1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
|
import numpy as np
import os.path as op
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_equal)
import pytest
import mne
from mne import Epochs, read_events, pick_types, create_info, EpochsArray
from mne.io import read_raw_fif
from mne.utils import _TempDir, run_tests_if_main, requires_h5py, grand_average
from mne.time_frequency.tfr import (morlet, tfr_morlet, _make_dpss,
tfr_multitaper, AverageTFR, read_tfrs,
write_tfrs, combine_tfr, cwt, _compute_tfr,
EpochsTFR)
from mne.time_frequency import tfr_array_multitaper, tfr_array_morlet
from mne.viz.utils import _fake_click
from itertools import product
import matplotlib
matplotlib.use('Agg') # for testing don't use X server
data_path = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(data_path, 'test_raw.fif')
event_fname = op.join(data_path, 'test-eve.fif')
raw_ctf_fname = op.join(data_path, 'test_ctf_raw.fif')
def test_tfr_ctf():
"""Test that TFRs can be calculated on CTF data."""
raw = read_raw_fif(raw_ctf_fname).crop(0, 1)
raw.apply_gradient_compensation(3)
events = mne.make_fixed_length_events(raw, duration=0.5)
epochs = mne.Epochs(raw, events)
for method in (tfr_multitaper, tfr_morlet):
method(epochs, [10], 1) # smoke test
def test_morlet():
"""Test morlet with and without zero mean."""
Wz = morlet(1000, [10], 2., zero_mean=True)
W = morlet(1000, [10], 2., zero_mean=False)
assert (np.abs(np.mean(np.real(Wz[0]))) < 1e-5)
assert (np.abs(np.mean(np.real(W[0]))) > 1e-3)
def test_time_frequency():
"""Test time-frequency transform (PSD and ITC)."""
# Set parameters
event_id = 1
tmin = -0.2
tmax = 0.498 # Allows exhaustive decimation testing
# Setup for reading the raw data
raw = read_raw_fif(raw_fname)
events = read_events(event_fname)
include = []
exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053'] # bads + 2 more
# picks MEG gradiometers
picks = pick_types(raw.info, meg='grad', eeg=False,
stim=False, include=include, exclude=exclude)
picks = picks[:2]
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks)
data = epochs.get_data()
times = epochs.times
nave = len(data)
epochs_nopicks = Epochs(raw, events, event_id, tmin, tmax)
freqs = np.arange(6, 20, 5) # define frequencies of interest
n_cycles = freqs / 4.
# Test first with a single epoch
power, itc = tfr_morlet(epochs[0], freqs=freqs, n_cycles=n_cycles,
use_fft=True, return_itc=True)
# Now compute evoked
evoked = epochs.average()
power_evoked = tfr_morlet(evoked, freqs, n_cycles, use_fft=True,
return_itc=False)
pytest.raises(ValueError, tfr_morlet, evoked, freqs, 1., return_itc=True)
power, itc = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles,
use_fft=True, return_itc=True)
power_, itc_ = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles,
use_fft=True, return_itc=True, decim=slice(0, 2))
# Test picks argument and average parameter
pytest.raises(ValueError, tfr_morlet, epochs, freqs=freqs,
n_cycles=n_cycles, return_itc=True, average=False)
power_picks, itc_picks = \
tfr_morlet(epochs_nopicks,
freqs=freqs, n_cycles=n_cycles, use_fft=True,
return_itc=True, picks=picks, average=True)
epochs_power_picks = \
tfr_morlet(epochs_nopicks,
freqs=freqs, n_cycles=n_cycles, use_fft=True,
return_itc=False, picks=picks, average=False)
power_picks_avg = epochs_power_picks.average()
