File: stft.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (259 lines) | stat: -rw-r--r-- 7,123 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from math import ceil
import numpy as np
from scipy.fftpack import fft, ifft, fftfreq

from ..utils import logger, verbose


@verbose
def stft(x, wsize, tstep=None, verbose=None):
    """STFT Short-Term Fourier Transform using a sine window.

    The transformation is designed to be a tight frame that can be
    perfectly inverted. It only returns the positive frequencies.

    Parameters
    ----------
    x : 2d array of size n_signals x T
        containing multi-channels signal
    wsize : int
        length of the STFT window in samples (must be a multiple of 4)
    tstep : int
        step between successive windows in samples (must be a multiple of 2,
        a divider of wsize and smaller than wsize/2) (default: wsize/2)
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    X : 3d array of shape [n_signals, wsize / 2 + 1, n_step]
        STFT coefficients for positive frequencies with
        n_step = ceil(T / tstep)

    Examples
    --------
    X = stft(x, wsize)
    X = stft(x, wsize, tstep)

    See Also
    --------
    istft
    stftfreq
    """
    if not np.isrealobj(x):
        raise ValueError("x is not a real valued array")

    if x.ndim == 1:
        x = x[None, :]

    n_signals, T = x.shape
    wsize = int(wsize)

    # Errors and warnings
    if wsize % 4:
        raise ValueError('The window length must be a multiple of 4.')

    if tstep is None:
        tstep = wsize / 2

    tstep = int(tstep)

    if (wsize % tstep) or (tstep % 2):
        raise ValueError('The step size must be a multiple of 2 and a '
                         'divider of the window length.')

    if tstep > wsize / 2:
        raise ValueError('The step size must be smaller than half the '
                         'window length.')

    n_step = int(ceil(T / float(tstep)))
    n_freq = wsize // 2 + 1
    logger.info("Number of frequencies: %d" % n_freq)
    logger.info("Number of time steps: %d" % n_step)

    X = np.zeros((n_signals, n_freq, n_step), dtype=np.complex)

    if n_signals == 0:
        return X

    # Defining sine window
    win = np.sin(np.arange(.5, wsize + .5) / wsize * np.pi)
    win2 = win ** 2

    swin = np.zeros((n_step - 1) * tstep + wsize)
    for t in range(n_step):
        swin[t * tstep:t * tstep + wsize] += win2
    swin = np.sqrt(wsize * swin)

    # Zero-padding and Pre-processing for edges
    xp = np.zeros((n_signals, wsize + (n_step - 1) * tstep),
                  dtype=x.dtype)
    xp[:, (wsize - tstep) // 2: (wsize - tstep) // 2 + T] = x
    x = xp

    for t in range(n_step):
        # Framing
        wwin = win / swin[t * tstep: t * tstep + wsize]
        frame = x[:, t * tstep: t * tstep + wsize] * wwin[None, :]
        # FFT
        fframe = fft(frame)
        X[:, :, t] = fframe[:, :n_freq]

    return X


def istft(X, tstep=None, Tx=None):
    """ISTFT Inverse Short-Term Fourier Transform using a sine window.

    Parameters
    ----------
    X : 3d array of shape [n_signals, wsize / 2 + 1,  n_step]
        The STFT coefficients for positive frequencies
    tstep : int
        step between successive windows in samples (must be a multiple of 2,
        a divider of wsize and smaller than wsize/2) (default: wsize/2)
    Tx : int
        Length of returned signal. If None Tx = n_step * tstep

    Returns
    -------
    x : 1d array of length Tx
        vector containing the inverse STFT signal

    Examples
    --------
    x = istft(X)
    x = istft(X, tstep)

    See Also
    --------
    stft
    """
    # Errors and warnings
    n_signals, n_win, n_step = X.shape
    if (n_win % 2 == 0):
        ValueError('The number of rows of the STFT matrix must be odd.')

    wsize = 2 * (n_win - 1)
    if tstep is None:
        tstep = wsize / 2

    if wsize % tstep:
        raise ValueError('The step size must be a divider of two times the '
                         'number of rows of the STFT matrix minus two.')

    if wsize % 2:
        raise ValueError('The step size must be a multiple of 2.')

    if tstep > wsize / 2:
        raise ValueError('The step size must be smaller than the number of '
                         'rows of the STFT matrix minus one.')

    if Tx is None:
        Tx = n_step * tstep

    T = n_step * tstep

    x = np.zeros((n_signals, T + wsize - tstep), dtype=np.float)

    if n_signals == 0:
        return x[:, :Tx]

    # Defining sine window
    win = np.sin(np.arange(.5, wsize + .5) / wsize * np.pi)
    # win = win / norm(win);

    # Pre-processing for edges
    swin = np.zeros(T + wsize - tstep, dtype=np.float)
    for t in range(n_step):
        swin[t * tstep:t * tstep + wsize] += win ** 2
    swin = np.sqrt(swin / wsize)

    fframe = np.empty((n_signals, n_win + wsize // 2 - 1), dtype=X.dtype)
    for t in range(n_step):
        # IFFT
        fframe[:, :n_win] = X[:, :, t]
        fframe[:, n_win:] = np.conj(X[:, wsize // 2 - 1: 0: -1, t])
        frame = ifft(fframe)
        wwin = win / swin[t * tstep:t * tstep + wsize]
        # Overlap-add
        x[:, t * tstep: t * tstep + wsize] += np.real(np.conj(frame) * wwin)

    # Truncation
    x = x[:, (wsize - tstep) // 2: (wsize - tstep) // 2 + T + 1][:, :Tx].copy()
    return x


def stftfreq(wsize, sfreq=None):  # noqa: D401
    """Frequencies of stft transformation.

    Parameters
    ----------
    wsize : int
        Size of stft window
    sfreq : float
        Sampling frequency. If None the frequencies are given between 0 and pi
        otherwise it's given in Hz.

    Returns
    -------
    freqs : array
        The positive frequencies returned by stft

    See Also
    --------
    stft
    istft
    """
    n_freq = wsize // 2 + 1
    freqs = fftfreq(wsize)
    freqs = np.abs(freqs[:n_freq])
    if sfreq is not None:
        freqs *= float(sfreq)
    return freqs


def stft_norm2(X):
    """Compute L2 norm of STFT transform.

    It takes into account that stft only return positive frequencies.
    As we use tight frame this quantity is conserved by the stft.

    Parameters
    ----------
    X : 3D complex array
        The STFT transforms

    Returns
    -------
    norms2 : array
        The squared L2 norm of every row of X.
    """
    X2 = (X * X.conj()).real
    # compute all L2 coefs and remove first and last frequency once.
    norms2 = (2. * X2.sum(axis=2).sum(axis=1) - np.sum(X2[:, 0, :], axis=1) -
              np.sum(X2[:, -1, :], axis=1))
    return norms2


def stft_norm1(X):
    """Compute L1 norm of STFT transform.

    It takes into account that stft only return positive frequencies.

    Parameters
    ----------
    X : 3D complex array
        The STFT transforms

    Returns
    -------
    norms : array
        The L1 norm of every row of X.
    """
    X_abs = np.abs(X)
    # compute all L1 coefs and remove first and last frequency once.
    norms = (2. * X_abs.sum(axis=(1, 2)) -
             np.sum(X_abs[:, 0, :], axis=1) - np.sum(X_abs[:, -1, :], axis=1))
    return norms