1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
|
# -*- coding: utf-8 -*-
"""Some utility functions."""
from __future__ import print_function
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)
import atexit
from collections import Iterable
from contextlib import contextmanager
from distutils.version import LooseVersion
from functools import wraps
from functools import partial
import hashlib
import inspect
import json
import logging
import fnmatch
from math import log, ceil
import multiprocessing
import operator
import os
import os.path as op
import platform
import shutil
from shutil import rmtree
from string import Formatter
import subprocess
import sys
import tempfile
import time
import traceback
from unittest import SkipTest
import warnings
import webbrowser
import re
import numpy as np
from scipy import linalg, sparse
from .externals.six.moves import urllib
from .externals.six import string_types, StringIO, BytesIO, integer_types
from .externals.decorator import decorator
from .fixes import _get_args
logger = logging.getLogger('mne') # one selection here used across mne-python
logger.propagate = False # don't propagate (in case of multiple imports)
def _memory_usage(*args, **kwargs):
if isinstance(args[0], tuple):
args[0][0](*args[0][1], **args[0][2])
elif not isinstance(args[0], int): # can be -1 for current use
args[0]()
return [-1]
try:
from memory_profiler import memory_usage
except ImportError:
memory_usage = _memory_usage
def nottest(f):
"""Mark a function as not a test (decorator)."""
f.__test__ = False
return f
# # # WARNING # # #
# This list must also be updated in doc/_templates/class.rst if it is
# changed here!
_doc_special_members = ('__contains__', '__getitem__', '__iter__', '__len__',
'__add__', '__sub__', '__mul__', '__div__',
'__neg__', '__hash__')
###############################################################################
# RANDOM UTILITIES
def _get_argvalues():
"""Return all arguments (except self) and values of read_raw_xxx."""
# call stack
# read_raw_xxx -> EOF -> verbose() -> BaseRaw.__init__ -> get_argvalues
frame = inspect.stack()[4][0]
fname = frame.f_code.co_filename
if not fnmatch.fnmatch(fname, '*/mne/io/*'):
return None
args, _, _, values = inspect.getargvalues(frame)
params = dict()
for arg in args:
params[arg] = values[arg]
params.pop('self', None)
return params
def _ensure_int(x, name='unknown', must_be='an int'):
"""Ensure a variable is an integer."""
# This is preferred over numbers.Integral, see:
# https://github.com/scipy/scipy/pull/7351#issuecomment-299713159
try:
x = int(operator.index(x))
except TypeError:
raise TypeError('%s must be %s, got %s' % (name, must_be, type(x)))
return x
def _pl(x, non_pl=''):
"""Determine if plural should be used."""
len_x = x if isinstance(x, (integer_types, np.generic)) else len(x)
return non_pl if len_x == 1 else 's'
def _explain_exception(start=-1, stop=None, prefix='> '):
"""Explain an exception."""
# start=-1 means "only the most recent caller"
etype, value, tb = sys.exc_info()
string = traceback.format_list(traceback.extract_tb(tb)[start:stop])
string = (''.join(string).split('\n') +
traceback.format_exception_only(etype, value))
string = ':\n' + prefix + ('\n' + prefix).join(string)
return string
def _get_call_line(in_verbose=False):
"""Get the call line from within a function."""
# XXX Eventually we could auto-triage whether in a `verbose` decorated
# function or not.
# NB This probably only works for functions that are undecorated,
# or decorated by `verbose`.
back = 2 if not in_verbose else 4
call_frame = inspect.getouterframes(inspect.currentframe())[back][0]
context = inspect.getframeinfo(call_frame).code_context
context = 'unknown' if context is None else context[0].strip()
return context
def _sort_keys(x):
"""Sort and return keys of dict."""
keys = list(x.keys()) # note: not thread-safe
idx = np.argsort([str(k) for k in keys])
keys = [keys[ii] for ii in idx]
return keys
def object_hash(x, h=None):
"""Hash a reasonable python object.
Parameters
----------
x : object
Object to hash. Can be anything comprised of nested versions of:
{dict, list, tuple, ndarray, str, bytes, float, int, None}.
h : hashlib HASH object | None
Optional, object to add the hash to. None creates an MD5 hash.
Returns
-------
digest : int
The digest resulting from the hash.
"""
if h is None:
h = hashlib.md5()
if hasattr(x, 'keys'):
# dict-like types
keys = _sort_keys(x)
for key in keys:
object_hash(key, h)
object_hash(x[key], h)
elif isinstance(x, bytes):
# must come before "str" below
h.update(x)
elif isinstance(x, (string_types, float, int, type(None))):
h.update(str(type(x)).encode('utf-8'))
h.update(str(x).encode('utf-8'))
elif isinstance(x, (np.ndarray, np.number, np.bool_)):
x = np.asarray(x)
h.update(str(x.shape).encode('utf-8'))
h.update(str(x.dtype).encode('utf-8'))
h.update(x.tostring())
elif hasattr(x, '__len__'):
# all other list-like types
h.update(str(type(x)).encode('utf-8'))
for xx in x:
object_hash(xx, h)
else:
raise RuntimeError('unsupported type: %s (%s)' % (type(x), x))
return int(h.hexdigest(), 16)
def object_size(x):
"""Estimate the size of a reasonable python object.
Parameters
----------
x : object
Object to approximate the size of.
Can be anything comprised of nested versions of:
{dict, list, tuple, ndarray, str, bytes, float, int, None}.
Returns
-------
size : int
The estimated size in bytes of the object.
"""
# Note: this will not process object arrays properly (since those only)
# hold references
if isinstance(x, (bytes, string_types, int, float, type(None))):
size = sys.getsizeof(x)
elif isinstance(x, np.ndarray):
# On newer versions of NumPy, just doing sys.getsizeof(x) works,
# but on older ones you always get something small :(
size = sys.getsizeof(np.array([])) + x.nbytes
elif isinstance(x, np.generic):
size = x.nbytes
elif isinstance(x, dict):
size = sys.getsizeof(x)
for key, value in x.items():
size += object_size(key)
size += object_size(value)
elif isinstance(x, (list, tuple)):
size = sys.getsizeof(x) + sum(object_size(xx) for xx in x)
elif sparse.isspmatrix_csc(x) or sparse.isspmatrix_csr(x):
size = sum(sys.getsizeof(xx)
for xx in [x, x.data, x.indices, x.indptr])
else:
raise RuntimeError('unsupported type: %s (%s)' % (type(x), x))
return size
def object_diff(a, b, pre=''):
"""Compute all differences between two python variables.
Parameters
----------
a : object
Currently supported: dict, list, tuple, ndarray, int, str, bytes,
float, StringIO, BytesIO.
b : object
Must be same type as x1.
pre : str
String to prepend to each line.
Returns
-------
diffs : str
A string representation of the differences.
"""
out = ''
if type(a) != type(b):
out += pre + ' type mismatch (%s, %s)\n' % (type(a), type(b))
elif isinstance(a, dict):
k1s = _sort_keys(a)
k2s = _sort_keys(b)
m1 = set(k2s) - set(k1s)
if len(m1):
out += pre + ' left missing keys %s\n' % (m1)
for key in k1s:
if key not in k2s:
out += pre + ' right missing key %s\n' % key
else:
out += object_diff(a[key], b[key], pre + '[%s]' % repr(key))
elif isinstance(a, (list, tuple)):
if len(a) != len(b):
out += pre + ' length mismatch (%s, %s)\n' % (len(a), len(b))
else:
for ii, (xx1, xx2) in enumerate(zip(a, b)):
out += object_diff(xx1, xx2, pre + '[%s]' % ii)
elif isinstance(a, (string_types, int, float, bytes)):
if a != b:
out += pre + ' value mismatch (%s, %s)\n' % (a, b)
elif a is None:
if b is not None:
out += pre + ' left is None, right is not (%s)\n' % (b)
elif isinstance(a, np.ndarray):
if not np.array_equal(a, b):
out += pre + ' array mismatch\n'
elif isinstance(a, (StringIO, BytesIO)):
if a.getvalue() != b.getvalue():
out += pre + ' StringIO mismatch\n'
elif sparse.isspmatrix(a):
# sparsity and sparse type of b vs a already checked above by type()
if b.shape != a.shape:
out += pre + (' sparse matrix a and b shape mismatch'
'(%s vs %s)' % (a.shape, b.shape))
else:
c = a - b
c.eliminate_zeros()
if c.nnz > 0:
out += pre + (' sparse matrix a and b differ on %s '
'elements' % c.nnz)
elif hasattr(a, '__getstate__'):
out += object_diff(a.__getstate__(), b.__getstate__(), pre)
else:
raise RuntimeError(pre + ': unsupported type %s (%s)' % (type(a), a))
return out
def check_random_state(seed):
"""Turn seed into a np.random.RandomState instance.
If seed is None, return the RandomState singleton used by np.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, (int, np.integer)):
return np.random.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return seed
raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
' instance' % seed)
def split_list(l, n, idx=False):
"""Split list in n (approx) equal pieces, possibly giving indices."""
n = int(n)
tot = len(l)
sz = tot // n
start = stop = 0
for i in range(n - 1):
stop += sz
yield (np.arange(start, stop), l[start:stop]) if idx else l[start:stop]
start += sz
yield (np.arange(start, tot), l[start:]) if idx else l[start]
def array_split_idx(ary, indices_or_sections, axis=0, n_per_split=1):
"""Do what numpy.array_split does, but add indices."""
# this only works for indices_or_sections as int
indices_or_sections = _ensure_int(indices_or_sections)
ary_split = np.array_split(ary, indices_or_sections, axis=axis)
idx_split = np.array_split(np.arange(ary.shape[axis]), indices_or_sections)
idx_split = (np.arange(sp[0] * n_per_split, (sp[-1] + 1) * n_per_split)
for sp in idx_split)
return zip(idx_split, ary_split)
def create_chunks(sequence, size):
"""Generate chunks from a sequence.
Parameters
----------
sequence : iterable
Any iterable object
size : int
The chunksize to be returned
"""
return (sequence[p:p + size] for p in range(0, len(sequence), size))
def sum_squared(X):
"""Compute norm of an array.
Parameters
----------
X : array
Data whose norm must be found
Returns
-------
value : float
Sum of squares of the input array X
"""
X_flat = X.ravel(order='F' if np.isfortran(X) else 'C')
return np.dot(X_flat, X_flat)
def warn(message, category=RuntimeWarning, module='mne'):
"""Emit a warning with trace outside the mne namespace.
This function takes arguments like warnings.warn, and sends messages
using both ``warnings.warn`` and ``logger.warn``. Warnings can be
generated deep within nested function calls. In order to provide a
more helpful warning, this function traverses the stack until it
reaches a frame outside the ``mne`` namespace that caused the error.
Parameters
----------
message : str
Warning message.
category : instance of Warning
The warning class. Defaults to ``RuntimeWarning``.
module : str
The name of the module emitting the warning.
