File: evoked.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (2175 lines) | stat: -rw-r--r-- 94,753 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
# -*- coding: utf-8 -*-
"""Functions to plot evoked M/EEG data (besides topographies)."""
from __future__ import print_function

# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Cathy Nangini <cnangini@gmail.com>
#          Mainak Jas <mainak@neuro.hut.fi>
#
# License: Simplified BSD

from functools import partial
from copy import deepcopy
from numbers import Integral

import numpy as np

from ..io.pick import (channel_type, _pick_data_channels,
                       _VALID_CHANNEL_TYPES, channel_indices_by_type,
                       _DATA_CH_TYPES_SPLIT, _pick_inst, _get_channel_types,
                       _PICK_TYPES_DATA_DICT)
from ..externals.six import string_types
from ..defaults import _handle_default
from .utils import (_draw_proj_checkbox, tight_layout, _check_delayed_ssp,
                    plt_show, _process_times, DraggableColorbar, _setup_cmap,
                    _setup_vmin_vmax, _grad_pair_pick_and_name, _check_cov,
                    _validate_if_list_of_axes, _triage_rank_sss,
                    _connection_line, _get_color_list, _setup_ax_spines,
                    _setup_plot_projector, _prepare_joint_axes,
                    _set_title_multiple_electrodes, _check_time_unit,
                    _plot_masked_image)
from ..utils import (logger, _clean_names, warn, _pl, verbose, _validate_type,
                     _check_if_nan, _check_ch_locs)

from .topo import _plot_evoked_topo
from .topomap import (_prepare_topo_plot, plot_topomap, _check_outlines,
                      _draw_outlines, _prepare_topomap, _set_contour_locator)
from ..channels.layout import _pair_grad_sensors, _auto_topomap_coords


def _butterfly_onpick(event, params):
    """Add a channel name on click."""
    params['need_draw'] = True
    ax = event.artist.axes
    ax_idx = np.where([ax is a for a in params['axes']])[0]
    if len(ax_idx) == 0:  # this can happen if ax param is used
        return  # let the other axes handle it
    else:
        ax_idx = ax_idx[0]
    lidx = np.where([l is event.artist for l in params['lines'][ax_idx]])[0][0]
    ch_name = params['ch_names'][params['idxs'][ax_idx][lidx]]
    text = params['texts'][ax_idx]
    x = event.artist.get_xdata()[event.ind[0]]
    y = event.artist.get_ydata()[event.ind[0]]
    text.set_x(x)
    text.set_y(y)
    text.set_text(ch_name)
    text.set_color(event.artist.get_color())
    text.set_alpha(1.)
    text.set_zorder(len(ax.lines))  # to make sure it goes on top of the lines
    text.set_path_effects(params['path_effects'])
    # do NOT redraw here, since for butterfly plots hundreds of lines could
    # potentially be picked -- use on_button_press (happens once per click)
    # to do the drawing


def _butterfly_on_button_press(event, params):
    """Only draw once for picking."""
    if params['need_draw']:
        event.canvas.draw()
    else:
        idx = np.where([event.inaxes is ax for ax in params['axes']])[0]
        if len(idx) == 1:
            text = params['texts'][idx[0]]
            text.set_alpha(0.)
            text.set_path_effects([])
            event.canvas.draw()
    params['need_draw'] = False


def _line_plot_onselect(xmin, xmax, ch_types, info, data, times, text=None,
                        psd=False, time_unit='s'):
    """Draw topomaps from the selected area."""
    import matplotlib.pyplot as plt
    ch_types = [type_ for type_ in ch_types if type_ in ('eeg', 'grad', 'mag')]
    if len(ch_types) == 0:
        raise ValueError('Interactive topomaps only allowed for EEG '
                         'and MEG channels.')
    if ('grad' in ch_types and
            len(_pair_grad_sensors(info, topomap_coords=False,
                                   raise_error=False)) < 2):
        ch_types.remove('grad')
        if len(ch_types) == 0:
            return

    vert_lines = list()
    if text is not None:
        text.set_visible(True)
        ax = text.axes
        vert_lines.append(ax.axvline(xmin, zorder=0, color='red'))
        vert_lines.append(ax.axvline(xmax, zorder=0, color='red'))
        fill = ax.axvspan(xmin, xmax, alpha=0.2, color='green')
        evoked_fig = plt.gcf()
        evoked_fig.canvas.draw()
        evoked_fig.canvas.flush_events()

    minidx = np.abs(times - xmin).argmin()
    maxidx = np.abs(times - xmax).argmin()
    fig, axarr = plt.subplots(1, len(ch_types), squeeze=False,
                              figsize=(3 * len(ch_types), 3))

    for idx, ch_type in enumerate(ch_types):
        if ch_type not in ('eeg', 'grad', 'mag'):
            continue
        picks, pos, merge_grads, _, ch_type = _prepare_topo_plot(
            info, ch_type, layout=None)
        if len(pos) < 2:
            fig.delaxes(axarr[0][idx])
            continue
        this_data = data[picks, minidx:maxidx]
        if merge_grads:
            from ..channels.layout import _merge_grad_data
            method = 'mean' if psd else 'rms'
            this_data = _merge_grad_data(this_data, method=method)
            title = '%s %s' % (ch_type, method.upper())
        else:
            title = ch_type
        this_data = np.average(this_data, axis=1)
        axarr[0][idx].set_title(title)
        vmin = min(this_data) if psd else None
        vmax = max(this_data) if psd else None  # All negative for dB psd.
        cmap = 'Reds' if psd else None
        plot_topomap(this_data, pos, cmap=cmap, vmin=vmin, vmax=vmax,
                     axes=axarr[0][idx], show=False)

    unit = 'Hz' if psd else time_unit
    fig.suptitle('Average over %.2f%s - %.2f%s' % (xmin, unit, xmax, unit),
                 y=0.1)
    tight_layout(pad=2.0, fig=fig)
    plt_show()
    if text is not None:
        text.set_visible(False)
        close_callback = partial(_topo_closed, ax=ax, lines=vert_lines,
                                 fill=fill)
        fig.canvas.mpl_connect('close_event', close_callback)
        evoked_fig.canvas.draw()
        evoked_fig.canvas.flush_events()


