1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
import numpy as np
import os.path as op
from numpy.testing import assert_array_almost_equal, assert_allclose
import pytest
from mne import pick_types, Epochs, read_events
from mne.io import RawArray, read_raw_fif
from mne.utils import run_tests_if_main
from mne.time_frequency import psd_welch, psd_multitaper, psd_array_welch
base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')
event_fname = op.join(base_dir, 'test-eve.fif')
def test_psd_nan():
"""Test handling of NaN in psd_array_welch."""
n_samples, n_fft, n_overlap = 2048, 1024, 512
x = np.random.RandomState(0).randn(1, n_samples)
psds, freqs = psd_array_welch(
x[:n_fft + n_overlap], float(n_fft), n_fft=n_fft, n_overlap=n_overlap)
x[n_fft + n_overlap:] = np.nan # what Raw.get_data() will give us
psds_2, freqs_2 = psd_array_welch(
x, float(n_fft), n_fft=n_fft, n_overlap=n_overlap)
assert_allclose(freqs, freqs_2)
assert_allclose(psds, psds_2)
# 1-d
psds_2, freqs_2 = psd_array_welch(
x[0], float(n_fft), n_fft=n_fft, n_overlap=n_overlap)
assert_allclose(freqs, freqs_2)
assert_allclose(psds[0], psds_2)
def test_psd():
"""Tests the welch and multitaper PSD."""
raw = read_raw_fif(raw_fname)
picks_psd = [0, 1]
# Populate raw with sinusoids
rng = np.random.RandomState(40)
data = 0.1 * rng.randn(len(raw.ch_names), raw.n_times)
freqs_sig = [8., 50.]
for ix, freq in zip(picks_psd, freqs_sig):
data[ix, :] += 2 * np.sin(np.pi * 2. * freq * raw.times)
first_samp = raw._first_samps[0]
raw = RawArray(data, raw.info)
tmin, tmax = 0, 20 # use a few seconds of data
fmin, fmax = 2, 70 # look at frequencies between 2 and 70Hz
n_fft = 128
# -- Raw --
kws_psd = dict(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax,
picks=picks_psd) # Common to all
kws_welch = dict(n_fft=n_fft)
kws_mt = dict(low_bias=True)
funcs = [(psd_welch, kws_welch),
(psd_multitaper, kws_mt)]
for func, kws in funcs:
kws = kws.copy()
kws.update(kws_psd)
psds, freqs = func(raw, proj=False, **kws)
psds_proj, freqs_proj = func(raw, proj=True, **kws)
assert psds.shape == (len(kws['picks']), len(freqs))
assert np.sum(freqs < 0) == 0
assert np.sum(psds < 0) == 0
# Is power found where it should be
ixs_max = np.argmax(psds, axis=1)
for ixmax, ifreq in zip(ixs_max, freqs_sig):
# Find nearest frequency to the "true" freq
ixtrue = np.argmin(np.abs(ifreq - freqs))
assert (np.abs(ixmax - ixtrue) < 2)
# Make sure the projection doesn't change channels it shouldn't
assert_array_almost_equal(psds, psds_proj)
# Array input shouldn't work
pytest.raises(ValueError, func, raw[:3, :20][0])
# test n_per_seg in psd_welch (and padding)
psds1, freqs1 = psd_welch(raw, proj=False, n_fft=128, n_per_seg=128,
**kws_psd)
psds2, freqs2 = psd_welch(raw, proj=False, n_fft=256, n_per_seg=128,
**kws_psd)
assert (len(freqs1) == np.floor(len(freqs2) / 2.))
assert (psds1.shape[-1] == np.floor(psds2.shape[-1] / 2.))
