1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
|
"""Functions to plot epochs data."""
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Jaakko Leppakangas <jaeilepp@student.jyu.fi>
# Jona Sassenhagen <jona.sassenhagen@gmail.com>
#
# License: Simplified BSD
from collections import Counter
from functools import partial
import copy
import numpy as np
from ..utils import verbose, get_config, set_config, logger, warn, _pl
from ..io.pick import pick_types, channel_type, _get_channel_types
from ..time_frequency import psd_multitaper
from .utils import (tight_layout, figure_nobar, _toggle_proj, _toggle_options,
_layout_figure, _setup_vmin_vmax, _channels_changed,
_plot_raw_onscroll, _onclick_help, plt_show, _check_cov,
_compute_scalings, DraggableColorbar, _setup_cmap,
_grad_pair_pick_and_name, _handle_decim,
_setup_plot_projector, _set_ax_label_style)
from .misc import _handle_event_colors
from ..defaults import _handle_default
from ..externals.six import string_types
def plot_epochs_image(epochs, picks=None, sigma=0., vmin=None,
vmax=None, colorbar=True, order=None, show=True,
units=None, scalings=None, cmap=None, fig=None,
axes=None, overlay_times=None, combine=None,
group_by=None, evoked=True, ts_args=dict(), title=None):
"""Plot Event Related Potential / Fields image.
Parameters
----------
epochs : instance of Epochs
The epochs.
picks : int | array-like of int | None
The indices of the channels to consider. If None and ``combine`` is
also None, the first five good channels are plotted.
sigma : float
The standard deviation of the Gaussian smoothing to apply along
the epoch axis to apply in the image. If 0., no smoothing is applied.
Defaults to 0.
vmin : None | float | callable
The min value in the image (and the ER[P/F]). The unit is uV for
EEG channels, fT for magnetometers and fT/cm for gradiometers.
If vmin is None and multiple plots are returned, the limit is
equalized within channel types.
Hint: to specify the lower limit of the data, use
``vmin=lambda data: data.min()``.
vmax : None | float | callable
The max value in the image (and the ER[P/F]). The unit is uV for
EEG channels, fT for magnetometers and fT/cm for gradiometers.
If vmin is None and multiple plots are returned, the limit is
equalized within channel types.
colorbar : bool
Display or not a colorbar.
order : None | array of int | callable
If not None, order is used to reorder the epochs on the y-axis
of the image. If it's an array of int it should be of length
the number of good epochs. If it's a callable the arguments
passed are the times vector and the data as 2d array
(data.shape[1] == len(times).
show : bool
Show figure if True.
units : dict | None
The units of the channel types used for axes labels. If None,
defaults to `units=dict(eeg='uV', grad='fT/cm', mag='fT')`.
scalings : dict | None
The scalings of the channel types to be applied for plotting.
If None, defaults to `scalings=dict(eeg=1e6, grad=1e13, mag=1e15,
eog=1e6)`.
cmap : None | matplotlib colormap | (colormap, bool) | 'interactive'
Colormap. If tuple, the first value indicates the colormap to use and
the second value is a boolean defining interactivity. In interactive
mode the colors are adjustable by clicking and dragging the colorbar
with left and right mouse button. Left mouse button moves the scale up
and down and right mouse button adjusts the range. Hitting space bar
resets the scale. Up and down arrows can be used to change the
colormap. If 'interactive', translates to ('RdBu_r', True).
If None, "RdBu_r" is used, unless the data is all positive, in which
case "Reds" is used.
fig : matplotlib figure | None
Figure instance to draw the image to. Figure must contain two axes for
drawing the single trials and evoked responses. If None a new figure is
created. Defaults to None.
axes : list of matplotlib axes | dict of lists of matplotlib Axes | None
List of axes instances to draw the image, erp and colorbar to.
Must be of length three if colorbar is True (with the last list element
being the colorbar axes) or two if colorbar is False. If both fig and
axes are passed, an error is raised.
If ``group_by`` is a dict, this cannot be a list, but it can be a dict
of lists of axes, with the keys matching those of ``group_by``. In that
case, the provided axes will be used for the corresponding groups.
Defaults to `None`.
overlay_times : array-like, shape (n_epochs,) | None
If not None the parameter is interpreted as time instants in seconds
and is added to the image. It is typically useful to display reaction
times. Note that it is defined with respect to the order
of epochs such that overlay_times[0] corresponds to epochs[0].
combine : None | str | callable
If None, return one figure per pick. If not None, aggregate over
channels via the indicated method. If str, must be one of "mean",
"median", "std" or "gfp", in which case the mean, the median, the
standard deviation or the GFP over channels are plotted.
array (n_epochs, n_times).
If callable, it must accept one positional input, the data
in the format `(n_epochs, n_channels, n_times)`. It must return an
array `(n_epochs, n_times)`. For example::
combine = lambda data: np.median(data, axis=1)
Defaults to `None` if picks are provided, otherwise 'gfp'.
group_by : None | str | dict
If not None, combining happens over channel groups defined by this
parameter.
If str, must be "type", in which case one figure per channel type is
returned (combining within channel types).
If a dict, the values must be picks and one figure will be returned
for each entry, aggregating over the corresponding pick groups; keys
will become plot titles. This is useful for e.g. ROIs. Each entry must
contain only one channel type. For example::
group_by=dict(Left_ROI=[1, 2, 3, 4], Right_ROI=[5, 6, 7, 8])
If not None, combine must not be None. Defaults to `None` if picks are
provided, otherwise 'type'.
evoked : Bool
Draw the ER[P/F] below the image or not.
ts_args : dict
Arguments passed to a call to `mne.viz.plot_compare_evoked` to style
the evoked plot below the image. Defaults to an empty dictionary,
meaning `plot_compare_evokeds` will be called with default parameters
(yaxis truncation will be turned off, and inversion of the y axis
via `invert_y=True` will raise an error).
title : None | str
If str, will be plotted as figure title. Else, the channels will be
indicated.
Returns
-------
figs : lists of matplotlib figures
One figure per channel displayed.
"""
units = _handle_default('units', units)
scalings = _handle_default('scalings', scalings)
# setting defaults
if group_by is not None and combine is None:
combine = 'gfp'
if all(param is None for param in (group_by, picks, combine)):
group_by = "type"
combine = "gfp"
if combine is not None:
ts_args["show_sensors"] = False
if picks is None:
picks = pick_types(epochs.info, meg=True, eeg=True, ref_meg=False,
exclude='bads')
if group_by is None:
logger.info("No picks and no groupby, showing the first five "
"channels ...")
picks = picks[:5] # take 5 picks to prevent spawning many figs
else:
picks = np.atleast_1d(picks)
if "invert_y" in ts_args:
raise NotImplementedError("'invert_y' found in 'ts_args'. "
"This is currently not implemented.")
manual_ylims = "ylim" in ts_args
vlines = ts_args.get(
"vlines", [0] if (epochs.times[0] < 0 < epochs.times[-1]) else [])
# input checks
if (combine is None and (fig is not None or axes is not None) and
len(picks) > 1):
raise ValueError('Only single pick can be drawn to a figure/axis; '
'provide only one pick, or use `combine`.')
if set(units.keys()) != set(scalings.keys()):
raise ValueError('Scalings and units must have the same keys.')
ch_types = _get_channel_types(epochs.info, picks=picks, unique=False)
if len(set(ch_types)) > 1 and group_by is None and combine is not None:
warn("Combining over multiple channel types. Please use `group_by`.")
for ch_type in set(ch_types):
if ch_type not in scalings:
# We know it's not in either scalings or units since keys match
raise KeyError('%s type not in scalings and units' % ch_type)
if isinstance(axes, dict):
show = False
if not isinstance(group_by, dict):
raise ValueError("If axes is a dict, group_by must be a dict, "
"got " + str(type(group_by)))
else:
if axes is not None and isinstance(group_by, dict):
raise ValueError("If ``group_by`` is a dict, axes must be a dict "
"or None, got " + str(type(group_by)))
if isinstance(group_by, dict) and combine is None:
raise ValueError("If ``group_by`` is a dict, ``combine`` must not be "
"None.")