def _topo_closed(events, ax, lines, fill):
    """Remove lines from evoked plot as topomap is closed."""
    for line in lines:
        ax.lines.remove(line)
    ax.patches.remove(fill)
    ax.get_figure().canvas.draw()


def _rgb(x, y, z):
    """Transform x, y, z values into RGB colors."""
    rgb = np.array([x, y, z]).T
    rgb -= rgb.min(0)
    rgb /= np.maximum(rgb.max(0), 1e-16)  # avoid div by zero
    return rgb


def _plot_legend(pos, colors, axis, bads, outlines, loc, size=30):
    """Plot (possibly colorized) channel legends for evoked plots."""
    from mpl_toolkits.axes_grid1.inset_locator import inset_axes
    axis.get_figure().canvas.draw()
    bbox = axis.get_window_extent()  # Determine the correct size.
    ratio = bbox.width / bbox.height
    ax = inset_axes(axis, width=str(size / ratio) + '%',
                    height=str(size) + '%', loc=loc)
    ax.set_adjustable("box")
    pos_x, pos_y = _prepare_topomap(pos, ax, check_nonzero=False)
    ax.scatter(pos_x, pos_y, color=colors, s=size * .8, marker='.', zorder=1)
    if bads:
        bads = np.array(bads)
        ax.scatter(pos_x[bads], pos_y[bads], s=size / 6, marker='.',
                   color='w', zorder=1)
    _draw_outlines(ax, outlines)


def _plot_evoked(evoked, picks, exclude, unit, show, ylim, proj, xlim, hline,
                 units, scalings, titles, axes, plot_type, cmap=None,
                 gfp=False, window_title=None, spatial_colors=False,
                 set_tight_layout=True, selectable=True, zorder='unsorted',
                 noise_cov=None, colorbar=True, mask=None, mask_style=None,
                 mask_cmap=None, mask_alpha=.25, time_unit='s',
                 show_names=False, group_by=None):
    """Aux function for plot_evoked and plot_evoked_image (cf. docstrings).

    Extra param is:

    plot_type : str, value ('butterfly' | 'image')
        The type of graph to plot: 'butterfly' plots each channel as a line
        (x axis: time, y axis: amplitude). 'image' plots a 2D image where
        color depicts the amplitude of each channel at a given time point
        (x axis: time, y axis: channel). In 'image' mode, the plot is not
        interactive.
    """
    import matplotlib.pyplot as plt

    # For evoked.plot_image ...
    # First input checks for group_by and axes if any of them is not None.
    # Either both must be dicts, or neither.
    # If the former, the two dicts provide picks and axes to plot them to.
    # Then, we call this function recursively for each entry in `group_by`.
    if plot_type == "image" and isinstance(group_by, dict):
        if axes is None:
            axes = dict()
            for sel in group_by:
                plt.figure()
                axes[sel] = plt.axes()
        if not isinstance(axes, dict):
            raise ValueError("If `group_by` is a dict, `axes` must be "
                             "a dict of axes or None.")
        _validate_if_list_of_axes(list(axes.values()))
        remove_xlabels = any([ax.is_last_row() for ax in axes.values()])
        for sel in group_by:  # ... we loop over selections
            if sel not in axes:
                raise ValueError(sel + " present in `group_by`, but not "
                                 "found in `axes`")
            ax = axes[sel]
            # the unwieldy dict comp below defaults the title to the sel
            _plot_evoked(evoked, group_by[sel], exclude, unit, show, ylim,
                         proj, xlim, hline, units, scalings,
                         (titles if titles is not None else
                          {channel_type(evoked.info, idx): sel
                           for idx in group_by[sel]}),
                         ax, plot_type, cmap=cmap, gfp=gfp,
                         window_title=window_title,
                         set_tight_layout=set_tight_layout,
                         selectable=selectable, noise_cov=noise_cov,
                         colorbar=colorbar, mask=mask,
                         mask_style=mask_style, mask_cmap=mask_cmap,
                         mask_alpha=mask_alpha, time_unit=time_unit,
                         show_names=show_names)
            if remove_xlabels and not ax.is_last_row():
                ax.set_xticklabels([])
                ax.set_xlabel("")
        ims = [ax.images[0] for ax in axes.values()]
        clims = np.array([im.get_clim() for im in ims])
        min, max = clims.min(), clims.max()
        for im in ims:
            im.set_clim(min, max)
        figs = [ax.get_figure() for ax in axes.values()]
        if len(set(figs)) is 1:
            return figs[0]
        else:
            return figs
    elif isinstance(axes, dict):
        raise ValueError("If `group_by` is not a dict, "
                         "`axes` must not be a dict either.")

    time_unit, times = _check_time_unit(time_unit, evoked.times)
    info = evoked.info
    if axes is not None and proj == 'interactive':
        raise RuntimeError('Currently only single axis figures are supported'
                           ' for interactive SSP selection.')
    if isinstance(gfp, string_types) and gfp != 'only':
        raise ValueError('gfp must be boolean or "only". Got %s' % gfp)

    scalings = _handle_default('scalings', scalings)
    titles = _handle_default('titles', titles)
    units = _handle_default('units', units)

    if picks is None:
        picks = list(range(info['nchan']))
    if len(picks) != len(set(picks)):
        raise ValueError("`picks` are not unique. Please remove duplicates.")

    bad_ch_idx = [info['ch_names'].index(ch) for ch in info['bads']
                  if ch in info['ch_names']]
    if len(exclude) > 0:
        if isinstance(exclude, string_types) and exclude == 'bads':
            exclude = bad_ch_idx
        elif (isinstance(exclude, list) and
              all(isinstance(ch, string_types) for ch in exclude)):
            exclude = [info['ch_names'].index(ch) for ch in exclude]
        else:
            raise ValueError(
                'exclude has to be a list of channel names or "bads"')

        picks = [pick for pick in picks if pick not in exclude]
    picks = np.array(picks)

    types = np.array([channel_type(info, idx) for idx in picks], np.unicode)
    ch_types_used = list()
    for this_type in _VALID_CHANNEL_TYPES:
        if this_type in types:
            ch_types_used.append(this_type)

    fig = None
    if axes is None:
        fig, axes = plt.subplots(len(ch_types_used), 1)
        plt.subplots_adjust(0.175, 0.08, 0.94, 0.94, 0.2, 0.63)
        if isinstance(axes, plt.Axes):
            axes = [axes]
        fig.set_size_inches(6.4, 2 + len(axes))

