1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
# Authors : Alexandre Gramfort, alexandre.gramfort@telecom-paristech.fr (2011)
# Denis A. Engemann <denis.engemann@gmail.com>
# License : BSD 3-clause
import numpy as np
from ..parallel import parallel_func
from ..io.pick import _pick_data_channels
from ..utils import logger, verbose, _time_mask
from ..fixes import get_spectrogram
from .multitaper import psd_array_multitaper
def _psd_func(epoch, noverlap, n_per_seg, nfft, fs, freq_mask, func):
"""Aux function."""
return func(epoch, fs=fs, nperseg=n_per_seg, noverlap=noverlap,
nfft=nfft, window='hamming')[2][..., freq_mask, :]
def _check_nfft(n, n_fft, n_per_seg, n_overlap):
"""Ensure n_fft, n_per_seg and n_overlap make sense."""
if n_per_seg is None and n_fft > n:
raise ValueError(('If n_per_seg is None n_fft is not allowed to be > '
'n_times. If you want zero-padding, you have to set '
'n_per_seg to relevant length. Got n_fft of %d while'
' signal length is %d.') % (n_fft, n))
n_per_seg = n_fft if n_per_seg is None or n_per_seg > n_fft else n_per_seg
n_per_seg = n if n_per_seg > n else n_per_seg
if n_overlap >= n_per_seg:
raise ValueError(('n_overlap cannot be greater than n_per_seg (or '
'n_fft). Got n_overlap of %d while n_per_seg is '
'%d.') % (n_overlap, n_per_seg))
return n_fft, n_per_seg, n_overlap
def _check_psd_data(inst, tmin, tmax, picks, proj, reject_by_annotation=False):
"""Check PSD data / pull arrays from inst."""
from ..io.base import BaseRaw
from ..epochs import BaseEpochs
from ..evoked import Evoked
if not isinstance(inst, (BaseEpochs, BaseRaw, Evoked)):
raise ValueError('epochs must be an instance of Epochs, Raw, or'
'Evoked. Got type {0}'.format(type(inst)))
time_mask = _time_mask(inst.times, tmin, tmax, sfreq=inst.info['sfreq'])
if picks is None:
picks = _pick_data_channels(inst.info, with_ref_meg=False)
if proj:
# Copy first so it's not modified
inst = inst.copy().apply_proj()
sfreq = inst.info['sfreq']
if isinstance(inst, BaseRaw):
start, stop = np.where(time_mask)[0][[0, -1]]
rba = 'NaN' if reject_by_annotation else None
data = inst.get_data(picks, start, stop + 1, reject_by_annotation=rba)
elif isinstance(inst, BaseEpochs):
data = inst.get_data()[:, picks][:, :, time_mask]
else: # Evoked
data = inst.data[picks][:, time_mask]
return data, sfreq
@verbose
def psd_array_welch(x, sfreq, fmin=0, fmax=np.inf, n_fft=256, n_overlap=0,
n_per_seg=None, n_jobs=1, verbose=None):
"""Compute power spectral density (PSD) using Welch's method.
Parameters
----------
x : array, shape=(..., n_times)
The data to compute PSD from.
sfreq : float
The sampling frequency.
fmin : float
The lower frequency of interest.
fmax : float
The upper frequency of interest.
n_fft : int
The length of FFT used, must be ``>= n_per_seg`` (default: 256).
The segments will be zero-padded if ``n_fft > n_per_seg``.
n_overlap : int
The number of points of overlap between segments. Will be adjusted
to be <= n_per_seg. The default value is 0.
n_per_seg : int | None
Length of each Welch segment (windowed with a Hamming window). Defaults
to None, which sets n_per_seg equal to n_fft.
n_jobs : int
Number of CPUs to use in the computation.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
psds : ndarray, shape (..., n_freqs) or
The power spectral densities. All dimensions up to the last will
be the same as input.
freqs : ndarray, shape (n_freqs,)
The frequencies.
Notes
-----
.. versionadded:: 0.14.0
"""
spectrogram = get_spectrogram()
dshape = x.shape[:-1]
n_times = x.shape[-1]
x = x.reshape(-1, n_times)
# Prep the PSD
n_fft, n_per_seg, n_overlap = _check_nfft(n_times, n_fft, n_per_seg,
n_overlap)
win_size = n_fft / float(sfreq)
logger.info("Effective window size : %0.3f (s)" % win_size)
freqs = np.arange(n_fft // 2 + 1, dtype=float) * (sfreq / n_fft)
freq_mask = (freqs >= fmin) & (freqs <= fmax)
freqs = freqs[freq_mask]
# Parallelize across first N-1 dimensions
parallel, my_psd_func, n_jobs = parallel_func(_psd_func, n_jobs=n_jobs)
x_splits = np.array_split(x, n_jobs)
f_spectrogram = parallel(my_psd_func(d, noverlap=n_overlap, nfft=n_fft,
fs=sfreq, freq_mask=freq_mask,
func=spectrogram, n_per_seg=n_per_seg)
for d in x_splits)
# Combining, reducing windows and reshaping to original data shape
psds = np.concatenate([np.nanmean(f_s, axis=-1)
for f_s in f_spectrogram], axis=0)
psds.shape = dshape + (-1,)
return psds, freqs
@verbose
def psd_welch(inst, fmin=0, fmax=np.inf, tmin=None, tmax=None, n_fft=256,
n_overlap=0, n_per_seg=None, picks=None, proj=False, n_jobs=1,
reject_by_annotation=True, verbose=None):
"""Compute the power spectral density (PSD) using Welch's method.