# call helpers to prepare the plot
# First, we collect groupings of picks and types in two lists
# (all_picks, all_ch_types, names) -> group_by.
# Then, we construct a list of the corresponding data, names and evokeds
# (groups) -> combine.
# Then, we loop over this list and plot using _plot_epochs_image.
# group_by
all_picks, all_ch_types, names = _get_picks_and_types(
picks, ch_types, group_by, combine)
# all_picks is a list of lists of ints (picks); those lists will
# be length 1 if combine is None, else of length > 1.
# combine/construct list for plotting
groups = _pick_and_combine(epochs, combine, all_picks, all_ch_types, names)
# each entry of groups is: (data, ch_type, evoked, name)
# prepare the image - required for uniform vlims
vmins, vmaxs = dict(), dict()
for group in groups:
epochs, ch_type = group[:2]
group.extend(_prepare_epochs_image_im_data(
epochs, ch_type, overlay_times, order, sigma, vmin, vmax,
scalings[ch_type], ts_args))
if vmin is None or vmax is None: # equalize across groups
this_vmin, this_vmax, this_ylim = group[-3:]
if vmin is None and (this_vmin < vmins.get(ch_type, 1)):
vmins[ch_type] = this_vmin
if vmax is None and (this_vmax > vmaxs.get(ch_type, -1)):
vmaxs[ch_type] = this_vmax
# plot
figs, axes_list = list(), list()
ylims = dict((ch_type, (1., -1.)) for ch_type in all_ch_types)
for (epochs_, ch_type, ax_name, name, data, overlay_times, vmin, vmax,
ts_args) in groups:
vmin, vmax = vmins.get(ch_type, vmin), vmaxs.get(ch_type, vmax)
these_axes = axes[ax_name] if isinstance(axes, dict) else axes
axes_dict = _prepare_epochs_image_axes(these_axes, fig, colorbar,
evoked)
axes_list.append(axes_dict)
title_ = ((ax_name if isinstance(axes, dict) else name)
if title is None else title)
this_fig = _plot_epochs_image(
epochs_, data, vmin=vmin, vmax=vmax, colorbar=colorbar, show=False,
unit=units[ch_type], ch_type=ch_type, cmap=cmap,
axes_dict=axes_dict, title=title_, overlay_times=overlay_times,
evoked=evoked, ts_args=ts_args)
figs.append(this_fig)
# the rest of the code is for aligning ylims for multiple plots
if evoked is True and not manual_ylims:
evoked_ax = axes_dict["evoked"]
this_min, this_max = evoked_ax.get_ylim()
curr_min, curr_max = ylims[ch_type]
ylims[ch_type] = min(curr_min, this_min), max(curr_max, this_max),
if evoked is True: # adjust ylims
for group, axes_dict in zip(groups, axes_list):
ch_type = group[1]
ax = axes_dict["evoked"]
this_ymin, this_ymax = these_ylims = ylims[ch_type]
ax.set_ylim(these_ylims)
yticks = np.array(ax.get_yticks())
max_height = yticks[yticks < this_ymax][-1]
if not manual_ylims:
ax.spines["left"].set_bounds(this_ymin, max_height)
if len(vlines) > 0:
if overlay_times is not None:
overlay = {overlay_times.mean(), np.median(overlay_times)}
else:
overlay = {}
for line in vlines:
ax.vlines(line, this_ymin, max_height, colors='k',
linestyles='-' if line in overlay else "--",
linewidth=2. if line in overlay else 1.)
plt_show(show)
return figs
def _get_picks_and_types(picks, ch_types, group_by, combine):
"""Pack picks and types into a list. Helper for plot_epochs_image."""
if group_by is None:
if combine is not None:
picks = [picks]
return picks, ch_types, ch_types
elif group_by == "type":
all_picks, all_ch_types = list(), list()
for this_type in set(ch_types):
these_picks = picks[np.array(ch_types) == this_type]
all_picks.append(these_picks)
all_ch_types.append(this_type)
names = all_ch_types # only differs for dict group_by
elif isinstance(group_by, dict):
names = list(group_by.keys())
all_picks = [group_by[name] for name in names]
for name, picks_ in group_by.items():
n_picks = len(picks_)
if n_picks < 2:
raise ValueError(" ".join(
(name, "has only ", str(n_picks),
"sensor{}.".format(_pl(n_picks)))))
all_ch_types = list()
for picks_, name in zip(all_picks, names):
this_ch_type = list(set((ch_types[pick] for pick in picks_)))
n_types = len(this_ch_type)
if n_types > 1: # we can only scale properly with 1 type
raise ValueError(
"ROI {} contains more than one sensor type ({})!".format(
name, n_types))
all_ch_types.append(this_ch_type[0])
names.append(name)
else:
raise ValueError("If ``group_by`` is not None, it must be a dict "
"or 'type', got " + str(type(group_by)))
return all_picks, all_ch_types, names # all_picks is a list of lists
def _pick_and_combine(epochs, combine, all_picks, all_ch_types, names):
"""Pick and combine epochs image. Helper for plot_epochs_image."""
to_plot_list = list()
tmin = epochs.times[0]
if combine is None:
if epochs.preload is False:
epochs = epochs.copy().load_data() # FIXME: avoid copy
for pick, ch_type in zip(all_picks, all_ch_types):
name = epochs.ch_names[pick]
these_epochs = epochs.copy().pick_channels([name])
to_plot_list.append([these_epochs, ch_type, name, name])
return to_plot_list
# if combine is not None ...
from .. import EpochsArray, pick_info
data = epochs.get_data()
type2name = {"eeg": "EEG", "grad": "Gradiometers",
"mag": "Magnetometers"}
combine_title = (" (" + combine + ")"
if isinstance(combine, string_types) else "")
if combine == "gfp":
def combine(data):
return np.sqrt((data * data).mean(axis=1))
elif combine in {"mean", "median", "std"}:
func = getattr(np, combine)
def combine(data):
return func(data, axis=1)
elif not callable(combine):
raise ValueError(
"``combine`` must be None, a callable or one out of 'mean' "
"or 'gfp'. Got " + str(type(combine)))
for ch_type, picks_, name in zip(all_ch_types, all_picks, names):
if len(np.atleast_1d(picks_)) < 2:
raise ValueError("Cannot combine over only one sensor. "
"Consider using different values for "
"``picks`` and/or ``group_by``.")
if ch_type == "grad":
def pair_and_combine(data):
data = data ** 2
data = (data[:, ::2, :] + data[:, 1::2, :]) / 2
return combine(np.sqrt(data))
picks_ = _grad_pair_pick_and_name(epochs.info, picks_)[0]
this_data = pair_and_combine(
data[:, picks_, :])[:, np.newaxis, :]
else:
this_data = combine(
data[:, picks_, :])[:, np.newaxis, :]
info = pick_info(epochs.info, [picks_[0]], copy=True)
info['projs'] = []
these_epochs = EpochsArray(this_data.copy(), info, tmin=tmin)
to_plot_list.append([these_epochs, ch_type, name,
type2name.get(name, name) + combine_title])
return to_plot_list # epochs, ch_type, name, axtitle
def _prepare_epochs_image_im_data(epochs, ch_type, overlay_times, order,
sigma, vmin, vmax, scaling, ts_args):
"""Preprocess epochs image (sort, filter). Helper for plot_epochs_image."""
from scipy import ndimage
# data transforms - sorting, scaling, smoothing
data = epochs.get_data()[:, 0, :]
n_epochs = len(data)
if overlay_times is not None and len(overlay_times) != n_epochs:
raise ValueError('size of overlay_times parameter (%s) do not '
'match the number of epochs (%s).'
% (len(overlay_times), n_epochs))
if overlay_times is not None:
overlay_times = np.array(overlay_times)
times_min = np.min(overlay_times)
times_max = np.max(overlay_times)
if ((times_min < epochs.times[0]) or (times_max > epochs.times[-1])):
warn('Some values in overlay_times fall outside of the epochs '
'time interval (between %s s and %s s)'
% (epochs.times[0], epochs.times[-1]))
if callable(order):
order = order(epochs.times, data)
if order is not None and (len(order) != n_epochs):
raise ValueError(("`order` must be None, callable or an array as long "
"as the data. Got " + str(type(order))))
if order is not None:
order = np.asarray(order)
data = data[order]
if overlay_times is not None:
overlay_times = overlay_times[order]
if sigma > 0.:
data = ndimage.gaussian_filter1d(data, sigma=sigma, axis=0)
# setup lims and cmap
scale_vmin = True if (vmin is None or callable(vmin)) else False
scale_vmax = True if (vmax is None or callable(vmax)) else False
vmin, vmax = _setup_vmin_vmax(
data, vmin, vmax, norm=(data.min() >= 0) and (vmin is None))
if not scale_vmin:
vmin /= scaling
if not scale_vmax:
vmax /= scaling
ylim = dict()
ts_args_ = dict(colors={"cond": "black"}, ylim=ylim, picks=[0], title='',
truncate_yaxis=False, truncate_xaxis=False, show=False)
ts_args_.update(**ts_args)
ts_args_["vlines"] = []
return [data * scaling, overlay_times, vmin * scaling, vmax * scaling,
ts_args_]
def _make_epochs_image_axis_grid(axes_dict=dict(), colorbar=False,
evoked=False):
"""Create axes for image plotting. Helper for plot_epochs_image."""
import matplotlib.pyplot as plt
axes_dict["image"] = axes_dict.get("image", plt.subplot2grid(
(3, 10), (0, 0), colspan=9 if colorbar else 10,
rowspan=2 if evoked else 3))
if evoked:
axes_dict["evoked"] = plt.subplot2grid(
(3, 10), (2, 0), colspan=9 if colorbar else 10, rowspan=1)
if colorbar:
axes_dict["colorbar"] = plt.subplot2grid(
(3, 10), (0, 9), colspan=1, rowspan=2 if evoked else 3)
return axes_dict
def _prepare_epochs_image_axes(axes, fig, colorbar, evoked):
"""Prepare axes for image plotting. Helper for plot_epochs_image."""
import matplotlib.pyplot as plt
# prepare fig and axes
axes_dict = dict()
if axes is None:
if fig is None:
fig = plt.figure()
plt.figure(fig.number)
axes_dict = _make_epochs_image_axis_grid(
axes_dict, colorbar, evoked)
else:
if fig is not None:
raise ValueError('Both figure and axes were passed, please'
'only pass one of these.')