    if isinstance(axes, plt.Axes):
        axes = [axes]
    elif isinstance(axes, np.ndarray):
        axes = list(axes)

    if fig is None:
        fig = axes[0].get_figure()

    if window_title is not None:
        fig.canvas.set_window_title(window_title)

    if len(axes) != len(ch_types_used):
        raise ValueError('Number of axes (%g) must match number of channel '
                         'types (%d: %s)' % (len(axes), len(ch_types_used),
                                             sorted(ch_types_used)))
    noise_cov = _check_cov(noise_cov, info)
    projector, whitened_ch_names = _setup_plot_projector(
        info, noise_cov, proj=proj is True, nave=evoked.nave)
    evoked = evoked.copy()
    if len(whitened_ch_names) > 0:
        unit = False
    if projector is not None:
        evoked.data[:] = np.dot(projector, evoked.data)
    if plot_type == 'butterfly':
        _plot_lines(evoked.data, info, picks, fig, axes, spatial_colors, unit,
                    units, scalings, hline, gfp, types, zorder, xlim, ylim,
                    times, bad_ch_idx, titles, ch_types_used, selectable,
                    False, line_alpha=1., nave=evoked.nave,
                    time_unit=time_unit)
        plt.setp(axes, xlabel='Time (%s)' % time_unit)

    elif plot_type == 'image':
        for ai, (ax, this_type) in enumerate(zip(axes, ch_types_used)):
            use_nave = evoked.nave if ai == 0 else None
            this_picks = list(picks[types == this_type])
            _plot_image(evoked.data, ax, this_type, this_picks, cmap, unit,
                        units, scalings, times, xlim, ylim, titles,
                        colorbar=colorbar, mask=mask, mask_style=mask_style,
                        mask_cmap=mask_cmap, mask_alpha=mask_alpha,
                        nave=use_nave, time_unit=time_unit,
                        show_names=show_names, ch_names=evoked.ch_names)
    if proj == 'interactive':
        _check_delayed_ssp(evoked)
        params = dict(evoked=evoked, fig=fig, projs=info['projs'], axes=axes,
                      types=types, units=units, scalings=scalings, unit=unit,
                      ch_types_used=ch_types_used, picks=picks,
                      plot_update_proj_callback=_plot_update_evoked,
                      plot_type=plot_type)
        _draw_proj_checkbox(None, params)

    plt.setp(fig.axes[:len(ch_types_used) - 1], xlabel='')
    fig.canvas.draw()  # for axes plots update axes.
    if set_tight_layout:
        tight_layout(fig=fig)
    plt_show(show)
    return fig


def _plot_lines(data, info, picks, fig, axes, spatial_colors, unit, units,
                scalings, hline, gfp, types, zorder, xlim, ylim, times,
                bad_ch_idx, titles, ch_types_used, selectable, psd,
                line_alpha, nave, time_unit='ms'):
    """Plot data as butterfly plot."""
    from matplotlib import patheffects, pyplot as plt
    from matplotlib.widgets import SpanSelector
    assert len(axes) == len(ch_types_used)
    texts = list()
    idxs = list()
    lines = list()
    path_effects = [patheffects.withStroke(linewidth=2, foreground="w",
                                           alpha=0.75)]
    gfp_path_effects = [patheffects.withStroke(linewidth=5, foreground="w",
                                               alpha=0.75)]
    if selectable:
        selectables = np.ones(len(ch_types_used), dtype=bool)
        for type_idx, this_type in enumerate(ch_types_used):
            idx = picks[types == this_type]
            if len(idx) < 2 or (this_type == 'grad' and len(idx) < 4):
                # prevent unnecessary warnings for e.g. EOG
                if this_type in _DATA_CH_TYPES_SPLIT:
                    logger.info('Need more than one channel to make '
                                'topography for %s. Disabling interactivity.'
                                % (this_type,))
                selectables[type_idx] = False

    if selectable:
        # Parameters for butterfly interactive plots
        params = dict(axes=axes, texts=texts, lines=lines,
                      ch_names=info['ch_names'], idxs=idxs, need_draw=False,
                      path_effects=path_effects)
        fig.canvas.mpl_connect('pick_event',
                               partial(_butterfly_onpick, params=params))
        fig.canvas.mpl_connect('button_press_event',
                               partial(_butterfly_on_button_press,
                                       params=params))
    for ai, (ax, this_type) in enumerate(zip(axes, ch_types_used)):
        line_list = list()  # 'line_list' contains the lines for this axes
        if unit is False:
            this_scaling = 1.0
            ch_unit = 'NA'  # no unit
        else:
            this_scaling = 1. if scalings is None else scalings[this_type]
            ch_unit = units[this_type]
        idx = list(picks[types == this_type])
        idxs.append(idx)

        if len(idx) > 0:
            # Set amplitude scaling
            D = this_scaling * data[idx, :]
            _check_if_nan(D)
            gfp_only = (isinstance(gfp, string_types) and gfp == 'only')
            if not gfp_only:
                chs = [info['chs'][i] for i in idx]
                locs3d = np.array([ch['loc'][:3] for ch in chs])
                if spatial_colors is True and not _check_ch_locs(chs):
                    warn('Channel locations not available. Disabling spatial '
                         'colors.')
                    spatial_colors = selectable = False
                if spatial_colors is True and len(idx) != 1:
                    x, y, z = locs3d.T
                    colors = _rgb(x, y, z)
                    _handle_spatial_colors(colors, info, idx, this_type, psd,
                                           ax)
                else:
                    if isinstance(spatial_colors, (tuple, string_types)):
                        col = [spatial_colors]
                    else:
                        col = ['k']
                    colors = col * len(idx)
                    for i in bad_ch_idx:
                        if i in idx:
                            colors[idx.index(i)] = 'r'

                if zorder == 'std':
                    # find the channels with the least activity
                    # to map them in front of the more active ones
                    z_ord = D.std(axis=1).argsort()
                elif zorder == 'unsorted':
                    z_ord = list(range(D.shape[0]))
                elif not callable(zorder):
                    error = ('`zorder` must be a function, "std" '
                             'or "unsorted", not {0}.')
                    raise TypeError(error.format(type(zorder)))
                else:
                    z_ord = zorder(D)