# the actual data arrays here are equivalent, too...
assert_array_almost_equal(power.data, power_picks.data)
assert_array_almost_equal(power.data, power_picks_avg.data)
assert_array_almost_equal(itc.data, itc_picks.data)
assert_array_almost_equal(power.data, power_evoked.data)
# complex output
pytest.raises(ValueError, tfr_morlet, epochs, freqs, n_cycles,
return_itc=False, average=True, output="complex")
pytest.raises(ValueError, tfr_morlet, epochs, freqs, n_cycles,
output="complex", average=False, return_itc=True)
epochs_power_complex = tfr_morlet(epochs, freqs, n_cycles,
output="complex", average=False,
return_itc=False)
epochs_power_2 = abs(epochs_power_complex)
epochs_power_3 = epochs_power_2.copy()
epochs_power_3.data[:] = np.inf # test that it's actually copied
assert_array_almost_equal(epochs_power_2.data, epochs_power_picks.data)
power_2 = epochs_power_2.average()
assert_array_almost_equal(power_2.data, power.data)
print(itc) # test repr
print(itc.ch_names) # test property
itc += power # test add
itc -= power # test sub
power = power.apply_baseline(baseline=(-0.1, 0), mode='logratio')
assert 'meg' in power
assert 'grad' in power
assert 'mag' not in power
assert 'eeg' not in power
assert_equal(power.nave, nave)
assert_equal(itc.nave, nave)
assert (power.data.shape == (len(picks), len(freqs), len(times)))
assert (power.data.shape == itc.data.shape)
assert (power_.data.shape == (len(picks), len(freqs), 2))
assert (power_.data.shape == itc_.data.shape)
assert (np.sum(itc.data >= 1) == 0)
assert (np.sum(itc.data <= 0) == 0)
# grand average
itc2 = itc.copy()
itc2.info['bads'] = [itc2.ch_names[0]] # test channel drop
gave = grand_average([itc2, itc])
assert_equal(gave.data.shape, (itc2.data.shape[0] - 1,
itc2.data.shape[1],
itc2.data.shape[2]))
assert_equal(itc2.ch_names[1:], gave.ch_names)
assert_equal(gave.nave, 2)
itc2.drop_channels(itc2.info["bads"])
assert_array_almost_equal(gave.data, itc2.data)
itc2.data = np.ones(itc2.data.shape)
itc.data = np.zeros(itc.data.shape)
itc2.nave = 2
itc.nave = 1
itc.drop_channels([itc.ch_names[0]])
combined_itc = combine_tfr([itc2, itc])
assert_array_almost_equal(combined_itc.data,
np.ones(combined_itc.data.shape) * 2 / 3)
# more tests
power, itc = tfr_morlet(epochs, freqs=freqs, n_cycles=2, use_fft=False,
return_itc=True)
assert (power.data.shape == (len(picks), len(freqs), len(times)))
assert (power.data.shape == itc.data.shape)
assert (np.sum(itc.data >= 1) == 0)
assert (np.sum(itc.data <= 0) == 0)
tfr = tfr_morlet(epochs[0], freqs, use_fft=True, n_cycles=2, average=False,
return_itc=False).data[0]
assert (tfr.shape == (len(picks), len(freqs), len(times)))
tfr2 = tfr_morlet(epochs[0], freqs, use_fft=True, n_cycles=2,
decim=slice(0, 2), average=False,
return_itc=False).data[0]
assert (tfr2.shape == (len(picks), len(freqs), 2))
single_power = tfr_morlet(epochs, freqs, 2, average=False,
return_itc=False).data
single_power2 = tfr_morlet(epochs, freqs, 2, decim=slice(0, 2),
average=False, return_itc=False).data
single_power3 = tfr_morlet(epochs, freqs, 2, decim=slice(1, 3),
average=False, return_itc=False).data
single_power4 = tfr_morlet(epochs, freqs, 2, decim=slice(2, 4),
average=False, return_itc=False).data
assert_array_almost_equal(np.mean(single_power, axis=0), power.data)
