization=normalization,
                                n_jobs=n_jobs, verbose=verbose)