                # plot channels
                for ch_idx, z in enumerate(z_ord):
                    line_list.append(
                        ax.plot(times, D[ch_idx], picker=3.,
                                zorder=z + 1 if spatial_colors is True else 1,
                                color=colors[ch_idx], alpha=line_alpha,
                                linewidth=0.5)[0])

            if gfp:  # 'only' or boolean True
                gfp_color = 3 * (0.,) if spatial_colors is True else (0., 1.,
                                                                      0.)
                this_gfp = np.sqrt((D * D).mean(axis=0))
                this_ylim = ax.get_ylim() if (ylim is None or this_type not in
                                              ylim.keys()) else ylim[this_type]
                if gfp_only:
                    y_offset = 0.
                else:
                    y_offset = this_ylim[0]
                this_gfp += y_offset
                ax.fill_between(times, y_offset, this_gfp, color='none',
                                facecolor=gfp_color, zorder=1, alpha=0.2)
                line_list.append(ax.plot(times, this_gfp, color=gfp_color,
                                         zorder=3, alpha=line_alpha)[0])
                ax.text(times[0] + 0.01 * (times[-1] - times[0]),
                        this_gfp[0] + 0.05 * np.diff(ax.get_ylim())[0],
                        'GFP', zorder=4, color=gfp_color,
                        path_effects=gfp_path_effects)
            for ii, line in zip(idx, line_list):
                if ii in bad_ch_idx:
                    line.set_zorder(2)
                    if spatial_colors is True:
                        line.set_linestyle("--")
            ax.set_ylabel(ch_unit)
            # for old matplotlib, we actually need this to have a bounding
            # box (!), so we have to put some valid text here, change
            # alpha and path effects later
            texts.append(ax.text(0, 0, 'blank', zorder=3,
                                 verticalalignment='baseline',
                                 horizontalalignment='left',
                                 fontweight='bold', alpha=0))

            if xlim is not None:
                if xlim == 'tight':
                    xlim = (times[0], times[-1])
                ax.set_xlim(xlim)
            if ylim is not None and this_type in ylim:
                ax.set_ylim(ylim[this_type])
            ax.set(title=r'%s (%d channel%s)'
                   % (titles[this_type], len(D), _pl(len(D))))
            if ai == 0:
                _add_nave(ax, nave)
            if hline is not None:
                for h in hline:
                    c = ('grey' if spatial_colors is True else 'r')
                    ax.axhline(h, linestyle='--', linewidth=2, color=c)
        lines.append(line_list)
    if selectable:
        for ax in np.array(axes)[selectables]:
            if len(ax.lines) == 1:
                continue
            text = ax.annotate('Loading...', xy=(0.01, 0.1),
                               xycoords='axes fraction', fontsize=20,
                               color='green', zorder=3)
            text.set_visible(False)
            callback_onselect = partial(_line_plot_onselect,
                                        ch_types=ch_types_used, info=info,
                                        data=data, times=times, text=text,
                                        psd=psd, time_unit=time_unit)
            blit = False if plt.get_backend() == 'MacOSX' else True
            minspan = 0 if len(times) < 2 else times[1] - times[0]
            ax._span_selector = SpanSelector(
                ax, callback_onselect, 'horizontal', minspan=minspan,
                useblit=blit, rectprops=dict(alpha=0.5, facecolor='red'))


def _add_nave(ax, nave):
    """Add nave to axes."""
    if nave is not None:
        ax.annotate(
            r'N$_{\mathrm{ave}}$=%d' % nave, ha='left', va='bottom',
            xy=(0, 1), xycoords='axes fraction',
            xytext=(0, 5), textcoords='offset pixels')


def _handle_spatial_colors(colors, info, idx, ch_type, psd, ax):
    """Set up spatial colors."""
    used_nm = np.array(_clean_names(info['ch_names']))[idx]
    # find indices for bads
    bads = [np.where(used_nm == bad)[0][0] for bad in info['bads'] if bad in
            used_nm]
    pos = _auto_topomap_coords(info, idx, ignore_overlap=True, to_sphere=True)
    pos, outlines = _check_outlines(pos, np.array([1, 1]),
                                    {'center': (0, 0), 'scale': (0.5, 0.5)})
    loc = 1 if psd else 2  # Legend in top right for psd plot.
    _plot_legend(pos, colors, ax, bads, outlines, loc)


def _plot_image(data, ax, this_type, picks, cmap, unit, units, scalings, times,
                xlim, ylim, titles, colorbar=True, mask=None, mask_cmap=None,
                mask_style=None, mask_alpha=.25, nave=None,
                time_unit='s', show_names=False, ch_names=None):
    """Plot images."""
    import matplotlib.pyplot as plt
    assert time_unit is not None

    if show_names == "auto":
        if picks is not None:
            show_names = "all" if len(picks) < 25 else True
        else:
            show_names = False

    cmap = _setup_cmap(cmap)

    ch_unit = units[this_type]
    this_scaling = scalings[this_type]
    if unit is False:
        this_scaling = 1.0
        ch_unit = 'NA'  # no unit

    if picks is not None:
        data = data[picks]
        if mask is not None:
            mask = mask[picks]
    # Show the image
    # Set amplitude scaling
    data = this_scaling * data
    if ylim is None or this_type not in ylim:
        vmax = np.abs(data).max()
        vmin = -vmax
    else:
        vmin, vmax = ylim[this_type]

    _check_if_nan(data)

    im, t_end = _plot_masked_image(
        ax, data, times, mask, picks=None, yvals=None, cmap=cmap[0],
        vmin=vmin, vmax=vmax, mask_style=mask_style, mask_alpha=mask_alpha,
        mask_cmap=mask_cmap)

    if xlim is not None:
        if xlim == 'tight':
            xlim = (times[0], times[-1])
        ax.set_xlim(xlim)

    if colorbar:
        cbar = plt.colorbar(im, ax=ax)
        cbar.ax.set_title(ch_unit)
        if cmap[1]:
            ax.CB = DraggableColorbar(cbar, im)

    ylabel = "Channels" if show_names else 'Channel (index)'
    t = titles[this_type] + ' (%d channel%s' % (len(data), _pl(data)) + t_end
    ax.set(ylabel=ylabel, xlabel='Time (%s)' % (time_unit,), title=t)
    _add_nave(ax, nave)

    if show_names is not False:
        if show_names == "all":
            yticks = np.arange(len(picks)).astype(int)
            yticklabels = np.array(ch_names)[picks]
        else:
            max_tick = len(picks)
            yticks = [tick for tick in ax.get_yticks() if tick < max_tick]
            yticks = np.array(yticks).astype(int)
            # these should only ever be ints right?
            yticklabels = np.array(ch_names)[picks][yticks]
        ax.set(yticks=yticks + .5, yticklabels=yticklabels)