assert_array_almost_equal(np.mean(single_power2, axis=0),
power.data[:, :, :2])
assert_array_almost_equal(np.mean(single_power3, axis=0),
power.data[:, :, 1:3])
assert_array_almost_equal(np.mean(single_power4, axis=0),
power.data[:, :, 2:4])
power_pick = power.pick_channels(power.ch_names[:10:2])
assert_equal(len(power_pick.ch_names), len(power.ch_names[:10:2]))
assert_equal(power_pick.data.shape[0], len(power.ch_names[:10:2]))
power_drop = power.drop_channels(power.ch_names[1:10:2])
assert_equal(power_drop.ch_names, power_pick.ch_names)
assert_equal(power_pick.data.shape[0], len(power_drop.ch_names))
mne.equalize_channels([power_pick, power_drop])
assert_equal(power_pick.ch_names, power_drop.ch_names)
assert_equal(power_pick.data.shape, power_drop.data.shape)
# Test decimation:
# 2: multiple of len(times) even
# 3: multiple odd
# 8: not multiple, even
# 9: not multiple, odd
for decim in [2, 3, 8, 9]:
for use_fft in [True, False]:
power, itc = tfr_morlet(epochs, freqs=freqs, n_cycles=2,
use_fft=use_fft, return_itc=True,
decim=decim)
assert_equal(power.data.shape[2],
np.ceil(float(len(times)) / decim))
freqs = list(range(50, 55))
decim = 2
_, n_chan, n_time = data.shape
tfr = tfr_morlet(epochs[0], freqs, 2., decim=decim, average=False,
return_itc=False).data[0]
assert_equal(tfr.shape, (n_chan, len(freqs), n_time // decim))
# Test cwt modes
Ws = morlet(512, [10, 20], n_cycles=2)
pytest.raises(ValueError, cwt, data[0, :, :], Ws, mode='foo')
for use_fft in [True, False]:
for mode in ['same', 'valid', 'full']:
cwt(data[0], Ws, use_fft=use_fft, mode=mode)
# Test decim parameter checks
pytest.raises(TypeError, tfr_morlet, epochs, freqs=freqs,
n_cycles=n_cycles, use_fft=True, return_itc=True,
decim='decim')
# When convolving in time, wavelets must not be longer than the data
pytest.raises(ValueError, cwt, data[0, :, :Ws[0].size - 1], Ws,
use_fft=False)
with pytest.warns(UserWarning, match='one of the wavelets is longer'):
cwt(data[0, :, :Ws[0].size - 1], Ws, use_fft=True)
# Check for off-by-one errors when using wavelets with an even number of
# samples
psd = cwt(data[0], [Ws[0][:-1]], use_fft=False, mode='full')
assert_equal(psd.shape, (2, 1, 420))
def test_dpsswavelet():
"""Test DPSS tapers."""
freqs = np.arange(5, 25, 3)
Ws = _make_dpss(1000, freqs=freqs, n_cycles=freqs / 2., time_bandwidth=4.0,
zero_mean=True)
assert (len(Ws) == 3) # 3 tapers expected
# Check that zero mean is true
assert (np.abs(np.mean(np.real(Ws[0][0]))) < 1e-5)
assert (len(Ws[0]) == len(freqs)) # As many wavelets as asked for
@pytest.mark.slowtest
def test_tfr_multitaper():
"""Test tfr_multitaper."""
sfreq = 200.0
ch_names = ['SIM0001', 'SIM0002']
ch_types = ['grad', 'grad']
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
n_times = int(sfreq) # Second long epochs
n_epochs = 3
seed = 42
rng = np.random.RandomState(seed)
noise = 0.1 * rng.randn(n_epochs, len(ch_names), n_times)
t = np.arange(n_times, dtype=np.float) / sfreq
signal = np.sin(np.pi * 2. * 50. * t) # 50 Hz sinusoid signal
signal[np.logical_or(t < 0.45, t > 0.55)] = 0. # Hard windowing
on_time = np.logical_and(t >= 0.45, t <= 0.55)
signal[on_time] *= np.hanning(on_time.sum()) # Ramping
dat = noise + signal
reject = dict(grad=4000.)