"""
root_dir = op.dirname(__file__)
frame = None
if logger.level <= logging.WARN:
last_fname = ''
frame = inspect.currentframe()
while frame:
fname = frame.f_code.co_filename
lineno = frame.f_lineno
# in verbose dec
if fname == '<string>' and last_fname == 'utils.py':
last_fname = fname
frame = frame.f_back
continue
# treat tests as scripts
# and don't capture unittest/case.py (assert_raises)
if not (fname.startswith(root_dir) or
('unittest' in fname and 'case' in fname)) or \
op.basename(op.dirname(fname)) == 'tests':
break
last_fname = op.basename(fname)
frame = frame.f_back
del frame
# We need to use this instead of warn(message, category, stacklevel)
# because we move out of the MNE stack, so warnings won't properly
# recognize the module name (and our warnings.simplefilter will fail)
warnings.warn_explicit(
message, category, fname, lineno, module,
globals().get('__warningregistry__', {}))
# To avoid a duplicate warning print, we only emit the logger.warning if
# one of the handlers is a FileHandler. See gh-5592
if any(isinstance(h, logging.FileHandler) or getattr(h, '_mne_file_like',
False)
for h in logger.handlers):
logger.warning(message)
def filter_out_warnings(warn_record, category=None, match=None):
r"""Remove particular records from ``warn_record``.
This helper takes a list of :class:`warnings.WarningMessage` objects,
and remove those matching category and/or text.
Parameters
----------
category: WarningMessage type | None
class of the message to filter out
match : str | None
text or regex that matches the error message to filter out
Examples
--------
This can be used as::
>>> import pytest
>>> import warnings
>>> from mne.utils import filter_out_warnings
>>> with pytest.warns(None) as recwarn:
... warnings.warn("value must be 0 or None", UserWarning)
>>> filter_out_warnings(recwarn, match=".* 0 or None")
>>> assert len(recwarn.list) == 0
>>> with pytest.warns(None) as recwarn:
... warnings.warn("value must be 42", UserWarning)
>>> filter_out_warnings(recwarn, match=r'.* must be \d+$')
>>> assert len(recwarn.list) == 0
>>> with pytest.warns(None) as recwarn:
... warnings.warn("this is not here", UserWarning)
>>> filter_out_warnings(recwarn, match=r'.* must be \d+$')
>>> assert len(recwarn.list) == 1
"""
regexp = re.compile('.*' if match is None else match)
is_category = [w.category == category if category is not None else True
for w in warn_record._list]
is_match = [regexp.match(w.message.args[0]) is not None
for w in warn_record._list]
ind = [ind for ind, (c, m) in enumerate(zip(is_category, is_match))
if c and m]
for i in reversed(ind):
warn_record._list.pop(i)
def check_fname(fname, filetype, endings, endings_err=()):
"""Enforce MNE filename conventions.
Parameters
----------
fname : str
Name of the file.
filetype : str
Type of file. e.g., ICA, Epochs etc.
endings : tuple
Acceptable endings for the filename.
endings_err : tuple
Obligatory possible endings for the filename.
"""
if len(endings_err) > 0 and not fname.endswith(endings_err):
print_endings = ' or '.join([', '.join(endings_err[:-1]),
endings_err[-1]])
raise IOError('The filename (%s) for file type %s must end with %s'
% (fname, filetype, print_endings))
print_endings = ' or '.join([', '.join(endings[:-1]), endings[-1]])
if not fname.endswith(endings):
warn('This filename (%s) does not conform to MNE naming conventions. '
'All %s files should end with %s'
% (fname, filetype, print_endings))
class _Counter():
count = 1
def __call__(self, *args, **kargs):
c = self.count
self.count += 1
return c
class WrapStdOut(object):
"""Dynamically wrap to sys.stdout.
This makes packages that monkey-patch sys.stdout (e.g.doctest,
sphinx-gallery) work properly.
"""
def __getattr__(self, name): # noqa: D105
# Even more ridiculous than this class, this must be sys.stdout (not
# just stdout) in order for this to work (tested on OSX and Linux)
if hasattr(sys.stdout, name):
return getattr(sys.stdout, name)
else:
raise AttributeError("'file' object has not attribute '%s'" % name)
class _TempDir(str):
"""Create and auto-destroy temp dir.
This is designed to be used with testing modules. Instances should be
defined inside test functions. Instances defined at module level can not
guarantee proper destruction of the temporary directory.
When used at module level, the current use of the __del__() method for
cleanup can fail because the rmtree function may be cleaned up before this
object (an alternative could be using the atexit module instead).
"""
def __new__(self): # noqa: D105
new = str.__new__(self, tempfile.mkdtemp(prefix='tmp_mne_tempdir_'))
return new
def __init__(self): # noqa: D102
self._path = self.__str__()
def __del__(self): # noqa: D105
rmtree(self._path, ignore_errors=True)
def estimate_rank(data, tol='auto', return_singular=False, norm=True):
"""Estimate the rank of data.
This function will normalize the rows of the data (typically
channels or vertices) such that non-zero singular values
should be close to one.
Parameters
----------
data : array
Data to estimate the rank of (should be 2-dimensional).
tol : float | 'auto'
Tolerance for singular values to consider non-zero in
calculating the rank. The singular values are calculated
in this method such that independent data are expected to
have singular value around one. Can be 'auto' to use the
same thresholding as ``scipy.linalg.orth``.
return_singular : bool
If True, also return the singular values that were used
to determine the rank.
norm : bool
If True, data will be scaled by their estimated row-wise norm.
Else data are assumed to be scaled. Defaults to True.
Returns
-------
rank : int
Estimated rank of the data.
s : array
If return_singular is True, the singular values that were
thresholded to determine the rank are also returned.
"""
data = data.copy() # operate on a copy
if norm is True:
norms = _compute_row_norms(data)
data /= norms[:, np.newaxis]
s = linalg.svd(data, compute_uv=False, overwrite_a=True)
rank = _estimate_rank_from_s(s, tol)
if return_singular is True:
return rank, s
else:
return rank
def _estimate_rank_from_s(s, tol='auto'):
"""Estimate the rank of a matrix from its singular values.
Parameters
----------
s : list of float
The singular values of the matrix.
tol : float | 'auto'
Tolerance for singular values to consider non-zero in calculating the
rank. Can be 'auto' to use the same thresholding as
``scipy.linalg.orth``.
Returns
-------
rank : int
The estimated rank.
"""
if isinstance(tol, string_types):
if tol != 'auto':
raise ValueError('tol must be "auto" or float')
eps = np.finfo(float).eps
tol = len(s) * np.amax(s) * eps
tol = float(tol)
rank = np.sum(s > tol)
return rank
def _compute_row_norms(data):
"""Compute scaling based on estimated norm."""
norms = np.sqrt(np.sum(data ** 2, axis=1))
norms[norms == 0] = 1.0
return norms
def _reg_pinv(x, reg=0, rank='full', rcond=1e-15):
"""Compute a regularized pseudoinverse of a square matrix.
Regularization is performed by adding a constant value to each diagonal
element of the matrix before inversion. This is known as "diagonal
loading". The loading factor is computed as ``reg * np.trace(x) / len(x)``.
The pseudo-inverse is computed through SVD decomposition and inverting the
singular values. When the matrix is rank deficient, some singular values
will be close to zero and will not be used during the inversion. The number
of singular values to use can either be manually specified or automatically
estimated.
Parameters
----------
x : ndarray, shape (n, n)
Square matrix to invert.
reg : float
Regularization parameter. Defaults to 0.
rank : int | None | 'full'
This controls the effective rank of the covariance matrix when
computing the inverse. The rank can be set explicitly by specifying an
integer value. If ``None``, the rank will be automatically estimated.
Since applying regularization will always make the covariance matrix
full rank, the rank is estimated before regularization in this case. If
'full', the rank will be estimated after regularization and hence
will mean using the full rank, unless ``reg=0`` is used.
Defaults to 'full'.
rcond : float | 'auto'
Cutoff for detecting small singular values when attempting to estimate
the rank of the matrix (``rank='auto'``). Singular values smaller than
the cutoff are set to zero. When set to 'auto', a cutoff based on
floating point precision will be used. Defaults to 1e-15.
Returns
-------
x_inv : ndarray, shape (n, n)
The inverted matrix.
loading_factor : float
Value added to the diagonal of the matrix during regularization.
rank : int
If ``rank`` was set to an integer value, this value is returned,
else the estimated rank of the matrix, before regularization, is
returned.
"""
if rank is not None and rank != 'full':
rank = int(operator.index(rank))
if x.ndim != 2 or x.shape[0] != x.shape[1]:
raise ValueError('Input matrix must be square.')
if not np.allclose(x, x.conj().T):
raise ValueError('Input matrix must be Hermitian (symmetric)')
# Decompose the matrix
U, s, V = linalg.svd(x)
# Estimate the rank before regularization
tol = 'auto' if rcond == 'auto' else rcond * s.max()
rank_before = _estimate_rank_from_s(s, tol)
# Decompose the matrix again after regularization
loading_factor = reg * np.mean(s)
U, s, V = linalg.svd(x + loading_factor * np.eye(len(x)))
# Estimate the rank after regularization
tol = 'auto' if rcond == 'auto' else rcond * s.max()
rank_after = _estimate_rank_from_s(s, tol)
# Warn the user if both all parameters were kept at their defaults and the
# matrix is rank deficient.
if rank_after < len(x) and reg == 0 and rank == 'full' and rcond == 1e-15:
warn('Covariance matrix is rank-deficient and no regularization is '
'done.')
elif isinstance(rank, int) and rank > len(x):
raise ValueError('Invalid value for the rank parameter (%d) given '
'the shape of the input matrix (%d x %d).' %
(rank, x.shape[0], x.shape[1]))
# Pick the requested number of singular values
if rank is None:
sel_s = s[:rank_before]
elif rank == 'full':
sel_s = s[:rank_after]
else:
sel_s = s[:rank]
# Invert only non-zero singular values
s_inv = np.zeros(s.shape)
nonzero_inds = np.flatnonzero(sel_s != 0)
if len(nonzero_inds) > 0:
s_inv[nonzero_inds] = 1. / sel_s[nonzero_inds]
# Compute the pseudo inverse
x_inv = np.dot(V.T, s_inv[:, np.newaxis] * U.T)
if rank is None or rank == 'full':
return x_inv, loading_factor, rank_before
else:
return x_inv, loading_factor, rank
def _reject_data_segments(data, reject, flat, decim, info, tstep):
"""Reject data segments using peak-to-peak amplitude."""
from .epochs import _is_good
from .io.pick import channel_indices_by_type
data_clean = np.empty_like(data)
idx_by_type = channel_indices_by_type(info)
step = int(ceil(tstep * info['sfreq']))
if decim is not None:
step = int(ceil(step / float(decim)))
this_start = 0
this_stop = 0
drop_inds = []
for first in range(0, data.shape[1], step):
last = first + step
data_buffer = data[:, first:last]
if data_buffer.shape[1] < (last - first):
break # end of the time segment
if _is_good(data_buffer, info['ch_names'], idx_by_type, reject,
flat, ignore_chs=info['bads']):
this_stop = this_start + data_buffer.shape[1]
data_clean[:, this_start:this_stop] = data_buffer
this_start += data_buffer.shape[1]
else:
logger.info("Artifact detected in [%d, %d]" % (first, last))
drop_inds.append((first, last))
data = data_clean[:, :this_stop]
if not data.any():
raise RuntimeError('No clean segment found. Please '
'consider updating your rejection '
'thresholds.')
return data, drop_inds
def _get_inst_data(inst):
"""Get data view from MNE object instance like Raw, Epochs or Evoked."""
from .io.base import BaseRaw
from .epochs import BaseEpochs
from . import Evoked
from .time_frequency.tfr import _BaseTFR
_validate_type(inst, (BaseRaw, BaseEpochs, Evoked, _BaseTFR), "Instance")
if not inst.preload:
inst.load_data()
return inst._data
class _FormatDict(dict):
"""Help pformat() work properly."""
def __missing__(self, key):
return "{" + key + "}"
def pformat(temp, **fmt):
"""Format a template string partially.