Calculates periodograms for a sliding window over the time dimension, then
averages them together for each channel/epoch.
Parameters
----------
inst : instance of Epochs or Raw or Evoked
The data for PSD calculation
fmin : float
Min frequency of interest
fmax : float
Max frequency of interest
tmin : float | None
Min time of interest
tmax : float | None
Max time of interest
n_fft : int
The length of FFT used, must be ``>= n_per_seg`` (default: 256).
The segments will be zero-padded if ``n_fft > n_per_seg``.
If n_per_seg is None, n_fft must be >= number of time points
in the data.
n_overlap : int
The number of points of overlap between segments. Will be adjusted
to be <= n_per_seg. The default value is 0.
n_per_seg : int | None
Length of each Welch segment (windowed with a Hamming window). Defaults
to None, which sets n_per_seg equal to n_fft.
picks : array-like of int | None
The selection of channels to include in the computation.
If None, take all channels.
proj : bool
Apply SSP projection vectors. If inst is ndarray this is not used.
n_jobs : int
Number of CPUs to use in the computation.
reject_by_annotation : bool
Whether to omit bad segments from the data while computing the
PSD. If True, annotated segments with a description that starts
with 'bad' are omitted. Has no effect if ``inst`` is an Epochs or
Evoked object. Defaults to True.
.. versionadded:: 0.15.0
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
psds : ndarray, shape (..., n_freqs)
The power spectral densities. If input is of type Raw,
then psds will be shape (n_channels, n_freqs), if input is type Epochs
then psds will be shape (n_epochs, n_channels, n_freqs).
freqs : ndarray, shape (n_freqs,)
The frequencies.
See Also
--------
mne.io.Raw.plot_psd
mne.Epochs.plot_psd
psd_multitaper
psd_array_welch
Notes
-----
.. versionadded:: 0.12.0
"""
# Prep data
data, sfreq = _check_psd_data(inst, tmin, tmax, picks, proj,
reject_by_annotation=reject_by_annotation)
return psd_array_welch(data, sfreq, fmin=fmin, fmax=fmax, n_fft=n_fft,
n_overlap=n_overlap, n_per_seg=n_per_seg,
n_jobs=n_jobs, verbose=verbose)
@verbose
def psd_multitaper(inst, fmin=0, fmax=np.inf, tmin=None, tmax=None,
bandwidth=None, adaptive=False, low_bias=True,
normalization='length', picks=None, proj=False,
n_jobs=1, verbose=None):
"""Compute the power spectral density (PSD) using multitapers.
Calculates spectral density for orthogonal tapers, then averages them
together for each channel/epoch. See [1] for a description of the tapers
and [2] for the general method.
Parameters
----------
inst : instance of Epochs or Raw or Evoked
The data for PSD calculation.
fmin : float
Min frequency of interest
fmax : float
Max frequency of interest
tmin : float | None
Min time of interest
tmax : float | None
Max time of interest
bandwidth : float
The bandwidth of the multi taper windowing function in Hz. The default
value is a window half-bandwidth of 4.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
low_bias : bool
Only use tapers with more than 90% spectral concentration within
bandwidth.
normalization : str
Either "full" or "length" (default). If "full", the PSD will
be normalized by the sampling rate as well as the length of
the signal (as in nitime).
picks : array-like of int | None
The selection of channels to include in the computation.
If None, take all channels.
proj : bool
Apply SSP projection vectors. If inst is ndarray this is not used.
n_jobs : int
Number of CPUs to use in the computation.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
psds : ndarray, shape (..., n_freqs)
The power spectral densities. If input is of type Raw,
then psds will be shape (n_channels, n_freqs), if input is type Epochs
then psds will be shape (n_epochs, n_channels, n_freqs).
freqs : ndarray, shape (n_freqs,)
The frequencies.
References
----------
.. [1] Slepian, D. "Prolate spheroidal wave functions, Fourier analysis,
and uncertainty V: The discrete case." Bell System Technical
Journal, vol. 57, 1978.
.. [2] Percival D.B. and Walden A.T. "Spectral Analysis for Physical
Applications: Multitaper and Conventional Univariate Techniques."
Cambridge University Press, 1993.
See Also
--------
mne.io.Raw.plot_psd
mne.Epochs.plot_psd
psd_array_multitaper
psd_welch
csd_multitaper
Notes
-----
.. versionadded:: 0.12.0
"""
# Prep data
data, sfreq = _check_psd_data(inst, tmin, tmax, picks, proj)
return psd_array_multitaper(data, sfreq, fmin=fmin, fmax=fmax,
bandwidth=bandwidth, adaptive=adaptive,
low_bias=low_bias, normalization=normalization,
n_jobs=n_jobs, verbose=verbose)
|