events = np.empty((n_epochs, 3), int)
first_event_sample = 100
event_id = dict(sin50hz=1)
for k in range(n_epochs):
events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz']
epochs = EpochsArray(data=dat, info=info, events=events, event_id=event_id,
reject=reject)
freqs = np.arange(35, 70, 5, dtype=np.float)
power, itc = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2.,
time_bandwidth=4.0)
power2, itc2 = tfr_multitaper(epochs, freqs=freqs, n_cycles=freqs / 2.,
time_bandwidth=4.0, decim=slice(0, 2))
picks = np.arange(len(ch_names))
power_picks, itc_picks = tfr_multitaper(epochs, freqs=freqs,
n_cycles=freqs / 2.,
time_bandwidth=4.0, picks=picks)
power_epochs = tfr_multitaper(epochs, freqs=freqs,
n_cycles=freqs / 2., time_bandwidth=4.0,
return_itc=False, average=False)
power_averaged = power_epochs.average()
power_evoked = tfr_multitaper(epochs.average(), freqs=freqs,
n_cycles=freqs / 2., time_bandwidth=4.0,
return_itc=False, average=False).average()
print(power_evoked) # test repr for EpochsTFR
# Test channel picking
power_epochs_picked = power_epochs.copy().drop_channels(['SIM0002'])
assert_equal(power_epochs_picked.data.shape, (3, 1, 7, 200))
assert_equal(power_epochs_picked.ch_names, ['SIM0001'])
pytest.raises(ValueError, tfr_multitaper, epochs,
freqs=freqs, n_cycles=freqs / 2.,
return_itc=True, average=False)
# test picks argument
assert_array_almost_equal(power.data, power_picks.data)
assert_array_almost_equal(power.data, power_averaged.data)
assert_array_almost_equal(power.times, power_epochs.times)
assert_array_almost_equal(power.times, power_averaged.times)
assert_equal(power.nave, power_averaged.nave)
assert_equal(power_epochs.data.shape, (3, 2, 7, 200))
assert_array_almost_equal(itc.data, itc_picks.data)
# one is squared magnitude of the average (evoked) and
# the other is average of the squared magnitudes (epochs PSD)
# so values shouldn't match, but shapes should
assert_array_equal(power.data.shape, power_evoked.data.shape)
pytest.raises(AssertionError, assert_array_almost_equal,
power.data, power_evoked.data)
tmax = t[np.argmax(itc.data[0, freqs == 50, :])]
fmax = freqs[np.argmax(power.data[1, :, t == 0.5])]
assert (tmax > 0.3 and tmax < 0.7)
assert not np.any(itc.data < 0.)
assert (fmax > 40 and fmax < 60)
assert (power2.data.shape == (len(picks), len(freqs), 2))
assert (power2.data.shape == itc2.data.shape)
# Test decim parameter checks and compatibility between wavelets length
# and instance length in the time dimension.
pytest.raises(TypeError, tfr_multitaper, epochs, freqs=freqs,
n_cycles=freqs / 2., time_bandwidth=4.0, decim=(1,))
pytest.raises(ValueError, tfr_multitaper, epochs, freqs=freqs,
n_cycles=1000, time_bandwidth=4.0)
def test_crop():
"""Test TFR cropping."""
data = np.zeros((3, 2, 3))
times = np.array([.1, .2, .3])
freqs = np.array([.10, .20])
info = mne.create_info(['MEG 001', 'MEG 002', 'MEG 003'], 1000.,
['mag', 'mag', 'mag'])
tfr = AverageTFR(info, data=data, times=times, freqs=freqs,
nave=20, comment='test', method='crazy-tfr')
tfr.crop(0.2, 0.3)
assert_array_equal(tfr.times, [0.2, 0.3])
assert_equal(tfr.data.shape[-1], 2)
@requires_h5py
def test_io():
"""Test TFR IO capacities."""