from .utils import _validate_if_list_of_axes
oblig_len = 3 - ((not colorbar) + (not evoked))
_validate_if_list_of_axes(axes, obligatory_len=oblig_len)
axes_dict["image"] = axes[0]
if evoked:
axes_dict["evoked"] = axes[1]
# if axes were passed - we ignore fig param and get figure from axes
fig = axes_dict["image"].get_figure()
if colorbar:
axes_dict["colorbar"] = axes[-1]
return axes_dict
def _plot_epochs_image(epochs, data, ch_type, vmin=None, vmax=None,
colorbar=False, show=False, unit=None, cmap=None,
axes_dict=None, overlay_times=None, title=None,
evoked=False, ts_args=None):
"""Plot epochs image. Helper function for plot_epochs_image."""
if cmap is None:
cmap = "Reds" if data.min() >= 0 else 'RdBu_r'
# Plot
# draw the image
ax = axes_dict["image"]
fig = ax.get_figure()
cmap = _setup_cmap(cmap)
n_epochs = len(data)
extent = [1e3 * epochs.times[0], 1e3 * epochs.times[-1], 0, n_epochs]
im = ax.imshow(data, vmin=vmin, vmax=vmax, cmap=cmap[0], aspect='auto',
origin='lower', interpolation='nearest', extent=extent)
if overlay_times is not None:
ax.plot(1e3 * overlay_times, 0.5 + np.arange(n_epochs), 'k',
linewidth=2)
ax.set_title(title)
ax.set_ylabel('Epochs')
ax.axis('auto')
ax.axis('tight')
if overlay_times is not None:
ax.set_xlim(1e3 * epochs.times[0], 1e3 * epochs.times[-1])
ax.axvline(0, color='k', linewidth=1, linestyle='--')
# draw the evoked
if evoked:
from mne.viz import plot_compare_evokeds
plot_compare_evokeds(
{"cond": list(epochs.iter_evoked())}, axes=axes_dict["evoked"],
**ts_args)
axes_dict["evoked"].set_xlim(epochs.times[[0, -1]])
ax.set_xticks(())
# draw the colorbar
if colorbar:
import matplotlib.pyplot as plt
cbar = plt.colorbar(im, cax=axes_dict['colorbar'])
cbar.ax.set_ylabel(unit + "\n\n", rotation=270)
if cmap[1]:
ax.CB = DraggableColorbar(cbar, im)
tight_layout(fig=fig)
fig._axes_dict = axes_dict # storing this here for easy access later
# finish
plt_show(show)
return fig
def plot_drop_log(drop_log, threshold=0, n_max_plot=20, subject='Unknown',
color=(0.9, 0.9, 0.9), width=0.8, ignore=('IGNORED',),
show=True):
"""Show the channel stats based on a drop_log from Epochs.
Parameters
----------
drop_log : list of lists
Epoch drop log from Epochs.drop_log.
threshold : float
The percentage threshold to use to decide whether or not to
plot. Default is zero (always plot).
n_max_plot : int
Maximum number of channels to show stats for.
subject : str
The subject name to use in the title of the plot.
color : tuple | str
Color to use for the bars.
width : float
Width of the bars.
ignore : list
The drop reasons to ignore.
show : bool
Show figure if True.
Returns
-------
fig : Instance of matplotlib.figure.Figure
The figure.
"""
import matplotlib.pyplot as plt
from ..epochs import _drop_log_stats
perc = _drop_log_stats(drop_log, ignore)
scores = Counter([ch for d in drop_log for ch in d if ch not in ignore])
ch_names = np.array(list(scores.keys()))
fig = plt.figure()
if perc < threshold or len(ch_names) == 0:
plt.text(0, 0, 'No drops')
return fig
n_used = 0
for d in drop_log: # "d" is the list of drop reasons for each epoch
if len(d) == 0 or any(ch not in ignore for ch in d):
n_used += 1 # number of epochs not ignored
counts = 100 * np.array(list(scores.values()), dtype=float) / n_used
n_plot = min(n_max_plot, len(ch_names))
order = np.flipud(np.argsort(counts))
plt.title('%s: %0.1f%%' % (subject, perc))
x = np.arange(n_plot)
plt.bar(x, counts[order[:n_plot]], color=color, width=width)
plt.xticks(x + width / 2.0, ch_names[order[:n_plot]], rotation=45,
horizontalalignment='right')
plt.tick_params(axis='x', which='major', labelsize=10)
plt.ylabel('% of epochs rejected')
plt.xlim((-width / 2.0, (n_plot - 1) + width * 3 / 2))
plt.grid(True, axis='y')
tight_layout(pad=1, fig=fig)
plt_show(show)
return fig
def _draw_epochs_axes(epoch_idx, good_ch_idx, bad_ch_idx, data, times, axes,
title_str, axes_handler):
"""Handle drawing epochs axes."""
this = axes_handler[0]
for ii, data_, ax in zip(epoch_idx, data, axes):
for l, d in zip(ax.lines, data_[good_ch_idx]):
l.set_data(times, d)
if bad_ch_idx is not None:
bad_lines = [ax.lines[k] for k in bad_ch_idx]
for l, d in zip(bad_lines, data_[bad_ch_idx]):
l.set_data(times, d)
if title_str is not None:
ax.set_title(title_str % ii, fontsize=12)
ax.set_ylim(data.min(), data.max())
ax.set_yticks(list())
ax.set_xticks(list())
if vars(ax)[this]['reject'] is True:
# memorizing reject
for l in ax.lines:
l.set_color((0.8, 0.8, 0.8))
ax.get_figure().canvas.draw()
else:
# forgetting previous reject
for k in axes_handler:
if k == this:
continue
if vars(ax).get(k, {}).get('reject', None) is True:
for l in ax.lines[:len(good_ch_idx)]:
l.set_color('k')
if bad_ch_idx is not None:
for l in ax.lines[-len(bad_ch_idx):]:
l.set_color('r')
ax.get_figure().canvas.draw()
break
def _epochs_navigation_onclick(event, params):
"""Handle epochs navigation click."""
import matplotlib.pyplot as plt
p = params
here = None
if event.inaxes == p['back'].ax:
here = 1
elif event.inaxes == p['next'].ax:
here = -1
elif event.inaxes == p['reject-quit'].ax:
if p['reject_idx']:
p['epochs'].drop(p['reject_idx'])
plt.close(p['fig'])
plt.close(event.inaxes.get_figure())
if here is not None:
p['idx_handler'].rotate(here)
p['axes_handler'].rotate(here)
this_idx = p['idx_handler'][0]
_draw_epochs_axes(this_idx, p['good_ch_idx'], p['bad_ch_idx'],
p['data'][this_idx],
p['times'], p['axes'], p['title_str'],
p['axes_handler'])
# XXX don't ask me why
p['axes'][0].get_figure().canvas.draw()
def _epochs_axes_onclick(event, params):
"""Handle epochs axes click."""
reject_color = (0.8, 0.8, 0.8)
ax = event.inaxes
if event.inaxes is None:
return
p = params
here = vars(ax)[p['axes_handler'][0]]
if here.get('reject', None) is False:
idx = here['idx']
if idx not in p['reject_idx']:
p['reject_idx'].append(idx)
for l in ax.lines:
l.set_color(reject_color)
here['reject'] = True
elif here.get('reject', None) is True:
idx = here['idx']
if idx in p['reject_idx']:
p['reject_idx'].pop(p['reject_idx'].index(idx))
good_lines = [ax.lines[k] for k in p['good_ch_idx']]
for l in good_lines:
l.set_color('k')
if p['bad_ch_idx'] is not None:
bad_lines = ax.lines[-len(p['bad_ch_idx']):]
for l in bad_lines:
l.set_color('r')
here['reject'] = False
ax.get_figure().canvas.draw()
def plot_epochs(epochs, picks=None, scalings=None, n_epochs=20, n_channels=20,
title=None, events=None, event_colors=None, show=True,
block=False, decim='auto', noise_cov=None):
"""Visualize epochs.
Bad epochs can be marked with a left click on top of the epoch. Bad
channels can be selected by clicking the channel name on the left side of
the main axes. Calling this function drops all the selected bad epochs as
well as bad epochs marked beforehand with rejection parameters.
Parameters
----------
epochs : instance of Epochs
The epochs object
picks : array-like of int | None
Channels to be included. If None only good data channels are used.
Defaults to None
scalings : dict | 'auto' | None
Scaling factors for the traces. If any fields in scalings are 'auto',
the scaling factor is set to match the 99.5th percentile of a subset of
the corresponding data. If scalings == 'auto', all scalings fields are
set to 'auto'. If any fields are 'auto' and data is not preloaded,
a subset of epochs up to 100mb will be loaded. If None, defaults to::
dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6, ecg=5e-4,
emg=1e-3, ref_meg=1e-12, misc=1e-3, stim=1, resp=1, chpi=1e-4,
whitened=10.)
n_epochs : int
The number of epochs per view. Defaults to 20.
n_channels : int
The number of channels per view. Defaults to 20.
title : str | None
The title of the window. If None, epochs name will be displayed.
Defaults to None.
events : None, array, shape (n_events, 3)
Events to show with vertical bars. If events are provided, the epoch
numbers are not shown to prevent overlap. You can toggle epoch
numbering through options (press 'o' key). You can use
:func:`mne.viz.plot_events` as a legend for the colors. By default, the
coloring scheme is the same.
.. warning:: If the epochs have been resampled, the events no longer
align with the data.
.. versionadded:: 0.14.0
event_colors : None, dict
Dictionary of event_id value and its associated color. If None,
colors are automatically drawn from a default list (cycled through if
number of events longer than list of default colors). Uses the same
coloring scheme as :func:`mne.viz.plot_events`.