Examples
--------
>>> pformat("{a}_{b}", a='x')
'x_{b}'
"""
formatter = Formatter()
mapping = _FormatDict(fmt)
return formatter.vformat(temp, (), mapping)
###############################################################################
# DECORATORS
# Following deprecated class copied from scikit-learn
# force show of DeprecationWarning even on python 2.7
warnings.filterwarnings('always', category=DeprecationWarning, module='mne')
class deprecated(object):
"""Mark a function or class as deprecated (decorator).
Issue a warning when the function is called/the class is instantiated and
adds a warning to the docstring.
The optional extra argument will be appended to the deprecation message
and the docstring. Note: to use this with the default value for extra, put
in an empty of parentheses::
>>> from mne.utils import deprecated
>>> deprecated() # doctest: +ELLIPSIS
<mne.utils.deprecated object at ...>
>>> @deprecated()
... def some_function(): pass
Parameters
----------
extra: string
To be added to the deprecation messages.
"""
# Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary,
# but with many changes.
# scikit-learn will not import on all platforms b/c it can be
# sklearn or scikits.learn, so a self-contained example is used above
def __init__(self, extra=''): # noqa: D102
self.extra = extra
def __call__(self, obj): # noqa: D105
"""Call.
Parameters
----------
obj : object
Object to call.
"""
if isinstance(obj, type):
return self._decorate_class(obj)
else:
return self._decorate_fun(obj)
def _decorate_class(self, cls):
msg = "Class %s is deprecated" % cls.__name__
if self.extra:
msg += "; %s" % self.extra
# FIXME: we should probably reset __new__ for full generality
init = cls.__init__
def deprecation_wrapped(*args, **kwargs):
warnings.warn(msg, category=DeprecationWarning)
return init(*args, **kwargs)
cls.__init__ = deprecation_wrapped
deprecation_wrapped.__name__ = '__init__'
deprecation_wrapped.__doc__ = self._update_doc(init.__doc__)
deprecation_wrapped.deprecated_original = init
return cls
def _decorate_fun(self, fun):
"""Decorate function fun."""
msg = "Function %s is deprecated" % fun.__name__
if self.extra:
msg += "; %s" % self.extra
def deprecation_wrapped(*args, **kwargs):
warnings.warn(msg, category=DeprecationWarning)
return fun(*args, **kwargs)
deprecation_wrapped.__name__ = fun.__name__
deprecation_wrapped.__dict__ = fun.__dict__
deprecation_wrapped.__doc__ = self._update_doc(fun.__doc__)
return deprecation_wrapped
def _update_doc(self, olddoc):
newdoc = ".. warning:: DEPRECATED"
if self.extra:
newdoc = "%s: %s" % (newdoc, self.extra)
if olddoc:
# Get the spacing right to avoid sphinx warnings
n_space = 4
for li, line in enumerate(olddoc.split('\n')):
if li > 0 and len(line.strip()):
n_space = len(line) - len(line.lstrip())
break
newdoc = "%s\n\n%s%s" % (newdoc, ' ' * n_space, olddoc)
return newdoc
@decorator
def verbose(function, *args, **kwargs):
"""Verbose decorator to allow functions to override log-level.
This decorator is used to set the verbose level during a function or method
call, such as :func:`mne.compute_covariance`. The `verbose` keyword
argument can be 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL', True (an
alias for 'INFO'), or False (an alias for 'WARNING'). To set the global
verbosity level for all functions, use :func:`mne.set_log_level`.
Parameters
----------
function : function
Function to be decorated by setting the verbosity level.
Returns
-------
dec : function
The decorated function
Examples
--------
You can use the ``verbose`` argument to set the verbose level on the fly::
>>> import mne
>>> cov = mne.compute_raw_covariance(raw, verbose='WARNING') # doctest: +SKIP
>>> cov = mne.compute_raw_covariance(raw, verbose='INFO') # doctest: +SKIP
Using up to 49 segments
Number of samples used : 5880
[done]
See Also
--------
set_log_level
set_config
""" # noqa: E501
arg_names = _get_args(function)
default_level = verbose_level = None
if len(arg_names) > 0 and arg_names[0] == 'self':
default_level = getattr(args[0], 'verbose', None)
if 'verbose' in arg_names:
verbose_level = args[arg_names.index('verbose')]
elif 'verbose' in kwargs:
verbose_level = kwargs.pop('verbose')
# This ensures that object.method(verbose=None) will use object.verbose
verbose_level = default_level if verbose_level is None else verbose_level
if verbose_level is not None:
# set it back if we get an exception
with use_log_level(verbose_level):
return function(*args, **kwargs)
return function(*args, **kwargs)
class use_log_level(object):
"""Context handler for logging level.
Parameters
----------
level : int
The level to use.
"""
def __init__(self, level): # noqa: D102
self.level = level
def __enter__(self): # noqa: D105
self.old_level = set_log_level(self.level, True)
def __exit__(self, *args): # noqa: D105
set_log_level(self.old_level)
def has_nibabel(vox2ras_tkr=False):
"""Determine if nibabel is installed.
Parameters
----------
vox2ras_tkr : bool
If True, require nibabel has vox2ras_tkr support.
Returns
-------
has : bool
True if the user has nibabel.
"""
try:
import nibabel
out = True
if vox2ras_tkr: # we need MGHHeader to have vox2ras_tkr param
out = (getattr(getattr(getattr(nibabel, 'MGHImage', 0),
'header_class', 0),
'get_vox2ras_tkr', None) is not None)
return out
except ImportError:
return False
def has_mne_c():
"""Check for MNE-C."""
return 'MNE_ROOT' in os.environ
def has_freesurfer():
"""Check for Freesurfer."""
return 'FREESURFER_HOME' in os.environ
def requires_nibabel(vox2ras_tkr=False):
"""Check for nibabel."""
import pytest
extra = ' with vox2ras_tkr support' if vox2ras_tkr else ''
return pytest.mark.skipif(not has_nibabel(vox2ras_tkr),
reason='Requires nibabel%s' % extra)
def requires_dipy():
"""Check for dipy."""
import pytest
# for some strange reason on CIs we cane get:
#
# can get weird ImportError: dlopen: cannot load any more object
# with static TLS
#
# so let's import everything in the decorator.
try:
from dipy.align import imaffine, imwarp, metrics, transforms # noqa, analysis:ignore
from dipy.align.reslice import reslice # noqa, analysis:ignore
from dipy.align.imaffine import AffineMap # noqa, analysis:ignore
from dipy.align.imwarp import DiffeomorphicMap # noqa, analysis:ignore
except Exception:
have = False
else:
have = True
return pytest.mark.skipif(not have, reason='Requires dipy >= 0.10.1')
def buggy_mkl_svd(function):
"""Decorate tests that make calls to SVD and intermittently fail."""
@wraps(function)
def dec(*args, **kwargs):
try:
return function(*args, **kwargs)
except np.linalg.LinAlgError as exp:
if 'SVD did not converge' in str(exp):
msg = 'Intel MKL SVD convergence error detected, skipping test'
warn(msg)
raise SkipTest(msg)
raise
return dec
def requires_version(library, min_version='0.0'):
"""Check for a library version."""
import pytest
return pytest.mark.skipif(not check_version(library, min_version),
reason=('Requires %s version >= %s'
% (library, min_version)))
def requires_module(function, name, call=None):
"""Skip a test if package is not available (decorator)."""
import pytest
call = ('import %s' % name) if call is None else call
reason = 'Test %s skipped, requires %s.' % (function.__name__, name)
try:
exec(call) in globals(), locals()
except Exception as exc:
if len(str(exc)) > 0 and str(exc) != 'No module named %s' % name:
reason += ' Got exception (%s)' % (exc,)
skip = True
else:
skip = False
return pytest.mark.skipif(skip, reason=reason)(function)
def copy_doc(source):
"""Copy the docstring from another function (decorator).
The docstring of the source function is prepepended to the docstring of the
function wrapped by this decorator.
This is useful when inheriting from a class and overloading a method. This
decorator can be used to copy the docstring of the original method.
Parameters
----------
source : function
Function to copy the docstring from
Returns
-------
wrapper : function
The decorated function
Examples
--------
>>> class A:
... def m1():
... '''Docstring for m1'''
... pass
>>> class B (A):
... @copy_doc(A.m1)
... def m1():
... ''' this gets appended'''
... pass
>>> print(B.m1.__doc__)
Docstring for m1 this gets appended
"""
def wrapper(func):
if source.__doc__ is None or len(source.__doc__) == 0:
raise ValueError('Cannot copy docstring: docstring was empty.')
doc = source.__doc__
if func.__doc__ is not None:
doc += func.__doc__
func.__doc__ = doc
return func
return wrapper
def copy_function_doc_to_method_doc(source):
"""Use the docstring from a function as docstring for a method.
The docstring of the source function is prepepended to the docstring of the
function wrapped by this decorator. Additionally, the first parameter
specified in the docstring of the source function is removed in the new
docstring.
This decorator is useful when implementing a method that just calls a
function. This pattern is prevalent in for example the plotting functions
of MNE.
Parameters
----------
source : function
Function to copy the docstring from
Returns
-------
wrapper : function
The decorated method
Examples
--------
>>> def plot_function(object, a, b):
... '''Docstring for plotting function.
...
... Parameters
... ----------
... object : instance of object
... The object to plot
... a : int
... Some parameter
... b : int
... Some parameter
... '''
... pass
...
>>> class A:
... @copy_function_doc_to_method_doc(plot_function)
... def plot(self, a, b):
... '''
... Notes
... -----
... .. versionadded:: 0.13.0
... '''
... plot_function(self, a, b)
>>> print(A.plot.__doc__)
Docstring for plotting function.
<BLANKLINE>
Parameters
----------
a : int
Some parameter
b : int
Some parameter
<BLANKLINE>
Notes
-----
.. versionadded:: 0.13.0
<BLANKLINE>
Notes
-----
The parsing performed is very basic and will break easily on docstrings
that are not formatted exactly according to the ``numpydoc`` standard.
Always inspect the resulting docstring when using this decorator.
"""
def wrapper(func):
doc = source.__doc__.split('\n')
# Find parameter block
for line, text in enumerate(doc[:-2]):
if (text.strip() == 'Parameters' and
doc[line + 1].strip() == '----------'):
parameter_block = line
break
else:
# No parameter block found
raise ValueError('Cannot copy function docstring: no parameter '
'block found. To simply copy the docstring, use '
'the @copy_doc decorator instead.')
# Find first parameter
for line, text in enumerate(doc[parameter_block:], parameter_block):
if ':' in text:
first_parameter = line
parameter_indentation = len(text) - len(text.lstrip(' '))
break
else:
raise ValueError('Cannot copy function docstring: no parameters '
'found. To simply copy the docstring, use the '
'@copy_doc decorator instead.')