@verbose
def plot_evoked(evoked, picks=None, exclude='bads', unit=True, show=True,
                ylim=None, xlim='tight', proj=False, hline=None, units=None,
                scalings=None, titles=None, axes=None, gfp=False,
                window_title=None, spatial_colors=False, zorder='unsorted',
                selectable=True, noise_cov=None, time_unit='s', verbose=None):
    """Plot evoked data using butterfly plots.

    Left click to a line shows the channel name. Selecting an area by clicking
    and holding left mouse button plots a topographic map of the painted area.

    .. note:: If bad channels are not excluded they are shown in red.

    Parameters
    ----------
    evoked : instance of Evoked
        The evoked data
    picks : array-like of int | None
        The indices of channels to plot. If None show all.
    exclude : list of str | 'bads'
        Channels names to exclude from being shown. If 'bads', the
        bad channels are excluded.
    unit : bool
        Scale plot with channel (SI) unit.
    show : bool
        Show figure if True.
    ylim : dict | None
        ylim for plots (after scaling has been applied). e.g.
        ylim = dict(eeg=[-20, 20])
        Valid keys are eeg, mag, grad, misc. If None, the ylim parameter
        for each channel equals the pyplot default.
    xlim : 'tight' | tuple | None
        xlim for plots.
    proj : bool | 'interactive'
        If true SSP projections are applied before display. If 'interactive',
        a check box for reversible selection of SSP projection vectors will
        be shown.
    hline : list of floats | None
        The values at which to show an horizontal line.
    units : dict | None
        The units of the channel types used for axes labels. If None,
        defaults to `dict(eeg='uV', grad='fT/cm', mag='fT')`.
    scalings : dict | None
        The scalings of the channel types to be applied for plotting. If None,
        defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
    titles : dict | None
        The titles associated with the channels. If None, defaults to
        `dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')`.
    axes : instance of Axis | list | None
        The axes to plot to. If list, the list must be a list of Axes of
        the same length as the number of channel types. If instance of
        Axes, there must be only one channel type plotted.
    gfp : bool | 'only'
        Plot GFP in green if True or "only". If "only", then the individual
        channel traces will not be shown.
    window_title : str | None
        The title to put at the top of the figure.
    spatial_colors : bool
        If True, the lines are color coded by mapping physical sensor
        coordinates into color values. Spatially similar channels will have
        similar colors. Bad channels will be dotted. If False, the good
        channels are plotted black and bad channels red. Defaults to False.
    zorder : str | callable
        Which channels to put in the front or back. Only matters if
        `spatial_colors` is used.
        If str, must be `std` or `unsorted` (defaults to `unsorted`). If
        `std`, data with the lowest standard deviation (weakest effects) will
        be put in front so that they are not obscured by those with stronger
        effects. If `unsorted`, channels are z-sorted as in the evoked
        instance.
        If callable, must take one argument: a numpy array of the same
        dimensionality as the evoked raw data; and return a list of
        unique integers corresponding to the number of channels.

        .. versionadded:: 0.13.0

    selectable : bool
        Whether to use interactive features. If True (default), it is possible
        to paint an area to draw topomaps. When False, the interactive features
        are disabled. Disabling interactive features reduces memory consumption
        and is useful when using ``axes`` parameter to draw multiaxes figures.

        .. versionadded:: 0.13.0

    noise_cov : instance of Covariance | str | None
        Noise covariance used to whiten the data while plotting.
        Whitened data channel names are shown in italic.
        Can be a string to load a covariance from disk.
        See also :meth:`mne.Evoked.plot_white` for additional inspection
        of noise covariance properties when whitening evoked data.
        For data processed with SSS, the effective dependence between
        magnetometers and gradiometers may introduce differences in scaling,
        consider using :meth:`mne.Evoked.plot_white`.

        .. versionadded:: 0.16.0
    time_unit : str
        The units for the time axis, can be "ms" or "s" (default).

        .. versionadded:: 0.16
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        Figure containing the butterfly plots.

    See Also
    --------
    mne.viz.plot_evoked_white
    """
    return _plot_evoked(
        evoked=evoked, picks=picks, exclude=exclude, unit=unit, show=show,
        ylim=ylim, proj=proj, xlim=xlim, hline=hline, units=units,
        scalings=scalings, titles=titles, axes=axes, plot_type="butterfly",
        gfp=gfp, window_title=window_title, spatial_colors=spatial_colors,
        selectable=selectable, zorder=zorder, noise_cov=noise_cov,
        time_unit=time_unit)


def plot_evoked_topo(evoked, layout=None, layout_scale=0.945, color=None,
                     border='none', ylim=None, scalings=None, title=None,
                     proj=False, vline=[0.0], fig_background=None,
                     merge_grads=False, legend=True, axes=None,
                     background_color='w', noise_cov=None, show=True):
    """Plot 2D topography of evoked responses.

    Clicking on the plot of an individual sensor opens a new figure showing
    the evoked response for the selected sensor.