.. versionadded:: 0.14.0
show : bool
Show figure if True. Defaults to True
block : bool
Whether to halt program execution until the figure is closed.
Useful for rejecting bad trials on the fly by clicking on an epoch.
Defaults to False.
decim : int | 'auto'
Amount to decimate the data during display for speed purposes.
You should only decimate if the data are sufficiently low-passed,
otherwise aliasing can occur. The 'auto' mode (default) uses
the decimation that results in a sampling rate at least three times
larger than ``info['lowpass']`` (e.g., a 40 Hz lowpass will result in
at least a 120 Hz displayed sample rate).
.. versionadded:: 0.15.0
noise_cov : instance of Covariance | str | None
Noise covariance used to whiten the data while plotting.
Whitened data channels are scaled by ``scalings['whitened']``,
and their channel names are shown in italic.
Can be a string to load a covariance from disk.
See also :meth:`mne.Evoked.plot_white` for additional inspection
of noise covariance properties when whitening evoked data.
For data processed with SSS, the effective dependence between
magnetometers and gradiometers may introduce differences in scaling,
consider using :meth:`mne.Evoked.plot_white`.
.. versionadded:: 0.16.0
Returns
-------
fig : Instance of matplotlib.figure.Figure
The figure.
Notes
-----
The arrow keys (up/down/left/right) can be used to navigate between
channels and epochs and the scaling can be adjusted with - and + (or =)
keys, but this depends on the backend matplotlib is configured to use
(e.g., mpl.use(``TkAgg``) should work). Full screen mode can be toggled
with f11 key. The amount of epochs and channels per view can be adjusted
with home/end and page down/page up keys. These can also be set through
options dialog by pressing ``o`` key. ``h`` key plots a histogram of
peak-to-peak values along with the used rejection thresholds. Butterfly
plot can be toggled with ``b`` key. Right mouse click adds a vertical line
to the plot. Click 'help' button at bottom left corner of the plotter to
view all the options.
.. versionadded:: 0.10.0
"""
epochs.drop_bad()
scalings = _compute_scalings(scalings, epochs)
scalings = _handle_default('scalings_plot_raw', scalings)
decim, data_picks = _handle_decim(epochs.info.copy(), decim, None)
projs = epochs.info['projs']
noise_cov = _check_cov(noise_cov, epochs.info)
params = dict(epochs=epochs, info=epochs.info.copy(), t_start=0.,
bad_color=(0.8, 0.8, 0.8), histogram=None, decim=decim,
data_picks=data_picks, noise_cov=noise_cov,
use_noise_cov=noise_cov is not None)
params['label_click_fun'] = partial(_pick_bad_channels, params=params)
_prepare_mne_browse_epochs(params, projs, n_channels, n_epochs, scalings,
title, picks, events=events,
event_colors=event_colors)
_prepare_projectors(params)
_layout_figure(params)
callback_close = partial(_close_event, params=params)
params['fig'].canvas.mpl_connect('close_event', callback_close)
try:
plt_show(show, block=block)
except TypeError: # not all versions have this
plt_show(show)
return params['fig']
@verbose
def plot_epochs_psd(epochs, fmin=0, fmax=np.inf, tmin=None, tmax=None,
proj=False, bandwidth=None, adaptive=False, low_bias=True,
normalization='length', picks=None, ax=None, color='black',
area_mode='std', area_alpha=0.33, dB=True, n_jobs=1,
show=True, verbose=None):
"""Plot the power spectral density across epochs.
Parameters
----------
epochs : instance of Epochs
The epochs object
fmin : float
Start frequency to consider.
fmax : float
End frequency to consider.
tmin : float | None
Start time to consider.
tmax : float | None
End time to consider.
proj : bool
Apply projection.
bandwidth : float
The bandwidth of the multi taper windowing function in Hz. The default
value is a window half-bandwidth of 4.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
low_bias : bool
Only use tapers with more than 90% spectral concentration within
bandwidth.
normalization : str
Either "full" or "length" (default). If "full", the PSD will
be normalized by the sampling rate as well as the length of
the signal (as in nitime).
picks : array-like of int | None
List of channels to use.
ax : instance of matplotlib Axes | None
Axes to plot into. If None, axes will be created.
color : str | tuple
A matplotlib-compatible color to use.
area_mode : str | None
Mode for plotting area. If 'std', the mean +/- 1 STD (across channels)
will be plotted. If 'range', the min and max (across channels) will be
plotted. Bad channels will be excluded from these calculations.
If None, no area will be plotted.
area_alpha : float
Alpha for the area.
dB : bool
If True, transform data to decibels.
n_jobs : int
Number of jobs to run in parallel.
show : bool
Show figure if True.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
fig : instance of matplotlib figure
Figure distributing one image per channel across sensor topography.
"""
from .raw import _set_psd_plot_params, _convert_psds
fig, picks_list, titles_list, units_list, scalings_list, ax_list, \
make_label = _set_psd_plot_params(
epochs.info, proj, picks, ax, area_mode)
for ii, (picks, title, ax) in enumerate(zip(picks_list, titles_list,
ax_list)):
psds, freqs = psd_multitaper(epochs, picks=picks, fmin=fmin,
fmax=fmax, tmin=tmin, tmax=tmax,
bandwidth=bandwidth, adaptive=adaptive,
low_bias=low_bias,
normalization=normalization, proj=proj,
n_jobs=n_jobs)
ylabel = _convert_psds(psds, dB, 'auto', scalings_list[ii],
units_list[ii],
[epochs.ch_names[pi] for pi in picks])
# mean across epochs and channels
psd_mean = np.mean(psds, axis=0).mean(axis=0)
if area_mode == 'std':
# std across channels
psd_std = np.std(np.mean(psds, axis=0), axis=0)
hyp_limits = (psd_mean - psd_std, psd_mean + psd_std)
elif area_mode == 'range':
hyp_limits = (np.min(np.mean(psds, axis=0), axis=0),
np.max(np.mean(psds, axis=0), axis=0))
else: # area_mode is None
hyp_limits = None
ax.plot(freqs, psd_mean, color=color)
if hyp_limits is not None:
ax.fill_between(freqs, hyp_limits[0], y2=hyp_limits[1],
color=color, alpha=area_alpha)
if make_label:
if ii == len(picks_list) - 1:
ax.set_xlabel('Frequency (Hz)')
ax.set(ylabel=ylabel, title=title, xlim=(freqs[0], freqs[-1]))
if make_label:
tight_layout(pad=0.1, h_pad=0.1, w_pad=0.1, fig=fig)
plt_show(show)
return fig
def _prepare_mne_browse_epochs(params, projs, n_channels, n_epochs, scalings,
title, picks, events=None, event_colors=None,
order=None):
"""Set up the mne_browse_epochs window."""
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.collections import LineCollection
from matplotlib.colors import colorConverter
epochs = params['epochs']
if picks is None:
picks = _handle_picks(epochs)
if len(picks) < 1:
raise RuntimeError('No appropriate channels found. Please'
' check your picks')
picks = sorted(picks)
# Reorganize channels
inds = list()
types = list()
for t in ['grad', 'mag']:
idxs = pick_types(params['info'], meg=t, ref_meg=False, exclude=[])
if len(idxs) < 1:
continue
mask = np.in1d(idxs, picks, assume_unique=True)
inds.append(idxs[mask])
types += [t] * len(inds[-1])
for t in ['hbo', 'hbr']:
idxs = pick_types(params['info'], meg=False, ref_meg=False, fnirs=t,
exclude=[])
if len(idxs) < 1:
continue
mask = np.in1d(idxs, picks, assume_unique=True)
inds.append(idxs[mask])
types += [t] * len(inds[-1])
pick_kwargs = dict(meg=False, ref_meg=False, exclude=[])
if order is None:
order = ['eeg', 'seeg', 'ecog', 'eog', 'ecg', 'emg', 'ref_meg', 'stim',
'resp', 'misc', 'chpi', 'syst', 'ias', 'exci']
for ch_type in order:
pick_kwargs[ch_type] = True
idxs = pick_types(params['info'], **pick_kwargs)
if len(idxs) < 1:
continue
mask = np.in1d(idxs, picks, assume_unique=True)
inds.append(idxs[mask])
types += [ch_type] * len(inds[-1])
pick_kwargs[ch_type] = False
inds = np.concatenate(inds).astype(int)
if not len(inds) == len(picks):
raise RuntimeError('Some channels not classified. Please'
' check your picks')
ch_names = [params['info']['ch_names'][x] for x in inds]
# set up plotting
size = get_config('MNE_BROWSE_RAW_SIZE')
n_epochs = min(n_epochs, len(epochs.events))
duration = len(epochs.times) * n_epochs
n_channels = min(n_channels, len(picks))
if size is not None:
size = size.split(',')
size = tuple(float(s) for s in size)
if title is None:
title = epochs._name
if title is None or len(title) == 0:
title = ''
fig = figure_nobar(facecolor='w', figsize=size, dpi=80)
fig.canvas.set_window_title('mne_browse_epochs')
ax = plt.subplot2grid((10, 15), (0, 1), colspan=13, rowspan=9)
ax.annotate(title, xy=(0.5, 1), xytext=(0, ax.get_ylim()[1] + 15),
ha='center', va='bottom', size=12, xycoords='axes fraction',
textcoords='offset points')
color = _handle_default('color', None)
ax.axis([0, duration, 0, 200])
ax2 = ax.twiny()
ax2.set_zorder(-1)
ax2.axis([0, duration, 0, 200])
ax_hscroll = plt.subplot2grid((10, 15), (9, 1), colspan=13)
ax_hscroll.get_yaxis().set_visible(False)
ax_hscroll.set_xlabel('Epochs')
ax_vscroll = plt.subplot2grid((10, 15), (0, 14), rowspan=9)
ax_vscroll.set_axis_off()
ax_vscroll.add_patch(mpl.patches.Rectangle((0, 0), 1, len(picks),
facecolor='w', zorder=3))
ax_help_button = plt.subplot2grid((10, 15), (9, 0), colspan=1)
help_button = mpl.widgets.Button(ax_help_button, 'Help')
help_button.on_clicked(partial(_onclick_help, params=params))
# populate vertical and horizontal scrollbars
for ci in range(len(picks)):
if ch_names[ci] in params['info']['bads']:
this_color = params['bad_color']
else:
this_color = color[types[ci]]
ax_vscroll.add_patch(mpl.patches.Rectangle((0, ci), 1, 1,
facecolor=this_color,
edgecolor=this_color,
zorder=4))
vsel_patch = mpl.patches.Rectangle((0, 0), 1, n_channels, alpha=0.5,
edgecolor='w', facecolor='w', zorder=5)
ax_vscroll.add_patch(vsel_patch)
ax_vscroll.set_ylim(len(types), 0)
ax_vscroll.set_title('Ch.')