# Find end of first parameter
for line, text in enumerate(doc[first_parameter + 1:],
first_parameter + 1):
# Ignore empty lines
if len(text.strip()) == 0:
continue
line_indentation = len(text) - len(text.lstrip(' '))
if line_indentation <= parameter_indentation:
# Reach end of first parameter
first_parameter_end = line
# Of only one parameter is defined, remove the Parameters
# heading as well
if ':' not in text:
first_parameter = parameter_block
break
else:
# End of docstring reached
first_parameter_end = line
first_parameter = parameter_block
# Copy the docstring, but remove the first parameter
doc = ('\n'.join(doc[:first_parameter]) + '\n' +
'\n'.join(doc[first_parameter_end:]))
if func.__doc__ is not None:
doc += func.__doc__
func.__doc__ = doc
return func
return wrapper
_pandas_call = """
import pandas
version = LooseVersion(pandas.__version__)
if version < '0.8.0':
raise ImportError
"""
_sklearn_call = """
required_version = '0.14'
import sklearn
version = LooseVersion(sklearn.__version__)
if version < required_version:
raise ImportError
"""
_mayavi_call = """
with warnings.catch_warnings(record=True): # traits
from mayavi import mlab
mlab.options.backend = 'test'
"""
_mne_call = """
if not has_mne_c():
raise ImportError
"""
_fs_call = """
if not has_freesurfer():
raise ImportError
"""
_n2ft_call = """
if 'NEUROMAG2FT_ROOT' not in os.environ:
raise ImportError
"""
_fs_or_ni_call = """
if not has_nibabel() and not has_freesurfer():
raise ImportError
"""
requires_pandas = partial(requires_module, name='pandas', call=_pandas_call)
requires_sklearn = partial(requires_module, name='sklearn', call=_sklearn_call)
requires_mayavi = partial(requires_module, name='mayavi', call=_mayavi_call)
requires_mne = partial(requires_module, name='MNE-C', call=_mne_call)
requires_freesurfer = partial(requires_module, name='Freesurfer',
call=_fs_call)
requires_neuromag2ft = partial(requires_module, name='neuromag2ft',
call=_n2ft_call)
requires_fs_or_nibabel = partial(requires_module, name='nibabel or Freesurfer',
call=_fs_or_ni_call)
requires_tvtk = partial(requires_module, name='TVTK',
call='from tvtk.api import tvtk')
requires_pysurfer = partial(requires_module, name='PySurfer',
call="""import warnings
with warnings.catch_warnings(record=True):
from surfer import Brain""")
requires_good_network = partial(
requires_module, name='good network connection',
call='if int(os.environ.get("MNE_SKIP_NETWORK_TESTS", 0)):\n'
' raise ImportError')
requires_nitime = partial(requires_module, name='nitime')
requires_h5py = partial(requires_module, name='h5py')
requires_numpydoc = partial(requires_module, name='numpydoc')
def check_version(library, min_version):
r"""Check minimum library version required.
Parameters
----------
library : str
The library name to import. Must have a ``__version__`` property.
min_version : str
The minimum version string. Anything that matches
``'(\d+ | [a-z]+ | \.)'``. Can also be empty to skip version
check (just check for library presence).
Returns
-------
ok : bool
True if the library exists with at least the specified version.
"""
ok = True
try:
library = __import__(library)
except ImportError:
ok = False
else:
if min_version:
this_version = LooseVersion(library.__version__)
if this_version < min_version:
ok = False
return ok
def _check_mayavi_version(min_version='4.3.0'):
"""Check mayavi version."""
if not check_version('mayavi', min_version):
raise RuntimeError("Need mayavi >= %s" % min_version)
def _check_pyface_backend():
"""Check the currently selected Pyface backend.
Returns
-------
backend : str
Name of the backend.
result : 0 | 1 | 2
0: the backend has been tested and works.
1: the backend has not been tested.
2: the backend not been tested.
Notes
-----
See also http://docs.enthought.com/pyface/.
"""
try:
from traits.trait_base import ETSConfig
except ImportError:
return None, 2
backend = ETSConfig.toolkit
if backend == 'qt4':
status = 0
else:
status = 1
return backend, status
def _import_mlab():
"""Quietly import mlab."""
with warnings.catch_warnings(record=True):
from mayavi import mlab
return mlab
@contextmanager
def traits_test_context():
"""Context to raise errors in trait handlers."""
from traits.api import push_exception_handler
push_exception_handler(reraise_exceptions=True)
yield
push_exception_handler(reraise_exceptions=False)
def traits_test(test_func):
"""Raise errors in trait handlers (decorator)."""
@wraps(test_func)
def dec(*args, **kwargs):
with traits_test_context():
return test_func(*args, **kwargs)
return dec
@verbose
def run_subprocess(command, verbose=None, *args, **kwargs):
"""Run command using subprocess.Popen.
Run command and wait for command to complete. If the return code was zero
then return, otherwise raise CalledProcessError.
By default, this will also add stdout= and stderr=subproces.PIPE
to the call to Popen to suppress printing to the terminal.
Parameters
----------
command : list of str | str
Command to run as subprocess (see subprocess.Popen documentation).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more). Defaults to
self.verbose.
*args, **kwargs : arguments
Additional arguments to pass to subprocess.Popen.
Returns
-------
stdout : str
Stdout returned by the process.
stderr : str
Stderr returned by the process.
"""
for stdxxx, sys_stdxxx, thresh in (
['stderr', sys.stderr, logging.ERROR],
['stdout', sys.stdout, logging.WARNING]):
if stdxxx not in kwargs and logger.level >= thresh:
kwargs[stdxxx] = subprocess.PIPE
elif kwargs.get(stdxxx, sys_stdxxx) is sys_stdxxx:
if isinstance(sys_stdxxx, StringIO):
# nose monkey patches sys.stderr and sys.stdout to StringIO
kwargs[stdxxx] = subprocess.PIPE
else:
kwargs[stdxxx] = sys_stdxxx
# Check the PATH environment variable. If run_subprocess() is to be called
# frequently this should be refactored so as to only check the path once.
env = kwargs.get('env', os.environ)
if any(p.startswith('~') for p in env['PATH'].split(os.pathsep)):
warn('Your PATH environment variable contains at least one path '
'starting with a tilde ("~") character. Such paths are not '
'interpreted correctly from within Python. It is recommended '
'that you use "$HOME" instead of "~".')
if isinstance(command, string_types):
command_str = command
else:
command_str = ' '.join(command)
logger.info("Running subprocess: %s" % command_str)
try:
p = subprocess.Popen(command, *args, **kwargs)
except Exception:
if isinstance(command, string_types):
command_name = command.split()[0]
else:
command_name = command[0]
logger.error('Command not found: %s' % command_name)
raise
stdout_, stderr = p.communicate()
stdout_ = u'' if stdout_ is None else stdout_.decode('utf-8')
stderr = u'' if stderr is None else stderr.decode('utf-8')
output = (stdout_, stderr)
if p.returncode:
print(output)
err_fun = subprocess.CalledProcessError.__init__
if 'output' in _get_args(err_fun):
raise subprocess.CalledProcessError(p.returncode, command, output)
else:
raise subprocess.CalledProcessError(p.returncode, command)
return output
###############################################################################
# LOGGING
def set_log_level(verbose=None, return_old_level=False):
"""Set the logging level.
Parameters
----------
verbose : bool, str, int, or None
The verbosity of messages to print. If a str, it can be either DEBUG,
INFO, WARNING, ERROR, or CRITICAL. Note that these are for
convenience and are equivalent to passing in logging.DEBUG, etc.
For bool, True is the same as 'INFO', False is the same as 'WARNING'.
If None, the environment variable MNE_LOGGING_LEVEL is read, and if
it doesn't exist, defaults to INFO.
return_old_level : bool
If True, return the old verbosity level.
"""
if verbose is None:
verbose = get_config('MNE_LOGGING_LEVEL', 'INFO')
elif isinstance(verbose, bool):
if verbose is True:
verbose = 'INFO'
else:
verbose = 'WARNING'
if isinstance(verbose, string_types):
verbose = verbose.upper()
logging_types = dict(DEBUG=logging.DEBUG, INFO=logging.INFO,
WARNING=logging.WARNING, ERROR=logging.ERROR,
CRITICAL=logging.CRITICAL)
if verbose not in logging_types:
raise ValueError('verbose must be of a valid type')
verbose = logging_types[verbose]
logger = logging.getLogger('mne')
old_verbose = logger.level
logger.setLevel(verbose)
return (old_verbose if return_old_level else None)
def set_log_file(fname=None, output_format='%(message)s', overwrite=None):
"""Set the log to print to a file.
Parameters
----------
fname : str, or None
Filename of the log to print to. If None, stdout is used.
To suppress log outputs, use set_log_level('WARN').
output_format : str
Format of the output messages. See the following for examples:
https://docs.python.org/dev/howto/logging.html
e.g., "%(asctime)s - %(levelname)s - %(message)s".
overwrite : bool | None
Overwrite the log file (if it exists). Otherwise, statements
will be appended to the log (default). None is the same as False,
but additionally raises a warning to notify the user that log
entries will be appended.
"""
logger = logging.getLogger('mne')
handlers = logger.handlers
for h in handlers:
# only remove our handlers (get along nicely with nose)
if isinstance(h, (logging.FileHandler, logging.StreamHandler)):
if isinstance(h, logging.FileHandler):
h.close()
logger.removeHandler(h)
if fname is not None:
if op.isfile(fname) and overwrite is None:
# Don't use warn() here because we just want to
# emit a warnings.warn here (not logger.warn)
warnings.warn('Log entries will be appended to the file. Use '
'overwrite=False to avoid this message in the '
'future.', RuntimeWarning, stacklevel=2)
overwrite = False
mode = 'w' if overwrite else 'a'
lh = logging.FileHandler(fname, mode=mode)
else:
""" we should just be able to do:
lh = logging.StreamHandler(sys.stdout)
but because doctests uses some magic on stdout, we have to do this:
"""
lh = logging.StreamHandler(WrapStdOut())
lh.setFormatter(logging.Formatter(output_format))
# actually add the stream handler
logger.addHandler(lh)
class catch_logging(object):
"""Store logging.
This will remove all other logging handlers, and return the handler to
stdout when complete.
"""
def __enter__(self): # noqa: D105
self._data = StringIO()
self._lh = logging.StreamHandler(self._data)
self._lh.setFormatter(logging.Formatter('%(message)s'))
self._lh._mne_file_like = True # monkey patch for warn() use
for lh in logger.handlers:
logger.removeHandler(lh)
logger.addHandler(self._lh)
return self._data
def __exit__(self, *args): # noqa: D105
logger.removeHandler(self._lh)
set_log_file(None)
###############################################################################
# CONFIG / PREFS
def get_subjects_dir(subjects_dir=None, raise_error=False):
"""Safely use subjects_dir input to return SUBJECTS_DIR.
Parameters
----------
subjects_dir : str | None
If a value is provided, return subjects_dir. Otherwise, look for
SUBJECTS_DIR config and return the result.
raise_error : bool
If True, raise a KeyError if no value for SUBJECTS_DIR can be found
(instead of returning None).
Returns
-------
value : str | None
The SUBJECTS_DIR value.
"""
if subjects_dir is None:
subjects_dir = get_config('SUBJECTS_DIR', raise_error=raise_error)
return subjects_dir
_temp_home_dir = None
def _get_extra_data_path(home_dir=None):
"""Get path to extra data (config, tables, etc.)."""
global _temp_home_dir
if home_dir is None:
home_dir = os.environ.get('_MNE_FAKE_HOME_DIR')
if home_dir is None:
# this has been checked on OSX64, Linux64, and Win32
if 'nt' == os.name.lower():
if op.isdir(op.join(os.getenv('APPDATA'), '.mne')):
home_dir = os.getenv('APPDATA')
else:
home_dir = os.getenv('USERPROFILE')
else:
# This is a more robust way of getting the user's home folder on
# Linux platforms (not sure about OSX, Unix or BSD) than checking
# the HOME environment variable. If the user is running some sort
# of script that isn't launched via the command line (e.g. a script
# launched via Upstart) then the HOME environment variable will
# not be set.
if os.getenv('MNE_DONTWRITE_HOME', '') == 'true':
if _temp_home_dir is None:
_temp_home_dir = tempfile.mkdtemp()
atexit.register(partial(shutil.rmtree, _temp_home_dir,
ignore_errors=True))
home_dir = _temp_home_dir
else:
home_dir = os.path.expanduser('~')
if home_dir is None:
raise ValueError('mne-python config file path could '
'not be determined, please report this '
'error to mne-python developers')
return op.join(home_dir, '.mne')
def get_config_path(home_dir=None):
r"""Get path to standard mne-python config file.