# tests ValueError when n_per_seg=None and n_fft > signal length
kws_psd.update(dict(n_fft=tmax * 1.1 * raw.info['sfreq']))
pytest.raises(ValueError, psd_welch, raw, proj=False, n_per_seg=None,
**kws_psd)
# ValueError when n_overlap > n_per_seg
kws_psd.update(dict(n_fft=128, n_per_seg=64, n_overlap=90))
pytest.raises(ValueError, psd_welch, raw, proj=False, **kws_psd)
# -- Epochs/Evoked --
events = read_events(event_fname)
events[:, 0] -= first_samp
tmin, tmax, event_id = -0.5, 0.5, 1
epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks_psd,
proj=False, preload=True, baseline=None)
evoked = epochs.average()
tmin_full, tmax_full = -1, 1
epochs_full = Epochs(raw, events[:10], event_id, tmin_full, tmax_full,
picks=picks_psd, proj=False, preload=True,
baseline=None)
kws_psd = dict(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax,
picks=picks_psd) # Common to all
funcs = [(psd_welch, kws_welch),
(psd_multitaper, kws_mt)]
for func, kws in funcs:
kws = kws.copy()
kws.update(kws_psd)
psds, freqs = func(
epochs[:1], proj=False, **kws)
psds_proj, freqs_proj = func(
epochs[:1], proj=True, **kws)
psds_f, freqs_f = func(
epochs_full[:1], proj=False, **kws)
# this one will fail if you add for example 0.1 to tmin
assert_array_almost_equal(psds, psds_f, 27)
# Make sure the projection doesn't change channels it shouldn't
assert_array_almost_equal(psds, psds_proj, 27)
# Is power found where it should be
ixs_max = np.argmax(psds.mean(0), axis=1)
for ixmax, ifreq in zip(ixs_max, freqs_sig):
# Find nearest frequency to the "true" freq
ixtrue = np.argmin(np.abs(ifreq - freqs))
assert (np.abs(ixmax - ixtrue) < 2)
assert (psds.shape == (1, len(kws['picks']), len(freqs)))
assert (np.sum(freqs < 0) == 0)
assert (np.sum(psds < 0) == 0)
# Array input shouldn't work
pytest.raises(ValueError, func, epochs.get_data())
# Testing evoked (doesn't work w/ compute_epochs_psd)
psds_ev, freqs_ev = func(
evoked, proj=False, **kws)
psds_ev_proj, freqs_ev_proj = func(
evoked, proj=True, **kws)
# Is power found where it should be
ixs_max = np.argmax(psds_ev, axis=1)
for ixmax, ifreq in zip(ixs_max, freqs_sig):
# Find nearest frequency to the "true" freq
ixtrue = np.argmin(np.abs(ifreq - freqs_ev))
assert (np.abs(ixmax - ixtrue) < 2)
# Make sure the projection doesn't change channels it shouldn't
assert_array_almost_equal(psds_ev, psds_ev_proj, 27)
assert (psds_ev.shape == (len(kws['picks']), len(freqs)))
@pytest.mark.slowtest
def test_compares_psd():
"""Test PSD estimation on raw for plt.psd and scipy.signal.welch."""
raw = read_raw_fif(raw_fname)
exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053'] # bads + 2 more
# picks MEG gradiometers
picks = pick_types(raw.info, meg='grad', eeg=False, stim=False,
exclude=exclude)[:2]
tmin, tmax = 0, 10 # use the first 60s of data
fmin, fmax = 2, 70 # look at frequencies between 5 and 70Hz
n_fft = 2048
# Compute psds with the new implementation using Welch
psds_welch, freqs_welch = psd_welch(raw, tmin=tmin, tmax=tmax, fmin=fmin,
fmax=fmax, proj=False, picks=picks,
n_fft=n_fft, n_jobs=1)
# Compute psds with plt.psd
start, stop = raw.time_as_index([tmin, tmax])
data, times = raw[picks, start:(stop + 1)]
from matplotlib.pyplot import psd
out = [psd(d, Fs=raw.info['sfreq'], NFFT=n_fft) for d in data]
freqs_mpl = out[0][1]
psds_mpl = np.array([o[0] for o in out])
mask = (freqs_mpl >= fmin) & (freqs_mpl <= fmax)
freqs_mpl = freqs_mpl[mask]
psds_mpl = psds_mpl[:, mask]
assert_array_almost_equal(psds_welch, psds_mpl)
assert_array_almost_equal(freqs_welch, freqs_mpl)
assert (psds_welch.shape == (len(picks), len(freqs_welch)))
assert (psds_mpl.shape == (len(picks), len(freqs_mpl)))
assert (np.sum(freqs_welch < 0) == 0)
assert (np.sum(freqs_mpl < 0) == 0)
assert (np.sum(psds_welch < 0) == 0)
assert (np.sum(psds_mpl < 0) == 0)
run_tests_if_main()
|