    Parameters
    ----------
    evoked : list of Evoked | Evoked
        The evoked response to plot.
    layout : instance of Layout | None
        Layout instance specifying sensor positions (does not need to
        be specified for Neuromag data). If possible, the correct layout is
        inferred from the data.
    layout_scale: float
        Scaling factor for adjusting the relative size of the layout
        on the canvas
    color : list of color objects | color object | None
        Everything matplotlib accepts to specify colors. If not list-like,
        the color specified will be repeated. If None, colors are
        automatically drawn.
    border : str
        matplotlib borders style to be used for each sensor plot.
    ylim : dict | None
        ylim for plots (after scaling has been applied). The value
        determines the upper and lower subplot limits. e.g.
        ylim = dict(eeg=[-20, 20]). Valid keys are eeg, mag, grad, misc.
        If None, the ylim parameter for each channel is determined by
        the maximum absolute peak.
    scalings : dict | None
        The scalings of the channel types to be applied for plotting. If None,`
        defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`.
    title : str
        Title of the figure.
    proj : bool | 'interactive'
        If true SSP projections are applied before display. If 'interactive',
        a check box for reversible selection of SSP projection vectors will
        be shown.
    vline : list of floats | None
        The values at which to show a vertical line.
    fig_background : None | numpy ndarray
        A background image for the figure. This must work with a call to
        plt.imshow. Defaults to None.
    merge_grads : bool
        Whether to use RMS value of gradiometer pairs. Only works for Neuromag
        data. Defaults to False.
    legend : bool | int | string | tuple
        If True, create a legend based on evoked.comment. If False, disable the
        legend. Otherwise, the legend is created and the parameter value is
        passed as the location parameter to the matplotlib legend call. It can
        be an integer (e.g. 0 corresponds to upper right corner of the plot),
        a string (e.g. 'upper right'), or a tuple (x, y coordinates of the
        lower left corner of the legend in the axes coordinate system).
        See matplotlib documentation for more details.
    axes : instance of matplotlib Axes | None
        Axes to plot into. If None, axes will be created.
    background_color : str | obj
        Background color. Typically 'k' (black) or 'w' (white; default).

        .. versionadded:: 0.15.0
    noise_cov : instance of Covariance | str | None
        Noise covariance used to whiten the data while plotting.
        Whitened data channel names are shown in italic.
        Can be a string to load a covariance from disk.

        .. versionadded:: 0.16.0
    show : bool
        Show figure if True.

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        Images of evoked responses at sensor locations
    """
    from matplotlib.colors import colorConverter

    if not type(evoked) in (tuple, list):
        evoked = [evoked]

    dark_background = \
        np.mean(colorConverter.to_rgb(background_color)) < 0.5
    if dark_background:
        fig_facecolor = background_color
        axis_facecolor = background_color
        font_color = 'w'
    else:
        fig_facecolor = background_color
        axis_facecolor = background_color
        font_color = 'k'
    if color is None:
        if dark_background:
            color = ['w'] + _get_color_list()
        else:
            color = _get_color_list()
        color = color * ((len(evoked) % len(color)) + 1)
        color = color[:len(evoked)]
    return _plot_evoked_topo(evoked=evoked, layout=layout,
                             layout_scale=layout_scale, color=color,
                             border=border, ylim=ylim, scalings=scalings,
                             title=title, proj=proj, vline=vline,
                             fig_facecolor=fig_facecolor,
                             fig_background=fig_background,
                             axis_facecolor=axis_facecolor,
                             font_color=font_color, merge_grads=merge_grads,
                             legend=legend, axes=axes, show=show,
                             noise_cov=noise_cov)


def plot_evoked_image(evoked, picks=None, exclude='bads', unit=True,
                      show=True, clim=None, xlim='tight', proj=False,
                      units=None, scalings=None, titles=None, axes=None,
                      cmap='RdBu_r', colorbar=True, mask=None,
                      mask_style=None, mask_cmap="Greys", mask_alpha=.25,
                      time_unit='s', show_names="auto", group_by=None):
    """Plot evoked data as images.

    Parameters
    ----------
    evoked : instance of Evoked
        The evoked data
    picks : array-like of int | None
        The indices of channels to plot. If None show all.
        This parameter can also be used to set the order the channels
        are shown in, as the channel image is sorted by the order of picks.
    exclude : list of str | 'bads'
        Channels names to exclude from being shown. If 'bads', the
        bad channels are excluded.
    unit : bool
        Scale plot with channel (SI) unit.
    show : bool
        Show figure if True.
    clim : dict | None
        clim for plots (after scaling has been applied). e.g.
        clim = dict(eeg=[-20, 20])
        Valid keys are eeg, mag, grad, misc. If None, the clim parameter
        for each channel equals the pyplot default.
    xlim : 'tight' | tuple | None
        xlim for plots.
    proj : bool | 'interactive'
        If true SSP projections are applied before display. If 'interactive',
        a check box for reversible selection of SSP projection vectors will
        be shown.
    units : dict | None
        The units of the channel types used for axes labels. If None,
        defaults to ``dict(eeg='uV', grad='fT/cm', mag='fT')``.
    scalings : dict | None
        The scalings of the channel types to be applied for plotting. If None,`
        defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
    titles : dict | None
        The titles associated with the channels. If None, defaults to
        ``dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')``.
    axes : instance of Axis | list | dict | None
        The axes to plot to. If list, the list must be a list of Axes of
        the same length as the number of channel types. If instance of
        Axes, there must be only one channel type plotted.
        If `group_by` is a dict, this cannot be a list, but it can be a dict
        of lists of axes, with the keys matching those of `group_by`. In that
        case, the provided axes will be used for the corresponding groups.
        Defaults to `None`.
    cmap : matplotlib colormap | (colormap, bool) | 'interactive'
        Colormap. If tuple, the first value indicates the colormap to use and
        the second value is a boolean defining interactivity. In interactive
        mode the colors are adjustable by clicking and dragging the colorbar
        with left and right mouse button. Left mouse button moves the scale up
        and down and right mouse button adjusts the range. Hitting space bar
        resets the scale. Up and down arrows can be used to change the
        colormap. If 'interactive', translates to ``('RdBu_r', True)``.
        Defaults to ``'RdBu_r'``.
    colorbar : bool
        If True, plot a colorbar. Defaults to True.

        .. versionadded:: 0.16
    mask : ndarray | None
        An array of booleans of the same shape as the data. Entries of the
        data that correspond to ```False`` in the mask are masked (see
        `do_mask` below). Useful for, e.g., masking for statistical
        significance.

        .. versionadded:: 0.16
    mask_style: None | 'both' | 'contour' | 'mask'
        If `mask` is not None: if 'contour', a contour line is drawn around
        the masked areas (``True`` in `mask`). If 'mask', entries not
        ``True`` in `mask` are shown transparently. If 'both', both a contour
        and transparency are used.
        If ``None``, defaults to 'both' if `mask` is not None, and is ignored
        otherwise.