Parameters
----------
home_dir : str | None
The folder that contains the .mne config folder.
If None, it is found automatically.
Returns
-------
config_path : str
The path to the mne-python configuration file. On windows, this
will be '%USERPROFILE%\.mne\mne-python.json'. On every other
system, this will be ~/.mne/mne-python.json.
"""
val = op.join(_get_extra_data_path(home_dir=home_dir),
'mne-python.json')
return val
def set_cache_dir(cache_dir):
"""Set the directory to be used for temporary file storage.
This directory is used by joblib to store memmapped arrays,
which reduces memory requirements and speeds up parallel
computation.
Parameters
----------
cache_dir: str or None
Directory to use for temporary file storage. None disables
temporary file storage.
"""
if cache_dir is not None and not op.exists(cache_dir):
raise IOError('Directory %s does not exist' % cache_dir)
set_config('MNE_CACHE_DIR', cache_dir, set_env=False)
def set_memmap_min_size(memmap_min_size):
"""Set the minimum size for memmaping of arrays for parallel processing.
Parameters
----------
memmap_min_size: str or None
Threshold on the minimum size of arrays that triggers automated memory
mapping for parallel processing, e.g., '1M' for 1 megabyte.
Use None to disable memmaping of large arrays.
"""
if memmap_min_size is not None:
if not isinstance(memmap_min_size, string_types):
raise ValueError('\'memmap_min_size\' has to be a string.')
if memmap_min_size[-1] not in ['K', 'M', 'G']:
raise ValueError('The size has to be given in kilo-, mega-, or '
'gigabytes, e.g., 100K, 500M, 1G.')
set_config('MNE_MEMMAP_MIN_SIZE', memmap_min_size, set_env=False)
# List the known configuration values
known_config_types = (
'MNE_BROWSE_RAW_SIZE',
'MNE_CACHE_DIR',
'MNE_COREG_COPY_ANNOT',
'MNE_COREG_GUESS_MRI_SUBJECT',
'MNE_COREG_HEAD_HIGH_RES',
'MNE_COREG_HEAD_OPACITY',
'MNE_COREG_INTERACTION',
'MNE_COREG_MARK_INSIDE',
'MNE_COREG_PREPARE_BEM',
'MNE_COREG_PROJECT_EEG',
'MNE_COREG_ORIENT_TO_SURFACE',
'MNE_COREG_SCALE_LABELS',
'MNE_COREG_SCALE_BY_DISTANCE',
'MNE_COREG_SCENE_SCALE',
'MNE_COREG_WINDOW_HEIGHT',
'MNE_COREG_WINDOW_WIDTH',
'MNE_COREG_SUBJECTS_DIR',
'MNE_CUDA_IGNORE_PRECISION',
'MNE_DATA',
'MNE_DATASETS_BRAINSTORM_PATH',
'MNE_DATASETS_EEGBCI_PATH',
'MNE_DATASETS_HF_SEF_PATH',
'MNE_DATASETS_MEGSIM_PATH',
'MNE_DATASETS_MISC_PATH',
'MNE_DATASETS_MTRF_PATH',
'MNE_DATASETS_SAMPLE_PATH',
'MNE_DATASETS_SOMATO_PATH',
'MNE_DATASETS_MULTIMODAL_PATH',
'MNE_DATASETS_OPM_PATH',
'MNE_DATASETS_SPM_FACE_DATASETS_TESTS',
'MNE_DATASETS_SPM_FACE_PATH',
'MNE_DATASETS_TESTING_PATH',
'MNE_DATASETS_VISUAL_92_CATEGORIES_PATH',
'MNE_DATASETS_KILOWORD_PATH',
'MNE_DATASETS_FIELDTRIP_CMC_PATH',
'MNE_DATASETS_PHANTOM_4DBTI_PATH',
'MNE_FORCE_SERIAL',
'MNE_KIT2FIFF_STIM_CHANNELS',
'MNE_KIT2FIFF_STIM_CHANNEL_CODING',
'MNE_KIT2FIFF_STIM_CHANNEL_SLOPE',
'MNE_KIT2FIFF_STIM_CHANNEL_THRESHOLD',
'MNE_LOGGING_LEVEL',
'MNE_MEMMAP_MIN_SIZE',
'MNE_SKIP_FTP_TESTS',
'MNE_SKIP_NETWORK_TESTS',
'MNE_SKIP_TESTING_DATASET_TESTS',
'MNE_STIM_CHANNEL',
'MNE_USE_CUDA',
'MNE_SKIP_FS_FLASH_CALL',
'SUBJECTS_DIR',
)
# These allow for partial matches, e.g. 'MNE_STIM_CHANNEL_1' is okay key
known_config_wildcards = (
'MNE_STIM_CHANNEL',
)
def _load_config(config_path, raise_error=False):
"""Safely load a config file."""
with open(config_path, 'r') as fid:
try:
config = json.load(fid)
except ValueError:
# No JSON object could be decoded --> corrupt file?
msg = ('The MNE-Python config file (%s) is not a valid JSON '
'file and might be corrupted' % config_path)
if raise_error:
raise RuntimeError(msg)
warn(msg)
config = dict()
return config
def get_config(key=None, default=None, raise_error=False, home_dir=None):
"""Read MNE-Python preferences from environment or config file.
Parameters
----------
key : None | str
The preference key to look for. The os environment is searched first,
then the mne-python config file is parsed.
If None, all the config parameters present in environment variables or
the path are returned.
default : str | None
Value to return if the key is not found.
raise_error : bool
If True, raise an error if the key is not found (instead of returning
default).
home_dir : str | None
The folder that contains the .mne config folder.
If None, it is found automatically.
Returns
-------
value : dict | str | None
The preference key value.
See Also
--------
set_config
"""
_validate_type(key, (string_types, type(None)), "key", 'string or None')
# first, check to see if key is in env
if key is not None and key in os.environ:
return os.environ[key]
# second, look for it in mne-python config file
config_path = get_config_path(home_dir=home_dir)
if not op.isfile(config_path):
config = {}
else:
config = _load_config(config_path)
if key is None:
# update config with environment variables
env_keys = (set(config).union(known_config_types).
intersection(os.environ))
config.update({key: os.environ[key] for key in env_keys})
return config
elif raise_error is True and key not in config:
meth_1 = 'os.environ["%s"] = VALUE' % key
meth_2 = 'mne.utils.set_config("%s", VALUE, set_env=True)' % key
raise KeyError('Key "%s" not found in environment or in the '
'mne-python config file: %s '
'Try either:'
' %s for a temporary solution, or:'
' %s for a permanent one. You can also '
'set the environment variable before '
'running python.'
% (key, config_path, meth_1, meth_2))
else:
return config.get(key, default)
def set_config(key, value, home_dir=None, set_env=True):
"""Set a MNE-Python preference key in the config file and environment.
Parameters
----------
key : str | None
The preference key to set. If None, a tuple of the valid
keys is returned, and ``value`` and ``home_dir`` are ignored.
value : str | None
The value to assign to the preference key. If None, the key is
deleted.
home_dir : str | None
The folder that contains the .mne config folder.
If None, it is found automatically.
set_env : bool
If True (default), update :data:`os.environ` in addition to
updating the MNE-Python config file.
See Also
--------
get_config
"""
if key is None:
return known_config_types
_validate_type(key, 'str', "key")
# While JSON allow non-string types, we allow users to override config
# settings using env, which are strings, so we enforce that here
_validate_type(value, (string_types, type(None)), "value",
"None or string")
if key not in known_config_types and not \
any(k in key for k in known_config_wildcards):
warn('Setting non-standard config type: "%s"' % key)
# Read all previous values
config_path = get_config_path(home_dir=home_dir)
if op.isfile(config_path):
config = _load_config(config_path, raise_error=True)
else:
config = dict()
logger.info('Attempting to create new mne-python configuration '
'file:\n%s' % config_path)
if value is None:
config.pop(key, None)
if set_env and key in os.environ:
del os.environ[key]
else:
config[key] = value
if set_env:
os.environ[key] = value
# Write all values. This may fail if the default directory is not
# writeable.
directory = op.dirname(config_path)
if not op.isdir(directory):
os.mkdir(directory)
with open(config_path, 'w') as fid:
json.dump(config, fid, sort_keys=True, indent=0)
class ProgressBar(object):
"""Generate a command-line progressbar.
Parameters
----------
max_value : int | iterable
Maximum value of process (e.g. number of samples to process, bytes to
download, etc.). If an iterable is given, then `max_value` will be set
to the length of this iterable.
initial_value : int
Initial value of process, useful when resuming process from a specific
value, defaults to 0.
mesg : str
Message to include at end of progress bar.
max_chars : int | str
Number of characters to use for progress bar itself.
This does not include characters used for the message or percent
complete. Can be "auto" (default) to try to set a sane value based
on the terminal width.
progress_character : char
Character in the progress bar that indicates the portion completed.
spinner : bool
Show a spinner. Useful for long-running processes that may not
increment the progress bar very often. This provides the user with
feedback that the progress has not stalled.
max_total_width : int | str
Maximum total message width. Can use "auto" (default) to try to set
a sane value based on the current terminal width.
verbose_bool : bool
If True, show progress.
Example
-------
>>> progress = ProgressBar(13000)
>>> progress.update(3000) # doctest: +SKIP
[......... ] 23.07692 |
>>> progress.update(6000) # doctest: +SKIP
[.................. ] 46.15385 |
>>> progress = ProgressBar(13000, spinner=True)
>>> progress.update(3000) # doctest: +SKIP
[......... ] 23.07692 |
>>> progress.update(6000) # doctest: +SKIP
[.................. ] 46.15385 /
"""
spinner_symbols = ['|', '/', '-', '\\']
template = '\r[{0}{1}] {2:6.02f}% {4} {3} '
def __init__(self, max_value, initial_value=0, mesg='', max_chars='auto',
progress_character='.', spinner=False,
max_total_width='auto', verbose_bool=True): # noqa: D102
self.cur_value = initial_value
if isinstance(max_value, Iterable):
self.max_value = len(max_value)
self.iterable = max_value
else:
self.max_value = max_value
self.iterable = None
self.mesg = mesg
self.progress_character = progress_character
self.spinner = spinner
self.spinner_index = 0
self.n_spinner = len(self.spinner_symbols)
if verbose_bool == 'auto':
verbose_bool = True if logger.level <= logging.INFO else False
self._do_print = verbose_bool
self.cur_time = time.time()
if max_total_width == 'auto':
max_total_width = _get_terminal_width()
self.max_total_width = int(max_total_width)
if max_chars == 'auto':
max_chars = min(max(max_total_width - 40, 10), 60)
self.max_chars = int(max_chars)
self.cur_rate = 0
with tempfile.NamedTemporaryFile('wb', prefix='tmp_mne_prog') as tf:
self._mmap_fname = tf.name
del tf # should remove the file
self._mmap = None
def update(self, cur_value, mesg=None):
"""Update progressbar with current value of process.