tempdir = _TempDir()
fname = op.join(tempdir, 'test-tfr.h5')
data = np.zeros((3, 2, 3))
times = np.array([.1, .2, .3])
freqs = np.array([.10, .20])
info = mne.create_info(['MEG 001', 'MEG 002', 'MEG 003'], 1000.,
['mag', 'mag', 'mag'])
tfr = AverageTFR(info, data=data, times=times, freqs=freqs,
nave=20, comment='test', method='crazy-tfr')
tfr.save(fname)
tfr2 = read_tfrs(fname, condition='test')
assert_array_equal(tfr.data, tfr2.data)
assert_array_equal(tfr.times, tfr2.times)
assert_array_equal(tfr.freqs, tfr2.freqs)
assert_equal(tfr.comment, tfr2.comment)
assert_equal(tfr.nave, tfr2.nave)
pytest.raises(IOError, tfr.save, fname)
tfr.comment = None
tfr.save(fname, overwrite=True)
assert_equal(read_tfrs(fname, condition=0).comment, tfr.comment)
tfr.comment = 'test-A'
tfr2.comment = 'test-B'
fname = op.join(tempdir, 'test2-tfr.h5')
write_tfrs(fname, [tfr, tfr2])
tfr3 = read_tfrs(fname, condition='test-A')
assert_equal(tfr.comment, tfr3.comment)
assert (isinstance(tfr.info, mne.Info))
tfrs = read_tfrs(fname, condition=None)
assert_equal(len(tfrs), 2)
tfr4 = tfrs[1]
assert_equal(tfr2.comment, tfr4.comment)
pytest.raises(ValueError, read_tfrs, fname, condition='nonono')
# Test save of EpochsTFR.
data = np.zeros((5, 3, 2, 3))
tfr = EpochsTFR(info, data=data, times=times, freqs=freqs,
comment='test', method='crazy-tfr')
tfr.save(fname, True)
read_tfr = read_tfrs(fname)[0]
assert_array_equal(tfr.data, read_tfr.data)
def test_plot():
"""Test TFR plotting."""
import matplotlib.pyplot as plt
data = np.zeros((3, 2, 3))
times = np.array([.1, .2, .3])
freqs = np.array([.10, .20])
info = mne.create_info(['MEG 001', 'MEG 002', 'MEG 003'], 1000.,
['mag', 'mag', 'mag'])
tfr = AverageTFR(info, data=data, times=times, freqs=freqs,
nave=20, comment='test', method='crazy-tfr')
tfr.plot([1, 2], title='title', colorbar=False,
mask=np.ones(tfr.data.shape[1:], bool))
plt.close('all')
ax = plt.subplot2grid((2, 2), (0, 0))
ax2 = plt.subplot2grid((2, 2), (1, 1))
ax3 = plt.subplot2grid((2, 2), (0, 1))
tfr.plot(picks=[0, 1, 2], axes=[ax, ax2, ax3])
plt.close('all')
tfr.plot([1, 2], title='title', colorbar=False, exclude='bads')
plt.close('all')
tfr.plot_topo(picks=[1, 2])
plt.close('all')
fig = tfr.plot(picks=[1], cmap='RdBu_r') # interactive mode on by default
fig.canvas.key_press_event('up')
fig.canvas.key_press_event(' ')
fig.canvas.key_press_event('down')
cbar = fig.get_axes()[0].CB # Fake dragging with mouse.
ax = cbar.cbar.ax
_fake_click(fig, ax, (0.1, 0.1))
_fake_click(fig, ax, (0.1, 0.2), kind='motion')
_fake_click(fig, ax, (0.1, 0.3), kind='release')
_fake_click(fig, ax, (0.1, 0.1), button=3)
_fake_click(fig, ax, (0.1, 0.2), button=3, kind='motion')
_fake_click(fig, ax, (0.1, 0.3), kind='release')
fig.canvas.scroll_event(0.5, 0.5, -0.5) # scroll down
fig.canvas.scroll_event(0.5, 0.5, 0.5) # scroll up
plt.close('all')
def test_plot_joint():
"""Test TFR joint plotting."""