# populate colors list
type_colors = [colorConverter.to_rgba(color[c]) for c in types]
colors = list()
for color_idx in range(len(type_colors)):
colors.append([type_colors[color_idx]] * len(epochs.events))
lines = list()
n_times = len(epochs.times)
for ch_idx in range(n_channels):
if len(colors) - 1 < ch_idx:
break
lc = LineCollection(list(), antialiased=True, linewidths=0.5,
zorder=3, picker=3.)
ax.add_collection(lc)
lines.append(lc)
times = epochs.times
data = np.zeros((params['info']['nchan'], len(times) * n_epochs))
ylim = (25., 0.) # Hardcoded 25 because butterfly has max 5 rows (5*5=25).
# make shells for plotting traces
offset = ylim[0] / n_channels
offsets = np.arange(n_channels) * offset + (offset / 2.)
times = np.arange(len(times) * len(epochs.events))
epoch_times = np.arange(0, len(times), n_times)
ax.set_yticks(offsets)
ax.set_ylim(ylim)
ticks = epoch_times + 0.5 * n_times
ax.set_xticks(ticks)
ax2.set_xticks(ticks[:n_epochs])
labels = list(range(1, len(ticks) + 1)) # epoch numbers
ax.set_xticklabels(labels)
xlim = epoch_times[-1] + len(epochs.times)
ax_hscroll.set_xlim(0, xlim)
vertline_t = ax_hscroll.text(0, 1, '', color='y', va='bottom', ha='right')
# fit horizontal scroll bar ticks
hscroll_ticks = np.arange(0, xlim, xlim / 7.0)
hscroll_ticks = np.append(hscroll_ticks, epoch_times[-1])
hticks = list()
for tick in hscroll_ticks:
hticks.append(epoch_times.flat[np.abs(epoch_times - tick).argmin()])
hlabels = [x / n_times + 1 for x in hticks]
ax_hscroll.set_xticks(hticks)
ax_hscroll.set_xticklabels(hlabels)
for epoch_idx in range(len(epoch_times)):
ax_hscroll.add_patch(mpl.patches.Rectangle((epoch_idx * n_times, 0),
n_times, 1, facecolor='w',
edgecolor='w', alpha=0.6))
hsel_patch = mpl.patches.Rectangle((0, 0), duration, 1,
edgecolor='k',
facecolor=(0.75, 0.75, 0.75),
alpha=0.25, linewidth=1, clip_on=False)
ax_hscroll.add_patch(hsel_patch)
text = ax.text(0, 0, 'blank', zorder=3, verticalalignment='baseline',
ha='left', fontweight='bold')
text.set_visible(False)
epoch_nr = True
if events is not None:
event_set = set(events[:, 2])
event_colors = _handle_event_colors(event_set, event_colors, event_set)
epoch_nr = False # epoch number off by default to avoid overlap
for label in ax.xaxis.get_ticklabels():
label.set_visible(False)
params.update({'fig': fig,
'ax': ax,
'ax2': ax2,
'ax_hscroll': ax_hscroll,
'ax_vscroll': ax_vscroll,
'vsel_patch': vsel_patch,
'hsel_patch': hsel_patch,
'lines': lines,
'projs': projs,
'ch_names': ch_names,
'n_channels': n_channels,
'n_epochs': n_epochs,
'scalings': scalings,
'duration': duration,
'ch_start': 0,
'colors': colors,
'def_colors': type_colors, # don't change at runtime
'picks': picks,
'bads': np.array(list(), dtype=int),
'data': data,
'times': times,
'epoch_times': epoch_times,
'offsets': offsets,
'labels': labels,
'scale_factor': 1.0,
'butterfly_scale': 1.0,
'fig_proj': None,
'types': np.array(types),
'inds': inds,
'vert_lines': list(),
'vertline_t': vertline_t,
'butterfly': False,
'text': text,
'ax_help_button': ax_help_button, # needed for positioning
'help_button': help_button, # reference needed for clicks
'fig_options': None,
'settings': [True, True, epoch_nr, True],
'image_plot': None,
'events': events,
'event_colors': event_colors,
'ev_lines': list(),
'ev_texts': list()})
params['plot_fun'] = partial(_plot_traces, params=params)
# callbacks
callback_scroll = partial(_plot_onscroll, params=params)
fig.canvas.mpl_connect('scroll_event', callback_scroll)
callback_click = partial(_mouse_click, params=params)
fig.canvas.mpl_connect('button_press_event', callback_click)
callback_key = partial(_plot_onkey, params=params)
fig.canvas.mpl_connect('key_press_event', callback_key)
callback_resize = partial(_resize_event, params=params)
fig.canvas.mpl_connect('resize_event', callback_resize)
fig.canvas.mpl_connect('pick_event', partial(_onpick, params=params))
params['callback_key'] = callback_key
# Draw event lines for the first time.
_plot_vert_lines(params)
# default key to close window
params['close_key'] = 'escape'
def _prepare_projectors(params):
"""Set up the projectors for epochs browser."""
import matplotlib.pyplot as plt
import matplotlib as mpl
epochs = params['epochs']
projs = params['projs']
if len(projs) > 0 and not epochs.proj:
ax_button = plt.subplot2grid((10, 15), (9, 14))
opt_button = mpl.widgets.Button(ax_button, 'Proj')
callback_option = partial(_toggle_options, params=params)
opt_button.on_clicked(callback_option)
params['opt_button'] = opt_button
params['ax_button'] = ax_button
# As here code is shared with plot_evoked, some extra steps:
# first the actual plot update function
params['plot_update_proj_callback'] = _plot_update_epochs_proj
# then the toggle handler
callback_proj = partial(_toggle_proj, params=params)
# store these for use by callbacks in the options figure
params['callback_proj'] = callback_proj
callback_proj('none')
def _plot_traces(params):
"""Plot concatenated epochs."""
params['text'].set_visible(False)
ax = params['ax']
butterfly = params['butterfly']
if butterfly:
ch_start = 0
n_channels = len(params['picks'])
data = params['data'] * params['butterfly_scale']
else:
ch_start = params['ch_start']
n_channels = params['n_channels']
data = params['data'] * params['scale_factor']
offsets = params['offsets']
lines = params['lines']
epochs = params['epochs']
n_times = len(epochs.times)
tick_list = list()
start_idx = int(params['t_start'] / n_times)
end = params['t_start'] + params['duration']
end_idx = int(end / n_times)
xlabels = params['labels'][start_idx:]
event_ids = params['epochs'].events[:, 2]
params['ax2'].set_xticklabels(event_ids[start_idx:])
ax.set_xticklabels(xlabels)
ylabels = ax.yaxis.get_ticklabels()
# do the plotting
for line_idx in range(n_channels):
ch_idx = line_idx + ch_start
if line_idx >= len(lines):
break
elif ch_idx < len(params['ch_names']):
if butterfly:
ch_type = params['types'][ch_idx]
if ch_type == 'grad':
offset = offsets[0]
elif ch_type == 'mag':
offset = offsets[1]
elif ch_type == 'eeg':
offset = offsets[2]
elif ch_type == 'eog':
offset = offsets[3]
elif ch_type == 'ecg':
offset = offsets[4]
else:
lines[line_idx].set_segments(list())
else:
tick_list += [params['ch_names'][ch_idx]]
offset = offsets[line_idx]
if params['inds'][ch_idx] in params['data_picks']:
this_decim = params['decim']
else:
this_decim = 1
this_data = data[ch_idx]
# subtraction here gets correct orientation for flipped ylim
ydata = offset - this_data
xdata = params['times'][:params['duration']]
num_epochs = np.min([params['n_epochs'], len(epochs.events)])
segments = np.split(np.array((xdata, ydata)).T, num_epochs)
segments = [segment[::this_decim] for segment in segments]
ch_name = params['ch_names'][ch_idx]
if ch_name in params['info']['bads']:
if not butterfly:
this_color = params['bad_color']
ylabels[line_idx].set_color(this_color)
this_color = np.tile((params['bad_color']), (num_epochs, 1))
for bad_idx in params['bads']:
if bad_idx < start_idx or bad_idx > end_idx:
continue
this_color[bad_idx - start_idx] = (1., 0., 0.)