Parameters
----------
cur_value : number
Current value of process. Should be <= max_value (but this is not
enforced). The percent of the progressbar will be computed as
(cur_value / max_value) * 100
mesg : str
Message to display to the right of the progressbar. If None, the
last message provided will be used. To clear the current message,
pass a null string, ''.
"""
cur_time = time.time()
cur_rate = ((cur_value - self.cur_value) /
max(float(cur_time - self.cur_time), 1e-6))
# Smooth the estimate a bit
cur_rate = 0.1 * cur_rate + 0.9 * self.cur_rate
# Ensure floating-point division so we can get fractions of a percent
# for the progressbar.
self.cur_time = cur_time
self.cur_value = cur_value
self.cur_rate = cur_rate
max_value = float(self.max_value) if self.max_value else 1.
progress = np.clip(self.cur_value / max_value, 0, 1)
num_chars = int(progress * self.max_chars)
num_left = self.max_chars - num_chars
# Update the message
if mesg is not None:
if mesg == 'file_sizes':
mesg = '(%s, %s/s)' % (
sizeof_fmt(self.cur_value).rjust(8),
sizeof_fmt(cur_rate).rjust(8))
self.mesg = mesg
# The \r tells the cursor to return to the beginning of the line rather
# than starting a new line. This allows us to have a progressbar-style
# display in the console window.
bar = self.template.format(self.progress_character * num_chars,
' ' * num_left,
progress * 100,
self.spinner_symbols[self.spinner_index],
self.mesg)
bar = bar[:self.max_total_width]
# Force a flush because sometimes when using bash scripts and pipes,
# the output is not printed until after the program exits.
if self._do_print:
sys.stdout.write(bar)
sys.stdout.flush()
# Increment the spinner
if self.spinner:
self.spinner_index = (self.spinner_index + 1) % self.n_spinner
def update_with_increment_value(self, increment_value, mesg=None):
"""Update progressbar with an increment.
Parameters
----------
increment_value : int
Value of the increment of process. The percent of the progressbar
will be computed as
(self.cur_value + increment_value / max_value) * 100
mesg : str
Message to display to the right of the progressbar. If None, the
last message provided will be used. To clear the current message,
pass a null string, ''.
"""
self.update(self.cur_value + increment_value, mesg)
def __iter__(self):
"""Iterate to auto-increment the pbar with 1."""
if self.iterable is None:
raise ValueError("Must give an iterable to be used in a loop.")
self.update(self.cur_value)
for obj in self.iterable:
yield obj
self.update_with_increment_value(1)
def __call__(self, seq):
"""Call the ProgressBar in a joblib-friendly way."""
while True:
try:
yield next(seq)
except StopIteration:
return
else:
self.update_with_increment_value(1)
def subset(self, idx):
"""Make a joblib-friendly index subset updater.
Parameters
----------
idx : ndarray
List of indices for this subset.
Returns
-------
updater : instance of PBSubsetUpdater
Class with a ``.update(ii)`` method.
"""
return _PBSubsetUpdater(self, idx)
def __setitem__(self, idx, val):
"""Use alternative, mmap-based incrementing (max_value must be int)."""
if not self._do_print:
return
assert val is True
self._mmap[idx] = True
self.update(self._mmap.sum())
def __enter__(self): # noqa: D105
if op.isfile(self._mmap_fname):
os.remove(self._mmap_fname)
# prevent corner cases where self.max_value == 0
self._mmap = np.memmap(self._mmap_fname, bool, 'w+',
shape=max(self.max_value, 1))
self.update(0) # must be zero as we just created the memmap
return self
def __exit__(self, type, value, traceback): # noqa: D105
"""Clean up memmapped file."""
# we can't put this in __del__ b/c then each worker will delete the
# file, which is not so good
self._mmap = None
if op.isfile(self._mmap_fname):
os.remove(self._mmap_fname)
if self._do_print:
print('')
class _PBSubsetUpdater(object):
def __init__(self, pb, idx):
self.pb = pb
self.idx = idx
def update(self, ii):
self.pb[self.idx[:ii]] = True
def _get_terminal_width():
"""Get the terminal width."""
if sys.version[0] == '2':
return 80
else:
return shutil.get_terminal_size((80, 20)).columns
def _get_http(url, temp_file_name, initial_size, file_size, timeout,
verbose_bool):
"""Safely (resume a) download to a file from http(s)."""
# Actually do the reading
req = urllib.request.Request(url)
if initial_size > 0:
req.headers['Range'] = 'bytes=%s-' % (initial_size,)
try:
response = urllib.request.urlopen(req, timeout=timeout)
except Exception:
# There is a problem that may be due to resuming, some
# servers may not support the "Range" header. Switch
# back to complete download method
logger.info('Resuming download failed (server '
'rejected the request). Attempting to '
'restart downloading the entire file.')
del req.headers['Range']
response = urllib.request.urlopen(req, timeout=timeout)
total_size = int(response.headers.get('Content-Length', '1').strip())
if initial_size > 0 and file_size == total_size:
logger.info('Resuming download failed (resume file size '
'mismatch). Attempting to restart downloading the '
'entire file.')
initial_size = 0
total_size += initial_size
if total_size != file_size:
raise RuntimeError('URL could not be parsed properly '
'(total size %s != file size %s)'
% (total_size, file_size))
mode = 'ab' if initial_size > 0 else 'wb'
progress = ProgressBar(total_size, initial_value=initial_size,
spinner=True, mesg='file_sizes',
verbose_bool=verbose_bool)
chunk_size = 8192 # 2 ** 13
with open(temp_file_name, mode) as local_file:
while True:
t0 = time.time()
chunk = response.read(chunk_size)
dt = time.time() - t0
if dt < 0.005:
chunk_size *= 2
elif dt > 0.1 and chunk_size > 8192:
chunk_size = chunk_size // 2
if not chunk:
if verbose_bool:
sys.stdout.write('\n')
sys.stdout.flush()
break
local_file.write(chunk)
progress.update_with_increment_value(len(chunk),
mesg='file_sizes')
def _chunk_write(chunk, local_file, progress):
"""Write a chunk to file and update the progress bar."""
local_file.write(chunk)
progress.update_with_increment_value(len(chunk))
@verbose
def _fetch_file(url, file_name, print_destination=True, resume=True,
hash_=None, timeout=30., verbose=None):
"""Load requested file, downloading it if needed or requested.
Parameters
----------
url: string
The url of file to be downloaded.
file_name: string
Name, along with the path, of where downloaded file will be saved.
print_destination: bool, optional
If true, destination of where file was saved will be printed after
download finishes.
resume: bool, optional
If true, try to resume partially downloaded files.
hash_ : str | None
The hash of the file to check. If None, no checking is
performed.
timeout : float
The URL open timeout.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
"""
# Adapted from NISL:
# https://github.com/nisl/tutorial/blob/master/nisl/datasets.py
if hash_ is not None and (not isinstance(hash_, string_types) or
len(hash_) != 32):
raise ValueError('Bad hash value given, should be a 32-character '
'string:\n%s' % (hash_,))
temp_file_name = file_name + ".part"
verbose_bool = (logger.level <= 20) # 20 is info
try:
# Check file size and displaying it alongside the download url
# this loop is necessary to follow any redirects
for _ in range(10): # 10 really should be sufficient...
u = urllib.request.urlopen(url, timeout=timeout)
try:
last_url, url = url, u.geturl()
if url == last_url:
file_size = int(
u.headers.get('Content-Length', '1').strip())
break
finally:
u.close()
del u
else:
raise RuntimeError('Too many redirects')
logger.info('Downloading %s (%s)' % (url, sizeof_fmt(file_size)))
# Triage resume
if not os.path.exists(temp_file_name):
resume = False
if resume:
with open(temp_file_name, 'rb', buffering=0) as local_file:
local_file.seek(0, 2)
initial_size = local_file.tell()
del local_file
else:
initial_size = 0
# This should never happen if our functions work properly
if initial_size > file_size:
raise RuntimeError('Local file (%s) is larger than remote '
'file (%s), cannot resume download'
% (sizeof_fmt(initial_size),
sizeof_fmt(file_size)))
elif initial_size == file_size:
# This should really only happen when a hash is wrong
# during dev updating
warn('Local file appears to be complete (file_size == '
'initial_size == %s)' % (file_size,))
else:
# Need to resume or start over
scheme = urllib.parse.urlparse(url).scheme
if scheme not in ('http', 'https'):
raise NotImplementedError('Cannot use %s' % (scheme,))
_get_http(url, temp_file_name, initial_size, file_size, timeout,
verbose_bool)
# check md5sum
if hash_ is not None:
logger.info('Verifying hash %s.' % (hash_,))
md5 = md5sum(temp_file_name)
if hash_ != md5:
raise RuntimeError('Hash mismatch for downloaded file %s, '
'expected %s but got %s'
% (temp_file_name, hash_, md5))
shutil.move(temp_file_name, file_name)
if print_destination is True:
logger.info('File saved as %s.\n' % file_name)
except Exception:
logger.error('Error while fetching file %s.'
' Dataset fetching aborted.' % url)
raise
def sizeof_fmt(num):
"""Turn number of bytes into human-readable str.
Parameters
----------
num : int
The number of bytes.
Returns
-------
size : str
The size in human-readable format.
"""
units = ['bytes', 'kB', 'MB', 'GB', 'TB', 'PB']
decimals = [0, 0, 1, 2, 2, 2]
if num > 1:
exponent = min(int(log(num, 1024)), len(units) - 1)
quotient = float(num) / 1024 ** exponent
unit = units[exponent]
num_decimals = decimals[exponent]
format_string = '{0:.%sf} {1}' % (num_decimals)
return format_string.format(quotient, unit)
if num == 0:
return '0 bytes'
if num == 1:
return '1 byte'
class SizeMixin(object):
"""Estimate MNE object sizes."""
@property
def _size(self):
"""Estimate the object size."""
try:
size = object_size(self.info)
except Exception:
warn('Could not get size for self.info')
return -1
if hasattr(self, 'data'):
size += object_size(self.data)
elif hasattr(self, '_data'):
size += object_size(self._data)
return size
def __hash__(self):
"""Hash the object.
Returns
-------
hash : int
The hash
"""
from .evoked import Evoked
from .epochs import BaseEpochs
from .io.base import BaseRaw
if isinstance(self, Evoked):
return object_hash(dict(info=self.info, data=self.data))
elif isinstance(self, (BaseEpochs, BaseRaw)):
_check_preload(self, "Hashing ")
return object_hash(dict(info=self.info, data=self._data))
else:
raise RuntimeError('Hashing unknown object type: %s' % type(self))
def _url_to_local_path(url, path):
"""Mirror a url path in a local destination (keeping folder structure)."""
destination = urllib.parse.urlparse(url).path
# First char should be '/', and it needs to be discarded
if len(destination) < 2 or destination[0] != '/':
raise ValueError('Invalid URL')
destination = os.path.join(path,
urllib.request.url2pathname(destination)[1:])
return destination
def _get_stim_channel(stim_channel, info, raise_error=True):
"""Determine the appropriate stim_channel.
First, 'MNE_STIM_CHANNEL', 'MNE_STIM_CHANNEL_1', 'MNE_STIM_CHANNEL_2', etc.
are read. If these are not found, it will fall back to 'STI 014' if
present, then fall back to the first channel of type 'stim', if present.
Parameters
----------
stim_channel : str | list of str | None
The stim channel selected by the user.
info : instance of Info
An information structure containing information about the channels.