         .. versionadded:: 0.16
    mask_cmap : matplotlib colormap | (colormap, bool) | 'interactive'
        The colormap chosen for masked parts of the image (see below), if
        `mask` is not ``None``. If None, `cmap` is reused. Defaults to
        ``Greys``. Not interactive. Otherwise, as `cmap`.
    mask_alpha : float
        A float between 0 and 1. If `mask` is not None, this sets the
        alpha level (degree of transparency) for the masked-out segments.
        I.e., if 0, masked-out segments are not visible at all.
        Defaults to .25.

        .. versionadded:: 0.16
    time_unit : str
        The units for the time axis, can be "ms" or "s" (default).

        .. versionadded:: 0.16
    show_names : bool | str
        Determines if channel names should be plotted on the y axis. If False,
        no names are shown. If True, ticks are set automatically and the
        corresponding channel names are shown. If str, must be "auto" or "all".
        If "all", all channel names are shown.
        If "auto", is set to False if `picks` is ``None``; to ``True`` if
        `picks` is not ``None`` and fewer than 25 picks are shown; to "all"
        if `picks` is not ``None`` and contains fewer than 25 entries.
    group_by : None | dict
        If a dict, the values must be picks, and `axes` must also be a dict
        with matching keys, or None. If `axes` is None, one figure and one axis
        will be created for each entry in `group_by`.
        Then, for each entry, the picked channels will be plotted
        to the corresponding axis. If `titles` are None, keys will become plot
        titles. This is useful for e.g. ROIs. Each entry must contain only
        one channel type. For example::

            group_by=dict(Left_ROI=[1, 2, 3, 4], Right_ROI=[5, 6, 7, 8])

        If None, all picked channels are plotted to the same axis.

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        Figure containing the images.
    """
    return _plot_evoked(evoked=evoked, picks=picks, exclude=exclude, unit=unit,
                        show=show, ylim=clim, proj=proj, xlim=xlim, hline=None,
                        units=units, scalings=scalings, titles=titles,
                        axes=axes, plot_type="image", cmap=cmap,
                        colorbar=colorbar, mask=mask, mask_style=mask_style,
                        mask_cmap=mask_cmap, mask_alpha=mask_alpha,
                        time_unit=time_unit, show_names=show_names,
                        group_by=group_by)


def _plot_update_evoked(params, bools):
    """Update the plot evoked lines."""
    picks, evoked = [params[k] for k in ('picks', 'evoked')]
    projs = [proj for ii, proj in enumerate(params['projs'])
             if ii in np.where(bools)[0]]
    params['proj_bools'] = bools
    new_evoked = evoked.copy()
    new_evoked.info['projs'] = []
    new_evoked.add_proj(projs)
    new_evoked.apply_proj()
    for ax, t in zip(params['axes'], params['ch_types_used']):
        this_scaling = params['scalings'][t]
        idx = [picks[i] for i in range(len(picks)) if params['types'][i] == t]
        D = this_scaling * new_evoked.data[idx, :]
        if params['plot_type'] == 'butterfly':
            for line, di in zip(ax.lines, D):
                line.set_ydata(di)
        else:
            ax.images[0].set_data(D)
    params['fig'].canvas.draw()


@verbose
def plot_evoked_white(evoked, noise_cov, show=True, rank=None, time_unit='s',
                      verbose=None):
    u"""Plot whitened evoked response.

    Plots the whitened evoked response and the whitened GFP as described in
    [1]_. This function is especially useful for investigating noise
    covariance properties to determine if data are properly whitened (e.g.,
    achieving expected values in line with model assumptions, see Notes below).

    Parameters
    ----------
    evoked : instance of mne.Evoked
        The evoked response.
    noise_cov : list | instance of Covariance | str
        The noise covariance. Can be a string to load a covariance from disk.
    show : bool
        Show figure if True.
    rank : dict of int | None
        Dict of ints where keys are 'eeg', 'meg', mag' or 'grad'. If None,
        the rank is detected automatically. Defaults to None. 'mag' or
        'grad' cannot be specified jointly with 'meg'. For SSS'd data,
        only 'meg' is valid. For non-SSS'd data, 'mag' and/or 'grad' must be
        specified separately. If only one is specified, the other one gets
        estimated. Note. The rank estimation will be printed by the logger for
        each noise covariance estimator that is passed.
    time_unit : str
        The units for the time axis, can be "ms" or "s" (default).

        .. versionadded:: 0.16
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        The figure object containing the plot.

    See Also
    --------
    mne.Evoked.plot

    Notes
    -----
    If baseline signals match the assumption of Gaussian white noise,
    values should be centered at 0, and be within 2 standard deviations
    (±1.96) for 95% of the time points. For the global field power (GFP),
    we expect it to fluctuate around a value of 1.

    If one single covariance object is passed, the GFP panel (bottom)
    will depict different sensor types. If multiple covariance objects are
    passed as a list, the left column will display the whitened evoked
    responses for each channel based on the whitener from the noise covariance
    that has the highest log-likelihood. The left column will depict the
    whitened GFPs based on each estimator separately for each sensor type.
    Instead of numbers of channels the GFP display shows the estimated rank.
    Note. The rank estimation will be printed by the logger
    (if ``verbose=True``) for each noise covariance estimator that is passed.

    References
    ----------
    .. [1] Engemann D. and Gramfort A. (2015) Automated model selection in
           covariance estimation and spatial whitening of MEG and EEG
           signals, vol. 108, 328-342, NeuroImage.
    """
    return _plot_evoked_white(evoked=evoked, noise_cov=noise_cov,
                              scalings=None, rank=rank, show=show,
                              time_unit=time_unit)


def _plot_evoked_white(evoked, noise_cov, scalings=None, rank=None, show=True,
                       time_unit='s'):
    """Help plot_evoked_white.

    Additional Parameters
    ---------------------
    scalings : dict | None
        The rescaling method to be applied to improve the accuracy of rank
        estimaiton. If dict, it will override the following default values
        (used if None)::

            dict(mag=1e12, grad=1e11, eeg=1e5)

        Note. Theses values were tested on different datests across various
        conditions. You should not need to update them.