lines[line_idx].set_zorder(2)
else:
this_color = params['colors'][ch_idx][start_idx:end_idx]
lines[line_idx].set_zorder(3)
if not butterfly:
ylabels[line_idx].set_color('black')
lines[line_idx].set_segments(segments)
lines[line_idx].set_color(this_color)
else:
lines[line_idx].set_segments(list())
# finalize plot
ax.set_xlim(params['times'][0], params['times'][0] + params['duration'],
False)
params['ax2'].set_xlim(params['times'][0],
params['times'][0] + params['duration'], False)
if butterfly:
factor = -1. / params['butterfly_scale']
labels = [''] * 20
ticks = ax.get_yticks()
idx_offset = 1
# XXX eventually these scale factors should use "scalings"
# of some sort
if 'grad' in params['types']:
labels[idx_offset + 1] = 0.
for idx in [idx_offset, idx_offset + 2]:
labels[idx] = ((ticks[idx] - offsets[0]) *
params['scalings']['grad'] *
1e13 * factor)
idx_offset += 4
if 'mag' in params['types']:
labels[idx_offset + 1] = 0.
for idx in [idx_offset, idx_offset + 2]:
labels[idx] = ((ticks[idx] - offsets[1]) *
params['scalings']['mag'] *
1e15 * factor)
idx_offset += 4
if 'eeg' in params['types']:
labels[idx_offset + 1] = 0.
for idx in [idx_offset, idx_offset + 2]:
labels[idx] = ((ticks[idx] - offsets[2]) *
params['scalings']['eeg'] *
1e6 * factor)
idx_offset += 4
if 'eog' in params['types']:
labels[idx_offset + 1] = 0.
for idx in [idx_offset, idx_offset + 2]:
labels[idx] = ((ticks[idx] - offsets[3]) *
params['scalings']['eog'] *
1e6 * factor)
idx_offset += 4
if 'ecg' in params['types']:
labels[idx_offset + 1] = 0.
for idx in [idx_offset, idx_offset + 2]:
labels[idx] = ((ticks[idx] - offsets[4]) *
params['scalings']['ecg'] *
1e6 * factor)
# Heuristic to turn floats to ints where possible (e.g. -500.0 to -500)
for li, label in enumerate(labels):
if isinstance(label, float) and float(str(label)) == round(label):
labels[li] = int(round(label))
ax.set_yticklabels(labels, fontsize=12, color='black')
else:
ax.set_yticklabels(tick_list, fontsize=12)
_set_ax_label_style(ax, params)
if params['events'] is not None: # vertical lines for events.
_draw_event_lines(params)
params['vsel_patch'].set_y(ch_start)
params['fig'].canvas.draw()
# XXX This is a hack to make sure this figure gets drawn last
# so that when matplotlib goes to calculate bounds we don't get a
# CGContextRef error on the MacOSX backend :(
if params['fig_proj'] is not None:
params['fig_proj'].canvas.draw()
def _plot_update_epochs_proj(params, bools=None):
"""Deal with proj changed."""
if bools is not None:
inds = np.where(bools)[0]
params['info']['projs'] = [copy.deepcopy(params['projs'][ii])
for ii in inds]
params['proj_bools'] = bools
epochs = params['epochs']
n_epochs = params['n_epochs']
params['projector'], params['whitened_ch_names'] = _setup_plot_projector(
params['info'], params['noise_cov'], True, params['use_noise_cov'])
start = int(params['t_start'] / len(epochs.times))
end = start + n_epochs
if epochs.preload:
data = np.concatenate(epochs.get_data()[start:end], axis=1)
else:
# this is faster than epochs.get_data()[start:end] when not preloaded
data = np.concatenate(epochs[start:end].get_data(), axis=1)
if params['projector'] is not None:
data = np.dot(params['projector'], data)
types = params['types']
for pick, ind in enumerate(params['inds']):
ch_name = params['info']['ch_names'][ind]
if ch_name in params['whitened_ch_names'] and \
ch_name not in params['info']['bads']:
norm = params['scalings']['whitened']
else:
norm = params['scalings'][types[pick]]
params['data'][pick] = data[ind] / norm
params['plot_fun']()
def _handle_picks(epochs):
"""Handle picks."""
if any('ICA' in k for k in epochs.ch_names):
picks = pick_types(epochs.info, misc=True, ref_meg=False,
exclude=[])
else:
picks = pick_types(epochs.info, meg=True, eeg=True, eog=True, ecg=True,
seeg=True, ecog=True, ref_meg=False, fnirs=True,
exclude=[])
return picks
def _plot_window(value, params):
"""Deal with horizontal shift of the viewport."""
max_times = len(params['times']) - params['duration']
if value > max_times:
value = len(params['times']) - params['duration']
if value < 0:
value = 0
if params['t_start'] != value:
params['t_start'] = value
params['hsel_patch'].set_x(value)
params['plot_update_proj_callback'](params)
def _plot_vert_lines(params):
"""Plot vertical lines."""
ax = params['ax']
while len(ax.lines) > 0:
ax.lines.pop()
params['vert_lines'] = list()
params['ev_lines'] = list()
params['vertline_t'].set_text('')
epochs = params['epochs']
if params['settings'][3]: # if zeroline visible
t_zero = np.where(epochs.times == 0.)[0]
if len(t_zero) == 1: # not True if tmin > 0
for event_idx in range(len(epochs.events)):
pos = [event_idx * len(epochs.times) + t_zero[0],
event_idx * len(epochs.times) + t_zero[0]]
ax.plot(pos, ax.get_ylim(), 'g', zorder=4, alpha=0.4)
for epoch_idx in range(len(epochs.events)):
pos = [epoch_idx * len(epochs.times), epoch_idx * len(epochs.times)]
ax.plot(pos, ax.get_ylim(), color='black', linestyle='--', zorder=2)
if params['events'] is not None:
_draw_event_lines(params)
def _pick_bad_epochs(event, params):
"""Select / drop bad epochs."""
if 'ica' in params:
pos = (event.xdata, event.ydata)
_pick_bad_channels(pos, params)
return
n_times = len(params['epochs'].times)
start_idx = int(params['t_start'] / n_times)
xdata = event.xdata
xlim = event.inaxes.get_xlim()
epoch_idx = start_idx + int(xdata / (xlim[1] / params['n_epochs']))
total_epochs = len(params['epochs'].events)
if epoch_idx > total_epochs - 1:
return
# remove bad epoch
if epoch_idx in params['bads']:
params['bads'] = params['bads'][(params['bads'] != epoch_idx)]
for ch_idx in range(len(params['ch_names'])):
params['colors'][ch_idx][epoch_idx] = params['def_colors'][ch_idx]
params['ax_hscroll'].patches[epoch_idx].set_color('w')
params['ax_hscroll'].patches[epoch_idx].set_zorder(2)
params['plot_fun']()
return
# add bad epoch
params['bads'] = np.append(params['bads'], epoch_idx)
params['ax_hscroll'].patches[epoch_idx].set_color((1., 0., 0., 1.))
params['ax_hscroll'].patches[epoch_idx].set_zorder(3)
params['ax_hscroll'].patches[epoch_idx].set_edgecolor('w')
for ch_idx in range(len(params['ch_names'])):
params['colors'][ch_idx][epoch_idx] = (1., 0., 0., 1.)
params['plot_fun']()
def _pick_bad_channels(pos, params):
"""Select bad channels."""
text, ch_idx = _label2idx(params, pos)
if text is None:
return
if text in params['info']['bads']:
while text in params['info']['bads']:
params['info']['bads'].remove(text)
color = params['def_colors'][ch_idx]
params['ax_vscroll'].patches[ch_idx + 1].set_color(color)
else:
params['info']['bads'].append(text)
color = params['bad_color']
params['ax_vscroll'].patches[ch_idx + 1].set_color(color)
if 'ica' in params:
params['plot_fun']()
else:
params['plot_update_proj_callback'](params)
def _plot_onscroll(event, params):
"""Handle scroll events."""
if event.key == 'control':
if event.step < 0:
event.key = '-'
else:
event.key = '+'
_plot_onkey(event, params)
return
if params['butterfly']:
return
_plot_raw_onscroll(event, params, len(params['ch_names']))
def _mouse_click(event, params):
"""Handle mouse click events."""
if event.inaxes is None:
if params['butterfly'] or not params['settings'][0]:
return
ax = params['ax']
ylim = ax.get_ylim()
pos = ax.transData.inverted().transform((event.x, event.y))
if pos[0] > 0 or pos[1] < 0 or pos[1] > ylim[0]:
return
if event.button == 1: # left click
params['label_click_fun'](pos)
elif event.button == 3: # right click
if 'ica' not in params:
_, ch_idx = _label2idx(params, pos)
if ch_idx is None:
return
if channel_type(params['info'], ch_idx) not in ['mag', 'grad',
'eeg', 'eog']:
logger.info('Event related fields / potentials only '
'available for MEG and EEG channels.')