Returns
-------
stim_channel : str | list of str
The name of the stim channel(s) to use
"""
if stim_channel is not None:
if not isinstance(stim_channel, list):
_validate_type(stim_channel, 'str', "Stim channel")
stim_channel = [stim_channel]
for channel in stim_channel:
_validate_type(channel, 'str', "Each provided stim channel")
return stim_channel
stim_channel = list()
ch_count = 0
ch = get_config('MNE_STIM_CHANNEL')
while(ch is not None and ch in info['ch_names']):
stim_channel.append(ch)
ch_count += 1
ch = get_config('MNE_STIM_CHANNEL_%d' % ch_count)
if ch_count > 0:
return stim_channel
if 'STI101' in info['ch_names']: # combination channel for newer systems
return ['STI101']
if 'STI 014' in info['ch_names']: # for older systems
return ['STI 014']
from .io.pick import pick_types
stim_channel = pick_types(info, meg=False, ref_meg=False, stim=True)
if len(stim_channel) > 0:
stim_channel = [info['ch_names'][ch_] for ch_ in stim_channel]
elif raise_error:
raise ValueError("No stim channels found. Consider specifying them "
"manually using the 'stim_channel' parameter.")
return stim_channel
def _check_fname(fname, overwrite=False, must_exist=False):
"""Check for file existence."""
_validate_type(fname, 'str', 'fname')
if must_exist and not op.isfile(fname):
raise IOError('File "%s" does not exist' % fname)
if op.isfile(fname):
if not overwrite:
raise IOError('Destination file exists. Please use option '
'"overwrite=True" to force overwriting.')
elif overwrite != 'read':
logger.info('Overwriting existing file.')
def _check_subject(class_subject, input_subject, raise_error=True):
"""Get subject name from class."""
if input_subject is not None:
_validate_type(input_subject, 'str', "subject input")
return input_subject
elif class_subject is not None:
_validate_type(class_subject, 'str',
"Either subject input or class subject attribute")
return class_subject
else:
if raise_error is True:
raise ValueError('Neither subject input nor class subject '
'attribute was a string')
return None
def _check_preload(inst, msg):
"""Ensure data are preloaded."""
from .epochs import BaseEpochs
from .evoked import Evoked
from .time_frequency import _BaseTFR
if isinstance(inst, (_BaseTFR, Evoked)):
pass
else:
name = "epochs" if isinstance(inst, BaseEpochs) else 'raw'
if not inst.preload:
raise RuntimeError(
"By default, MNE does not load data into main memory to "
"conserve resources. " + msg + ' requires %s data to be '
'loaded. Use preload=True (or string) in the constructor or '
'%s.load_data().' % (name, name))
def _check_compensation_grade(inst, inst2, name, name2, ch_names=None):
"""Ensure that objects have same compensation_grade."""
from .io.pick import pick_channels, pick_info
from .io.compensator import get_current_comp
if None in [inst.info, inst2.info]:
return
if ch_names is None:
grade = inst.compensation_grade
grade2 = inst2.compensation_grade
else:
info = inst.info.copy()
info2 = inst2.info.copy()
# pick channels
for t_info in [info, info2]:
if t_info['comps']:
t_info['comps'] = []
picks = pick_channels(t_info['ch_names'], ch_names)
pick_info(t_info, picks, copy=False)
# get compensation grades
grade = get_current_comp(info)
grade2 = get_current_comp(info2)
# perform check
if grade != grade2:
msg = 'Compensation grade of %s (%d) and %s (%d) don\'t match'
raise RuntimeError(msg % (name, inst.compensation_grade,
name2, inst2.compensation_grade))
def _check_pandas_installed(strict=True):
"""Aux function."""
try:
import pandas
return pandas
except ImportError:
if strict is True:
raise RuntimeError('For this functionality to work, the Pandas '
'library is required.')
else:
return False
def _check_pandas_index_arguments(index, defaults):
"""Check pandas index arguments."""
if not any(isinstance(index, k) for k in (list, tuple)):
index = [index]
invalid_choices = [e for e in index if e not in defaults]
if invalid_choices:
options = [', '.join(e) for e in [invalid_choices, defaults]]
raise ValueError('[%s] is not an valid option. Valid index'
'values are \'None\' or %s' % tuple(options))
def _check_ch_locs(chs):
"""Check if channel locations exist.
Parameters
----------
chs : dict
The channels from info['chs']
"""
locs3d = np.array([ch['loc'][:3] for ch in chs])
return not ((locs3d == 0).all() or
(~np.isfinite(locs3d)).all() or
np.allclose(locs3d, 0.))
def _clean_names(names, remove_whitespace=False, before_dash=True):
"""Remove white-space on topo matching.
This function handles different naming
conventions for old VS new VectorView systems (`remove_whitespace`).
Also it allows to remove system specific parts in CTF channel names
(`before_dash`).
Usage
-----
# for new VectorView (only inside layout)
ch_names = _clean_names(epochs.ch_names, remove_whitespace=True)
# for CTF
ch_names = _clean_names(epochs.ch_names, before_dash=True)
"""
cleaned = []
for name in names:
if ' ' in name and remove_whitespace:
name = name.replace(' ', '')
if '-' in name and before_dash:
name = name.split('-')[0]
if name.endswith('_v'):
name = name[:-2]
cleaned.append(name)
return cleaned
def _check_type_picks(picks):
"""Guarantee type integrity of picks."""
err_msg = 'picks must be None, a list or an array of integers'
if picks is None:
pass
elif isinstance(picks, list):
for pick in picks:
_validate_type(pick, 'int', 'Each pick')
picks = np.array(picks)
elif isinstance(picks, np.ndarray):
if not picks.dtype.kind == 'i':
raise TypeError(err_msg)
else:
raise TypeError(err_msg)
return picks
@nottest
def run_tests_if_main(measure_mem=False):
"""Run tests in a given file if it is run as a script."""
local_vars = inspect.currentframe().f_back.f_locals
if not local_vars.get('__name__', '') == '__main__':
return
# we are in a "__main__"
try:
import faulthandler
faulthandler.enable()
except Exception:
pass
with warnings.catch_warnings(record=True): # memory_usage internal dep.
mem = int(round(max(memory_usage(-1)))) if measure_mem else -1
if mem >= 0:
print('Memory consumption after import: %s' % mem)
t0 = time.time()
peak_mem, peak_name = mem, 'import'
max_elapsed, elapsed_name = 0, 'N/A'
count = 0
for name in sorted(list(local_vars.keys()), key=lambda x: x.lower()):
val = local_vars[name]
if name.startswith('_'):
continue
elif callable(val) and name.startswith('test'):
count += 1
doc = val.__doc__.strip() if val.__doc__ else name
sys.stdout.write('%s ... ' % doc)
sys.stdout.flush()
try:
t1 = time.time()
if measure_mem:
with warnings.catch_warnings(record=True): # dep warn
mem = int(round(max(memory_usage((val, (), {})))))
else:
val()
mem = -1
if mem >= peak_mem:
peak_mem, peak_name = mem, name
mem = (', mem: %s MB' % mem) if mem >= 0 else ''
elapsed = int(round(time.time() - t1))
if elapsed >= max_elapsed:
max_elapsed, elapsed_name = elapsed, name
sys.stdout.write('time: %0.3f sec%s\n' % (elapsed, mem))
sys.stdout.flush()
except Exception as err:
if 'skiptest' in err.__class__.__name__.lower():
sys.stdout.write('SKIP (%s)\n' % str(err))
sys.stdout.flush()
else:
raise
elapsed = int(round(time.time() - t0))
sys.stdout.write('Total: %s tests\n• %0.3f sec (%0.3f sec for %s)\n• '
'Peak memory %s MB (%s)\n'
% (count, elapsed, max_elapsed, elapsed_name, peak_mem,
peak_name))
class ArgvSetter(object):
"""Temporarily set sys.argv."""
def __init__(self, args=(), disable_stdout=True,
disable_stderr=True): # noqa: D102
self.argv = list(('python',) + args)
self.stdout = StringIO() if disable_stdout else sys.stdout
self.stderr = StringIO() if disable_stderr else sys.stderr
def __enter__(self): # noqa: D105
self.orig_argv = sys.argv
sys.argv = self.argv
self.orig_stdout = sys.stdout
sys.stdout = self.stdout
self.orig_stderr = sys.stderr
sys.stderr = self.stderr
return self
def __exit__(self, *args): # noqa: D105
sys.argv = self.orig_argv
sys.stdout = self.orig_stdout
sys.stderr = self.orig_stderr
class SilenceStdout(object):
"""Silence stdout."""
def __enter__(self): # noqa: D105
self.stdout = sys.stdout
sys.stdout = StringIO()
return self
def __exit__(self, *args): # noqa: D105
sys.stdout = self.stdout
def md5sum(fname, block_size=1048576): # 2 ** 20
"""Calculate the md5sum for a file.
Parameters
----------
fname : str
Filename.
block_size : int
Block size to use when reading.
Returns
-------
hash_ : str
The hexadecimal digest of the hash.
"""
md5 = hashlib.md5()
with open(fname, 'rb') as fid:
while True:
data = fid.read(block_size)
if not data:
break
md5.update(data)
return md5.hexdigest()
def create_slices(start, stop, step=None, length=1):
"""Generate slices of time indexes.
Parameters
----------
start : int
Index where first slice should start.
stop : int
Index where last slice should maximally end.
length : int
Number of time sample included in a given slice.
step: int | None
Number of time samples separating two slices.
If step = None, step = length.
Returns
-------
slices : list
List of slice objects.
"""
# default parameters
if step is None:
step = length
# slicing
slices = [slice(t, t + length, 1) for t in
range(start, stop - length + 1, step)]
return slices
def _time_mask(times, tmin=None, tmax=None, sfreq=None, raise_error=True):
"""Safely find sample boundaries."""
orig_tmin = tmin
orig_tmax = tmax
tmin = -np.inf if tmin is None else tmin
tmax = np.inf if tmax is None else tmax
if not np.isfinite(tmin):
tmin = times[0]
if not np.isfinite(tmax):
tmax = times[-1]
if sfreq is not None:
# Push to a bit past the nearest sample boundary first
sfreq = float(sfreq)
tmin = int(round(tmin * sfreq)) / sfreq - 0.5 / sfreq
tmax = int(round(tmax * sfreq)) / sfreq + 0.5 / sfreq
if raise_error and tmin > tmax:
raise ValueError('tmin (%s) must be less than or equal to tmax (%s)'
% (orig_tmin, orig_tmax))
mask = (times >= tmin)
mask &= (times <= tmax)
if raise_error and not mask.any():
raise ValueError('No samples remain when using tmin=%s and tmax=%s '
'(original time bounds are [%s, %s])'
% (orig_tmin, orig_tmax, times[0], times[-1]))
return mask
def random_permutation(n_samples, random_state=None):
"""Emulate the randperm matlab function.
It returns a vector containing a random permutation of the
integers between 0 and n_samples-1. It returns the same random numbers
than randperm matlab function whenever the random_state is the same
as the matlab's random seed.
This function is useful for comparing against matlab scripts
which use the randperm function.
Note: the randperm(n_samples) matlab function generates a random
sequence between 1 and n_samples, whereas
random_permutation(n_samples, random_state) function generates
a random sequence between 0 and n_samples-1, that is:
randperm(n_samples) = random_permutation(n_samples, random_state) - 1
Parameters
----------
n_samples : int
End point of the sequence to be permuted (excluded, i.e., the end point
is equal to n_samples-1)
random_state : int | None
Random seed for initializing the pseudo-random number generator.
Returns
-------
randperm : ndarray, int
Randomly permuted sequence between 0 and n-1.