import matplotlib.pyplot as plt
raw = read_raw_fif(raw_fname)
times = np.linspace(-0.1, 0.1, 200)
n_freqs = 3
nave = 1
rng = np.random.RandomState(42)
data = rng.randn(len(raw.ch_names), n_freqs, len(times))
tfr = AverageTFR(raw.info, data, times, np.arange(n_freqs), nave)
topomap_args = {'res': 8, 'contours': 0, 'sensors': False}
for combine in ('mean', 'rms', None):
tfr.plot_joint(title='auto', colorbar=True,
combine=combine, topomap_args=topomap_args)
plt.close('all')
# check various timefreqs
for timefreqs in (
{(tfr.times[0], tfr.freqs[1]): (0.1, 0.5),
(tfr.times[-1], tfr.freqs[-1]): (0.2, 0.6)},
[(tfr.times[1], tfr.freqs[1])]):
tfr.plot_joint(timefreqs=timefreqs, topomap_args=topomap_args)
plt.close('all')
# test bad timefreqs
timefreqs = ([(-100, 1)], tfr.times[1], [1],
[(tfr.times[1], tfr.freqs[1], tfr.freqs[1])])
for these_timefreqs in timefreqs:
pytest.raises(ValueError, tfr.plot_joint, these_timefreqs)
# test that the object is not internally modified
tfr_orig = tfr.copy()
tfr.plot_joint(baseline=(0, None), exclude=[tfr.ch_names[0]],
topomap_args=topomap_args)
plt.close('all')
assert_array_equal(tfr.data, tfr_orig.data)
assert (set(tfr.ch_names) == set(tfr_orig.ch_names))
assert (set(tfr.times) == set(tfr_orig.times))
def test_add_channels():
"""Test tfr splitting / re-appending channel types."""
data = np.zeros((6, 2, 3))
times = np.array([.1, .2, .3])
freqs = np.array([.10, .20])
info = mne.create_info(
['MEG 001', 'MEG 002', 'MEG 003', 'EEG 001', 'EEG 002', 'STIM 001'],
1000., ['mag', 'mag', 'mag', 'eeg', 'eeg', 'stim'])
tfr = AverageTFR(info, data=data, times=times, freqs=freqs,
nave=20, comment='test', method='crazy-tfr')
tfr_eeg = tfr.copy().pick_types(meg=False, eeg=True)
tfr_meg = tfr.copy().pick_types(meg=True)
tfr_stim = tfr.copy().pick_types(meg=False, stim=True)
tfr_eeg_meg = tfr.copy().pick_types(meg=True, eeg=True)
tfr_new = tfr_meg.copy().add_channels([tfr_eeg, tfr_stim])
assert all(ch in tfr_new.ch_names
for ch in tfr_stim.ch_names + tfr_meg.ch_names)
tfr_new = tfr_meg.copy().add_channels([tfr_eeg])
assert all(ch in tfr_new.ch_names
for ch in tfr.ch_names if ch != 'STIM 001')
assert_array_equal(tfr_new.data, tfr_eeg_meg.data)
assert all(ch not in tfr_new.ch_names for ch in tfr_stim.ch_names)
# Now test errors
tfr_badsf = tfr_eeg.copy()
tfr_badsf.info['sfreq'] = 3.1415927
tfr_eeg = tfr_eeg.crop(-.1, .1)
pytest.raises(RuntimeError, tfr_meg.add_channels, [tfr_badsf])
pytest.raises(AssertionError, tfr_meg.add_channels, [tfr_eeg])
pytest.raises(ValueError, tfr_meg.add_channels, [tfr_meg])
pytest.raises(TypeError, tfr_meg.add_channels, tfr_badsf)
def test_compute_tfr():
"""Test _compute_tfr function."""