return
fig = plot_epochs_image(params['epochs'],
picks=params['inds'][ch_idx],
fig=params['image_plot'])[0]
params['image_plot'] = fig
elif event.button == 1: # left click
# vertical scroll bar changed
if event.inaxes == params['ax_vscroll']:
if params['butterfly']:
return
# Don't let scrollbar go outside vertical scrollbar limits
# XXX: floating point exception on some machines if this happens.
ch_start = min(
max(int(event.ydata) - params['n_channels'] // 2, 0),
len(params['ch_names']) - params['n_channels'])
if params['ch_start'] != ch_start:
params['ch_start'] = ch_start
params['plot_fun']()
# horizontal scroll bar changed
elif event.inaxes == params['ax_hscroll']:
# find the closest epoch time
times = params['epoch_times']
offset = 0.5 * params['n_epochs'] * len(params['epochs'].times)
xdata = times.flat[np.abs(times - (event.xdata - offset)).argmin()]
_plot_window(xdata, params)
# main axes
elif event.inaxes == params['ax']:
_pick_bad_epochs(event, params)
elif event.inaxes == params['ax'] and event.button == 2: # middle click
params['fig'].canvas.draw()
if params['fig_proj'] is not None:
params['fig_proj'].canvas.draw()
elif event.inaxes == params['ax'] and event.button == 3: # right click
n_times = len(params['epochs'].times)
xdata = int(event.xdata % n_times)
prev_xdata = 0
if len(params['vert_lines']) > 0:
prev_xdata = params['vert_lines'][0][0].get_data()[0][0]
while len(params['vert_lines']) > 0:
params['ax'].lines.remove(params['vert_lines'][0][0])
params['vert_lines'].pop(0)
if prev_xdata == xdata: # lines removed
params['vertline_t'].set_text('')
params['plot_fun']()
return
ylim = params['ax'].get_ylim()
for epoch_idx in range(params['n_epochs']): # plot lines
pos = [epoch_idx * n_times + xdata, epoch_idx * n_times + xdata]
params['vert_lines'].append(params['ax'].plot(pos, ylim, 'y',
zorder=5))
params['vertline_t'].set_text('%0.3f' % params['epochs'].times[xdata])
params['plot_fun']()
def _plot_onkey(event, params):
"""Handle key presses."""
import matplotlib.pyplot as plt
if event.key == 'down':
if params['butterfly']:
return
params['ch_start'] += params['n_channels']
_channels_changed(params, len(params['ch_names']))
elif event.key == 'up':
if params['butterfly']:
return
params['ch_start'] -= params['n_channels']
_channels_changed(params, len(params['ch_names']))
elif event.key == 'left':
sample = params['t_start'] - params['duration']
sample = np.max([0, sample])
_plot_window(sample, params)
elif event.key == 'right':
sample = params['t_start'] + params['duration']
sample = np.min([sample, params['times'][-1] - params['duration']])
times = params['epoch_times']
xdata = times.flat[np.abs(times - sample).argmin()]
_plot_window(xdata, params)
elif event.key == '-':
if params['butterfly']:
params['butterfly_scale'] /= 1.1
else:
params['scale_factor'] /= 1.1
params['plot_fun']()
elif event.key in ['+', '=']:
if params['butterfly']:
params['butterfly_scale'] *= 1.1
else:
params['scale_factor'] *= 1.1
params['plot_fun']()
elif event.key == 'f11':
mng = plt.get_current_fig_manager()
mng.full_screen_toggle()
elif event.key == 'pagedown':
if params['n_channels'] == 1 or params['butterfly']:
return
n_channels = params['n_channels'] - 1
ylim = params['ax'].get_ylim()
offset = ylim[0] / n_channels
params['offsets'] = np.arange(n_channels) * offset + (offset / 2.)
params['n_channels'] = n_channels
params['ax'].collections.pop()
params['ax'].set_yticks(params['offsets'])
params['lines'].pop()
params['vsel_patch'].set_height(n_channels)
params['plot_fun']()
elif event.key == 'pageup':
if params['butterfly']:
return
from matplotlib.collections import LineCollection
n_channels = params['n_channels'] + 1
ylim = params['ax'].get_ylim()
offset = ylim[0] / n_channels
params['offsets'] = np.arange(n_channels) * offset + (offset / 2.)
params['n_channels'] = n_channels
lc = LineCollection(list(), antialiased=True, linewidths=0.5,
zorder=3, picker=3.)
params['ax'].add_collection(lc)
params['ax'].set_yticks(params['offsets'])
params['lines'].append(lc)
params['vsel_patch'].set_height(n_channels)
params['plot_fun']()
elif event.key == 'home':
n_epochs = params['n_epochs'] - 1
if n_epochs <= 0:
return
n_times = len(params['epochs'].times)
ticks = params['epoch_times'] + 0.5 * n_times
params['ax2'].set_xticks(ticks[:n_epochs])
params['n_epochs'] = n_epochs
params['duration'] -= n_times
params['hsel_patch'].set_width(params['duration'])
params['data'] = params['data'][:, :-n_times]
params['plot_update_proj_callback'](params)
elif event.key == 'end':
n_epochs = params['n_epochs'] + 1
n_times = len(params['epochs'].times)
if n_times * n_epochs > len(params['times']):
return
ticks = params['epoch_times'] + 0.5 * n_times
params['ax2'].set_xticks(ticks[:n_epochs])
params['n_epochs'] = n_epochs
if len(params['vert_lines']) > 0:
ax = params['ax']
pos = params['vert_lines'][0][0].get_data()[0] + params['duration']
params['vert_lines'].append(ax.plot(pos, ax.get_ylim(), 'y',
zorder=4))
params['duration'] += n_times
if params['t_start'] + params['duration'] > len(params['times']):
params['t_start'] -= n_times
params['hsel_patch'].set_x(params['t_start'])
params['hsel_patch'].set_width(params['duration'])
params['data'] = np.zeros((len(params['data']), params['duration']))
params['plot_update_proj_callback'](params)
elif event.key == 'b':
if params['fig_options'] is not None:
plt.close(params['fig_options'])
params['fig_options'] = None
_prepare_butterfly(params)
_plot_traces(params)
elif event.key == 'w':
params['use_noise_cov'] = not params['use_noise_cov']
_plot_update_epochs_proj(params)
_plot_traces(params)
elif event.key == 'o':
if not params['butterfly']:
_open_options(params)
elif event.key == 'h':
_plot_histogram(params)
elif event.key == '?':
_onclick_help(event, params)
elif event.key == 'escape':
plt.close(params['fig'])
def _prepare_butterfly(params):
"""Set up butterfly plot."""
from matplotlib.collections import LineCollection
butterfly = not params['butterfly']
if butterfly:
types = set(['grad', 'mag', 'eeg', 'eog',
'ecg']) & set(params['types'])
if len(types) < 1:
return
params['ax_vscroll'].set_visible(False)
ax = params['ax']
labels = ax.yaxis.get_ticklabels()
for label in labels:
label.set_visible(True)
ylim = (5. * len(types), 0.)
ax.set_ylim(ylim)
offset = ylim[0] / (4. * len(types))
ticks = np.arange(0, ylim[0], offset)
ticks = [ticks[x] if x < len(ticks) else 0 for x in range(20)]
ax.set_yticks(ticks)
used_types = 0
params['offsets'] = [ticks[2]]
if 'grad' in types:
pos = (0, 1 - (ticks[2] / ylim[0]))
params['ax2'].annotate('Grad (fT/cm)', xy=pos, xytext=(-70, 0),
ha='left', size=12, va='center',
xycoords='axes fraction', rotation=90,
textcoords='offset points')
used_types += 1
params['offsets'].append(ticks[2 + used_types * 4])
if 'mag' in types:
pos = (0, 1 - (ticks[2 + used_types * 4] / ylim[0]))
params['ax2'].annotate('Mag (fT)', xy=pos, xytext=(-70, 0),
ha='left', size=12, va='center',
xycoords='axes fraction', rotation=90,
textcoords='offset points')
used_types += 1
params['offsets'].append(ticks[2 + used_types * 4])
if 'eeg' in types:
pos = (0, 1 - (ticks[2 + used_types * 4] / ylim[0]))
params['ax2'].annotate('EEG (uV)', xy=pos, xytext=(-70, 0),
ha='left', size=12, va='center',
xycoords='axes fraction', rotation=90,
textcoords='offset points')
used_types += 1
params['offsets'].append(ticks[2 + used_types * 4])
if 'eog' in types:
pos = (0, 1 - (ticks[2 + used_types * 4] / ylim[0]))
params['ax2'].annotate('EOG (uV)', xy=pos, xytext=(-70, 0),
ha='left', size=12, va='center',
xycoords='axes fraction', rotation=90,
textcoords='offset points')
used_types += 1
params['offsets'].append(ticks[2 + used_types * 4])
if 'ecg' in types:
pos = (0, 1 - (ticks[2 + used_types * 4] / ylim[0]))
params['ax2'].annotate('ECG (uV)', xy=pos, xytext=(-70, 0),
ha='left', size=12, va='center',
xycoords='axes fraction', rotation=90,
textcoords='offset points')
used_types += 1
while len(params['lines']) < len(params['picks']):
lc = LineCollection(list(), antialiased=True, linewidths=0.5,
zorder=3, picker=3.)
ax.add_collection(lc)
params['lines'].append(lc)
else: # change back to default view
labels = params['ax'].yaxis.get_ticklabels()
for label in labels:
label.set_visible(params['settings'][0])
params['ax_vscroll'].set_visible(True)
while len(params['ax2'].texts) > 0:
params['ax2'].texts.pop()
n_channels = params['n_channels']
while len(params['lines']) > n_channels:
params['ax'].collections.pop()
params['lines'].pop()
ylim = (25., 0.)