"""
rng = check_random_state(random_state)
idx = rng.rand(n_samples)
randperm = np.argsort(idx)
return randperm
def compute_corr(x, y):
"""Compute pearson correlations between a vector and a matrix."""
if len(x) == 0 or len(y) == 0:
raise ValueError('x or y has zero length')
X = np.array(x, float)
Y = np.array(y, float)
X -= X.mean(0)
Y -= Y.mean(0)
x_sd = X.std(0, ddof=1)
# if covariance matrix is fully expanded, Y needs a
# transpose / broadcasting else Y is correct
y_sd = Y.std(0, ddof=1)[:, None if X.shape == Y.shape else Ellipsis]
return (np.dot(X.T, Y) / float(len(X) - 1)) / (x_sd * y_sd)
def grand_average(all_inst, interpolate_bads=True, drop_bads=True):
"""Make grand average of a list evoked or AverageTFR data.
For evoked data, the function interpolates bad channels based on
`interpolate_bads` parameter. If `interpolate_bads` is True, the grand
average file will contain good channels and the bad channels interpolated
from the good MEG/EEG channels.
For AverageTFR data, the function takes the subset of channels not marked
as bad in any of the instances.
The grand_average.nave attribute will be equal to the number
of evoked datasets used to calculate the grand average.
Note: Grand average evoked should not be used for source localization.
Parameters
----------
all_inst : list of Evoked or AverageTFR data
The evoked datasets.
interpolate_bads : bool
If True, bad MEG and EEG channels are interpolated. Ignored for
AverageTFR.
drop_bads : bool
If True, drop all bad channels marked as bad in any data set.
If neither interpolate_bads nor drop_bads is True, in the output file,
every channel marked as bad in at least one of the input files will be
marked as bad, but no interpolation or dropping will be performed.
Returns
-------
grand_average : Evoked | AverageTFR
The grand average data. Same type as input.
Notes
-----
.. versionadded:: 0.11.0
"""
# check if all elements in the given list are evoked data
from .evoked import Evoked
from .time_frequency import AverageTFR
from .channels.channels import equalize_channels
assert len(all_inst) > 1
inst_type = type(all_inst[0])
_validate_type(all_inst[0], (Evoked, AverageTFR), 'All elements')
for inst in all_inst:
_validate_type(inst, inst_type, 'All elements', 'of the same type')
# Copy channels to leave the original evoked datasets intact.
all_inst = [inst.copy() for inst in all_inst]
# Interpolates if necessary
if isinstance(all_inst[0], Evoked):
if interpolate_bads:
all_inst = [inst.interpolate_bads() if len(inst.info['bads']) > 0
else inst for inst in all_inst]
equalize_channels(all_inst) # apply equalize_channels
from .evoked import combine_evoked as combine
else: # isinstance(all_inst[0], AverageTFR):
from .time_frequency.tfr import combine_tfr as combine
if drop_bads:
bads = list(set((b for inst in all_inst for b in inst.info['bads'])))
if bads:
for inst in all_inst:
inst.drop_channels(bads)
# make grand_average object using combine_[evoked/tfr]
grand_average = combine(all_inst, weights='equal')
# change the grand_average.nave to the number of Evokeds
grand_average.nave = len(all_inst)
# change comment field
grand_average.comment = "Grand average (n = %d)" % grand_average.nave
return grand_average
def _get_root_dir():
"""Get as close to the repo root as possible."""
root_dir = op.abspath(op.dirname(__file__))
up_dir = op.join(root_dir, '..')
if op.isfile(op.join(up_dir, 'setup.py')) and all(
op.isdir(op.join(up_dir, x)) for x in ('mne', 'examples', 'doc')):
root_dir = op.abspath(up_dir)
return root_dir
def sys_info(fid=None, show_paths=False):
"""Print the system information for debugging.
This function is useful for printing system information
to help triage bugs.
Parameters
----------
fid : file-like | None
The file to write to. Will be passed to :func:`print()`.
Can be None to use :data:`sys.stdout`.
show_paths : bool
If True, print paths for each module.
Examples
--------
Running this function with no arguments prints an output that is
useful when submitting bug reports::
>>> import mne
>>> mne.sys_info() # doctest: +SKIP
Platform: Linux-4.2.0-27-generic-x86_64-with-Ubuntu-15.10-wily
Python: 2.7.10 (default, Oct 14 2015, 16:09:02) [GCC 5.2.1 20151010]
Executable: /usr/bin/python
mne: 0.12.dev0
numpy: 1.12.0.dev0+ec5bd81 {lapack=mkl_rt, blas=mkl_rt}
scipy: 0.18.0.dev0+3deede3
matplotlib: 1.5.1+1107.g1fa2697
sklearn: 0.18.dev0
nibabel: 2.1.0dev
mayavi: 4.3.1
cupy: 4.1.0
pandas: 0.17.1+25.g547750a
dipy: 0.14.0
""" # noqa: E501
ljust = 15
out = 'Platform:'.ljust(ljust) + platform.platform() + '\n'
out += 'Python:'.ljust(ljust) + str(sys.version).replace('\n', ' ') + '\n'
out += 'Executable:'.ljust(ljust) + sys.executable + '\n'
out += 'CPU:'.ljust(ljust) + ('%s: %s cores\n' %
(platform.processor(),
multiprocessing.cpu_count()))
out += 'Memory:'.ljust(ljust)
try:
import psutil
except ImportError:
out += 'Unavailable (requires "psutil" package)'
else:
out += '%0.1f GB\n' % (psutil.virtual_memory().total / float(2 ** 30),)
out += '\n'
old_stdout = sys.stdout
capture = StringIO()
try:
sys.stdout = capture
np.show_config()
finally:
sys.stdout = old_stdout
lines = capture.getvalue().split('\n')
libs = []
for li, line in enumerate(lines):
for key in ('lapack', 'blas'):
if line.startswith('%s_opt_info' % key):
lib = lines[li + 1]
if 'NOT AVAILABLE' in lib:
lib = 'unknown'
else:
lib = lib.split('[')[1].split("'")[1]
libs += ['%s=%s' % (key, lib)]
libs = ', '.join(libs)
for mod_name in ('mne', 'numpy', 'scipy', 'matplotlib', '', 'sklearn',
'nibabel', 'mayavi', 'cupy', 'pandas', 'dipy'):
if mod_name == '':
out += '\n'
continue
out += ('%s:' % mod_name).ljust(ljust)
try:
mod = __import__(mod_name)
if mod_name == 'mayavi':
# the real test
from mayavi import mlab # noqa, analysis:ignore
except Exception:
out += 'Not found\n'
else:
extra = (' (%s)' % op.dirname(mod.__file__)) if show_paths else ''
if mod_name == 'numpy':
extra = ' {%s}%s' % (libs, extra)
elif mod_name == 'matplotlib':
extra = ' {backend=%s}%s' % (mod.get_backend(), extra)
elif mod_name == 'mayavi':
try:
from pyface.qt import qt_api
except Exception:
qt_api = 'unknown'
if qt_api == 'pyqt5':
try:
from PyQt5.Qt import PYQT_VERSION_STR
qt_api += ', PyQt5=%s' % (PYQT_VERSION_STR,)
except Exception:
pass
extra = ' {qt_api=%s}%s' % (qt_api, extra)
out += '%s%s\n' % (mod.__version__, extra)
print(out, end='', file=fid)
class ETSContext(object):
"""Add more meaningful message to errors generated by ETS Toolkit."""
def __enter__(self): # noqa: D105
pass
def __exit__(self, type, value, traceback): # noqa: D105
if isinstance(value, SystemExit) and value.code.\
startswith("This program needs access to the screen"):
value.code += ("\nThis can probably be solved by setting "
"ETS_TOOLKIT=qt4. On bash, type\n\n $ export "
"ETS_TOOLKIT=qt4\n\nand run the command again.")
def open_docs(kind=None, version=None):
"""Launch a new web browser tab with the MNE documentation.
Parameters
----------
kind : str | None
Can be "api" (default), "tutorials", or "examples".
The default can be changed by setting the configuration value
MNE_DOCS_KIND.
version : str | None
Can be "stable" (default) or "dev".
The default can be changed by setting the configuration value
MNE_DOCS_VERSION.
"""
if kind is None:
kind = get_config('MNE_DOCS_KIND', 'api')
help_dict = dict(api='python_reference.html', tutorials='tutorials.html',
examples='auto_examples/index.html')
if kind not in help_dict:
raise ValueError('kind must be one of %s, got %s'
% (sorted(help_dict.keys()), kind))
kind = help_dict[kind]
if version is None:
version = get_config('MNE_DOCS_VERSION', 'stable')
versions = ('stable', 'dev')
if version not in versions:
raise ValueError('version must be one of %s, got %s'
% (version, versions))
webbrowser.open_new_tab('https://martinos.org/mne/%s/%s' % (version, kind))
def _is_numeric(n):
return isinstance(n, (np.integer, np.floating, int, float))
def _validate_type(item, types=None, item_name=None, type_name=None):
"""Validate that `item` is an instance of `types`.
Parameters
----------
item : obj
The thing to be checked.
types : type | tuple of types | str
The types to be checked against. If str, must be one of 'str', 'int',
'numeric'.
"""
if types == "int":
_ensure_int(item, name=item_name)
return # terminate prematurely
elif types == "str":
types = string_types
type_name = "str" if type_name is None else type_name
elif types == "numeric":
types = (np.integer, np.floating, int, float)
type_name = "numeric" if type_name is None else type_name
elif types == "info":
from mne.io import Info as types
type_name = "Info" if type_name is None else type_name
item_name = "Info" if item_name is None else item_name
if type_name is None:
iter_types = ([types] if not isinstance(types, (list, tuple))
else types)
type_name = ', '.join(cls.__name__ for cls in iter_types)
if not isinstance(item, types):
raise TypeError('%s must be an instance of %s, got %s instead'
% (item_name, type_name, type(item),))
def linkcode_resolve(domain, info):
"""Determine the URL corresponding to a Python object.
Parameters
----------
domain : str
Only useful when 'py'.
info : dict
With keys "module" and "fullname".
Returns
-------
url : str
The code URL.
Notes
-----
This has been adapted to deal with our "verbose" decorator.
Adapted from SciPy (doc/source/conf.py).
"""
import mne
if domain != 'py':
return None
modname = info['module']
fullname = info['fullname']
submod = sys.modules.get(modname)
if submod is None:
return None
obj = submod
for part in fullname.split('.'):
try:
obj = getattr(obj, part)
except Exception:
return None
try:
fn = inspect.getsourcefile(obj)
except Exception:
fn = None
if not fn:
try:
fn = inspect.getsourcefile(sys.modules[obj.__module__])
except Exception:
fn = None
if not fn:
return None
if fn == '<string>': # verbose decorator
fn = inspect.getmodule(obj).__file__
fn = op.relpath(fn, start=op.dirname(mne.__file__))
fn = '/'.join(op.normpath(fn).split(os.sep)) # in case on Windows
try:
source, lineno = inspect.getsourcelines(obj)
except Exception:
lineno = None
if lineno:
linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1)
else:
linespec = ""
if 'dev' in mne.__version__:
kind = 'master'
else:
kind = 'maint/%s' % ('.'.join(mne.__version__.split('.')[:2]))
return "http://github.com/mne-tools/mne-python/blob/%s/mne/%s%s" % ( # noqa
kind, fn, linespec)
def _check_if_nan(data, msg=" to be plotted"):
"""Raise if any of the values are NaN."""
if not np.isfinite(data).all():
raise ValueError("Some of the values {} are NaN.".format(msg))
|