# Set parameters
event_id = 1
tmin = -0.2
tmax = 0.498 # Allows exhaustive decimation testing
# Setup for reading the raw data
raw = read_raw_fif(raw_fname)
events = read_events(event_fname)
exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053'] # bads + 2 more
# picks MEG gradiometers
picks = pick_types(raw.info, meg='grad', eeg=False,
stim=False, include=[], exclude=exclude)
picks = picks[:2]
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks)
data = epochs.get_data()
sfreq = epochs.info['sfreq']
freqs = np.arange(10, 20, 3).astype(float)
# Check all combination of options
for func, use_fft, zero_mean, output in product(
(tfr_array_multitaper, tfr_array_morlet), (False, True), (False, True),
('complex', 'power', 'phase',
'avg_power_itc', 'avg_power', 'itc')):
# Check exception
if (func == tfr_array_multitaper) and (output == 'phase'):
pytest.raises(NotImplementedError, func, data, sfreq=sfreq,
freqs=freqs, output=output)
continue
# Check runs
out = func(data, sfreq=sfreq, freqs=freqs, use_fft=use_fft,
zero_mean=zero_mean, n_cycles=2., output=output)
# Check shapes
shape = np.r_[data.shape[:2], len(freqs), data.shape[2]]
if ('avg' in output) or ('itc' in output):
assert_array_equal(shape[1:], out.shape)
else:
assert_array_equal(shape, out.shape)
# Check types
if output in ('complex', 'avg_power_itc'):
assert_equal(np.complex, out.dtype)
else:
assert_equal(np.float, out.dtype)
assert (np.all(np.isfinite(out)))
# Check errors params
for _data in (None, 'foo', data[0]):
pytest.raises(ValueError, _compute_tfr, _data, freqs, sfreq)
for _freqs in (None, 'foo', [[0]]):
pytest.raises(ValueError, _compute_tfr, data, _freqs, sfreq)
for _sfreq in (None, 'foo'):
pytest.raises(ValueError, _compute_tfr, data, freqs, _sfreq)
for key in ('output', 'method', 'use_fft', 'decim', 'n_jobs'):
for value in (None, 'foo'):
kwargs = {key: value} # FIXME pep8
pytest.raises(ValueError, _compute_tfr, data, freqs, sfreq,
**kwargs)
# No time_bandwidth param in morlet
pytest.raises(ValueError, _compute_tfr, data, freqs, sfreq,
method='morlet', time_bandwidth=1)
# No phase in multitaper XXX Check ?
pytest.raises(NotImplementedError, _compute_tfr, data, freqs, sfreq,
method='multitaper', output='phase')
# Inter-trial coherence tests
out = _compute_tfr(data, freqs, sfreq, output='itc', n_cycles=2.)
assert (np.sum(out >= 1) == 0)
assert (np.sum(out <= 0) == 0)
# Check decim shapes
# 2: multiple of len(times) even
# 3: multiple odd
# 8: not multiple, even
# 9: not multiple, odd
for decim in (2, 3, 8, 9, slice(0, 2), slice(1, 3), slice(2, 4)):
_decim = slice(None, None, decim) if isinstance(decim, int) else decim
n_time = len(np.arange(data.shape[2])[_decim])
shape = np.r_[data.shape[:2], len(freqs), n_time]
for method in ('multitaper', 'morlet'):
# Single trials
out = _compute_tfr(data, freqs, sfreq, method=method, decim=decim,
n_cycles=2.)
assert_array_equal(shape, out.shape)
# Averages
out = _compute_tfr(data, freqs, sfreq, method=method, decim=decim,
output='avg_power', n_cycles=2.)
assert_array_equal(shape[1:], out.shape)
run_tests_if_main()
|