params['ax'].set_ylim(ylim)
offset = ylim[0] / n_channels
params['offsets'] = np.arange(n_channels) * offset + (offset / 2.)
params['ax'].set_yticks(params['offsets'])
params['butterfly'] = butterfly
def _onpick(event, params):
"""Add a channel name on click."""
if event.mouseevent.button != 2 or not params['butterfly']:
return # text label added with a middle mouse button
lidx = np.where([l is event.artist for l in params['lines']])[0][0]
text = params['text']
text.set_x(event.mouseevent.xdata)
text.set_y(event.mouseevent.ydata)
text.set_text(params['ch_names'][lidx])
text.set_visible(True)
# do NOT redraw here, since for butterfly plots hundreds of lines could
# potentially be picked -- use _mouse_click (happens once per click)
# to do the drawing
def _close_event(event, params):
"""Drop selected bad epochs (called on closing of the plot)."""
params['epochs'].drop(params['bads'])
params['epochs'].info['bads'] = params['info']['bads']
logger.info('Channels marked as bad: %s' % params['epochs'].info['bads'])
def _resize_event(event, params):
"""Handle resize event."""
size = ','.join([str(s) for s in params['fig'].get_size_inches()])
set_config('MNE_BROWSE_RAW_SIZE', size, set_env=False)
_layout_figure(params)
def _update_channels_epochs(event, params):
"""Change the amount of channels and epochs per view."""
from matplotlib.collections import LineCollection
# Channels
n_channels = int(np.around(params['channel_slider'].val))
offset = params['ax'].get_ylim()[0] / n_channels
params['offsets'] = np.arange(n_channels) * offset + (offset / 2.)
while len(params['lines']) > n_channels:
params['ax'].collections.pop()
params['lines'].pop()
while len(params['lines']) < n_channels:
lc = LineCollection(list(), linewidths=0.5, antialiased=True,
zorder=3, picker=3.)
params['ax'].add_collection(lc)
params['lines'].append(lc)
params['ax'].set_yticks(params['offsets'])
params['vsel_patch'].set_height(n_channels)
params['n_channels'] = n_channels
# Epochs
n_epochs = int(np.around(params['epoch_slider'].val))
n_times = len(params['epochs'].times)
ticks = params['epoch_times'] + 0.5 * n_times
params['ax2'].set_xticks(ticks[:n_epochs])
params['n_epochs'] = n_epochs
params['duration'] = n_times * n_epochs
params['hsel_patch'].set_width(params['duration'])
params['data'] = np.zeros((len(params['data']), params['duration']))
if params['t_start'] + n_times * n_epochs > len(params['times']):
params['t_start'] = len(params['times']) - n_times * n_epochs
params['hsel_patch'].set_x(params['t_start'])
params['plot_update_proj_callback'](params)
def _toggle_labels(label, params):
"""Toggle axis labels."""
if label == 'Channel names visible':
params['settings'][0] = not params['settings'][0]
labels = params['ax'].yaxis.get_ticklabels()
for label in labels:
label.set_visible(params['settings'][0])
elif label == 'Event-id visible':
params['settings'][1] = not params['settings'][1]
labels = params['ax2'].xaxis.get_ticklabels()
for label in labels:
label.set_visible(params['settings'][1])
elif label == 'Epoch-id visible':
params['settings'][2] = not params['settings'][2]
labels = params['ax'].xaxis.get_ticklabels()
for label in labels:
label.set_visible(params['settings'][2])
elif label == 'Zeroline visible':
params['settings'][3] = not params['settings'][3]
_plot_vert_lines(params)
params['fig'].canvas.draw()
if params['fig_proj'] is not None:
params['fig_proj'].canvas.draw()
def _open_options(params):
"""Open the option window."""
import matplotlib.pyplot as plt
import matplotlib as mpl
if params['fig_options'] is not None:
# turn off options dialog
plt.close(params['fig_options'])
params['fig_options'] = None
return
width = 10
height = 3
fig_options = figure_nobar(figsize=(width, height), dpi=80)
fig_options.canvas.set_window_title('View settings')
params['fig_options'] = fig_options
ax_channels = plt.axes([0.15, 0.1, 0.65, 0.1])
ax_epochs = plt.axes([0.15, 0.25, 0.65, 0.1])
ax_button = plt.axes([0.85, 0.1, 0.1, 0.25])
ax_check = plt.axes([0.15, 0.4, 0.4, 0.55])
plt.axis('off')
params['update_button'] = mpl.widgets.Button(ax_button, 'Update')
params['channel_slider'] = mpl.widgets.Slider(ax_channels, 'Channels', 1,
len(params['ch_names']),
valfmt='%0.0f',
valinit=params['n_channels'])
params['epoch_slider'] = mpl.widgets.Slider(ax_epochs, 'Epochs', 1,
len(params['epoch_times']),
valfmt='%0.0f',
valinit=params['n_epochs'])
params['checkbox'] = mpl.widgets.CheckButtons(ax_check,
['Channel names visible',
'Event-id visible',
'Epoch-id visible',
'Zeroline visible'],
actives=params['settings'])
update = partial(_update_channels_epochs, params=params)
params['update_button'].on_clicked(update)
labels_callback = partial(_toggle_labels, params=params)
params['checkbox'].on_clicked(labels_callback)
close_callback = partial(_settings_closed, params=params)
params['fig_options'].canvas.mpl_connect('close_event', close_callback)
try:
params['fig_options'].canvas.draw()
params['fig_options'].show(warn=False)
if params['fig_proj'] is not None:
params['fig_proj'].canvas.draw()
except Exception:
pass
def _settings_closed(events, params):
"""Handle close event from settings dialog."""
params['fig_options'] = None
def _plot_histogram(params):
"""Plot histogram of peak-to-peak values."""
import matplotlib.pyplot as plt
epochs = params['epochs']
p2p = np.ptp(epochs.get_data(), axis=2)
types = list()
data = list()
if 'eeg' in params['types']:
eegs = np.array([p2p.T[i] for i,
x in enumerate(params['types']) if x == 'eeg'])
data.append(eegs.ravel())
types.append('eeg')
if 'mag' in params['types']:
mags = np.array([p2p.T[i] for i,
x in enumerate(params['types']) if x == 'mag'])
data.append(mags.ravel())
types.append('mag')
if 'grad' in params['types']:
grads = np.array([p2p.T[i] for i,
x in enumerate(params['types']) if x == 'grad'])
data.append(grads.ravel())
types.append('grad')
params['histogram'] = plt.figure()
scalings = _handle_default('scalings')
units = _handle_default('units')
titles = _handle_default('titles')
colors = _handle_default('color')
for idx in range(len(types)):
ax = plt.subplot(len(types), 1, idx + 1)
plt.xlabel(units[types[idx]])
plt.ylabel('Count')
color = colors[types[idx]]
rej = None
if epochs.reject is not None and types[idx] in epochs.reject.keys():
rej = epochs.reject[types[idx]] * scalings[types[idx]]
rng = [0., rej * 1.1]
else:
rng = None
plt.hist(data[idx] * scalings[types[idx]], bins=100, color=color,
range=rng)
if rej is not None:
ax.plot((rej, rej), (0, ax.get_ylim()[1]), color='r')
plt.title(titles[types[idx]])
params['histogram'].suptitle('Peak-to-peak histogram', y=0.99)
params['histogram'].subplots_adjust(hspace=0.6)
try:
params['histogram'].show(warn=False)
except Exception:
pass
if params['fig_proj'] is not None:
params['fig_proj'].canvas.draw()
plt.tight_layout(h_pad=0.7, pad=2)
def _label2idx(params, pos):
"""Handle click on labels (returns channel name and idx)."""
labels = params['ax'].yaxis.get_ticklabels()
offsets = np.array(params['offsets']) + params['offsets'][0]
line_idx = np.searchsorted(offsets, pos[1])
text = labels[line_idx].get_text()
if len(text) == 0:
return None, None
ch_idx = params['ch_start'] + line_idx
return text, ch_idx
def _draw_event_lines(params):
"""Draw event lines."""
epochs = params['epochs']
n_times = len(epochs.times)
start_idx = int(params['t_start'] / n_times)
color = params['event_colors']
ax = params['ax']
for ev_line in params['ev_lines']:
ax.lines.remove(ev_line) # clear the view first
for ev_text in params['ev_texts']:
ax.texts.remove(ev_text)
params['ev_texts'] = list()
params['ev_lines'] = list()
t_zero = np.where(epochs.times == 0.)[0] # idx of 0s
if len(t_zero) == 0:
t_zero = epochs.times[0] * -1 * epochs.info['sfreq'] # if tmin > 0
end = params['n_epochs'] + start_idx
samp_times = params['events'][:, 0]
for idx, event in enumerate(epochs.events[start_idx:end]):
event_mask = ((event[0] - t_zero < samp_times) &
(samp_times < event[0] + n_times - t_zero))
for ev in params['events'][event_mask]:
if ev[0] == event[0]: # don't redraw the zeroline
continue
pos = [idx * n_times + ev[0] - event[0] + t_zero,
idx * n_times + ev[0] - event[0] + t_zero]
kwargs = {} if ev[2] not in color else {'color': color[ev[2]]}
params['ev_lines'].append(ax.plot(pos, ax.get_ylim(),
zorder=3, **kwargs)[0])
params['ev_texts'].append(ax.text(pos[0], ax.get_ylim()[0],
ev[2], color=color[ev[2]],
ha='center', va='top'))
|