    """
    from ..cov import whiten_evoked, read_cov  # recursive import
    import matplotlib.pyplot as plt
    time_unit, times = _check_time_unit(time_unit, evoked.times)

    if isinstance(noise_cov, string_types):
        noise_cov = read_cov(noise_cov)
    if not isinstance(noise_cov, (list, tuple)):
        noise_cov = [noise_cov]

    evoked = evoked.copy()  # handle ref meg
    passive_idx = [idx for idx, proj in enumerate(evoked.info['projs'])
                   if not proj['active']]
    # either applied already or not-- else issue
    for idx in passive_idx[::-1]:  # reverse order so idx does not change
        evoked.del_proj(idx)

    evoked.pick_types(ref_meg=False, exclude='bads', **_PICK_TYPES_DATA_DICT)
    n_ch_used, rank_list, picks_list, has_sss = _triage_rank_sss(
        evoked.info, noise_cov, rank, scalings)
    del rank, scalings
    if has_sss:
        logger.info('SSS has been applied to data. Showing mag and grad '
                    'whitening jointly.')

    # get one whitened evoked per cov
    evokeds_white = [whiten_evoked(evoked, cov, picks=None, rank=r)
                     for cov, r in zip(noise_cov, rank_list)]

    def whitened_gfp(x, rank=None):
        """Whitened Global Field Power.

        The MNE inverse solver assumes zero mean whitened data as input.
        Therefore, a chi^2 statistic will be best to detect model violations.
        """
        return np.sum(x ** 2, axis=0) / (len(x) if rank is None else rank)

    # prepare plot
    if len(noise_cov) > 1:
        n_columns = 2
        n_extra_row = 0
    else:
        n_columns = 1
        n_extra_row = 1

    n_rows = n_ch_used + n_extra_row
    fig, axes = plt.subplots(n_rows,
                             n_columns, sharex=True, sharey=False,
                             figsize=(8.8, 2.2 * n_rows))
    if n_columns > 1:
        suptitle = ('Whitened evoked (left, best estimator = "%s")\n'
                    'and global field power '
                    '(right, comparison of estimators)' %
                    noise_cov[0].get('method', 'empirical'))
        fig.suptitle(suptitle)

    if any(((n_columns == 1 and n_ch_used >= 1),
            (n_columns == 2 and n_ch_used == 1))):
        axes_evoked = axes[:n_ch_used]
        ax_gfp = axes[-1:]
    elif n_columns == 2 and n_ch_used > 1:
        axes_evoked = axes[:n_ch_used, 0]
        ax_gfp = axes[:, 1]
    else:
        raise RuntimeError('Wrong axes inputs')

    titles_ = _handle_default('titles')
    if has_sss:
        titles_['meg'] = 'MEG (combined)'

    colors = [plt.cm.Set1(i) for i in np.linspace(0, 0.5, len(noise_cov))]
    ch_colors = _handle_default('color', None)
    iter_gfp = zip(evokeds_white, noise_cov, rank_list, colors)

    # the first is by law the best noise cov, on the left we plot that one.
    if not has_sss:
        evokeds_white[0].plot(unit=False, axes=axes_evoked,
                              hline=[-1.96, 1.96], show=False,
                              time_unit=time_unit)
    else:
        for ((ch_type, picks), ax) in zip(picks_list, axes_evoked):
            ax.plot(times, evokeds_white[0].data[picks].T, color='k',
                    lw=0.5)
            for hline in [-1.96, 1.96]:
                ax.axhline(hline, color='red', linestyle='--', lw=2)
            ax.set(title='%s (%d channel%s)'
                   % (titles_[ch_type], len(picks), _pl(len(picks))))

    # Now plot the GFP for all covs if indicated.
    for evoked_white, noise_cov, rank_, color in iter_gfp:
        i = 0

        for ch, sub_picks in picks_list:
            this_rank = rank_[ch]
            title = '{0} ({2}{1})'.format(
                    titles_[ch] if n_columns > 1 else ch,
                    this_rank, 'rank ' if n_columns > 1 else '')
            label = noise_cov.get('method', 'empirical')

            ax = ax_gfp[i]
            ax.set_title(title if n_columns > 1 else
                         'Whitened GFP, method = "%s"' % label)

            data = evoked_white.data[sub_picks]
            gfp = whitened_gfp(data, rank=this_rank)
            # Wrap SSS-processed data (MEG) to the mag color
            color_ch = 'mag' if ch == 'meg' else ch
            ax.plot(times, gfp,
                    label=label if n_columns > 1 else title,
                    color=color if n_columns > 1 else ch_colors[color_ch],
                    lw=0.5)
            ax.set(xlabel='Time (%s)' % (time_unit,), ylabel=r'GFP ($\chi^2$)',
                   xlim=[times[0], times[-1]], ylim=(0, 10))
            ax.axhline(1, color='red', linestyle='--', lw=2.)
            if n_columns > 1:
                i += 1

    ax = ax_gfp[0]
    if n_columns == 1:
        ax.legend(  # mpl < 1.2.1 compatibility: use prop instead of fontsize
            loc='upper right', bbox_to_anchor=(0.98, 0.9), prop=dict(size=12))
    else:
        ax.legend(loc='upper right', prop=dict(size=10))
        params = dict(top=[0.69, 0.82, 0.87][n_rows - 1],
                      bottom=[0.22, 0.13, 0.09][n_rows - 1])
        if has_sss:
            params['hspace'] = 0.49
        fig.subplots_adjust(**params)
    fig.canvas.draw()

    plt_show(show)
    return fig


@verbose
def plot_snr_estimate(evoked, inv, show=True, verbose=None):
    """Plot a data SNR estimate.

    Parameters
    ----------
    evoked : instance of Evoked
        The evoked instance. This should probably be baseline-corrected.
    inv : instance of InverseOperator
        The minimum-norm inverse operator.
    show : bool
        Show figure if True.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        The figure object containing the plot.

    Notes
    -----
    The bluish green line is the SNR determined by the GFP of the whitened
    evoked data. The orange line is the SNR estimated based on the mismatch
    between the data and the data re-estimated from the regularized inverse.

    .. versionadded:: 0.9.0
    """
    import matplotlib.pyplot as plt
    from ..minimum_norm import estimate_snr
    snr, snr_est = estimate_snr(evoked, inv)
    fig, ax = plt.subplots(1, 1)
    lims = np.concatenate([evoked.times[[0, -1]], [-1, snr_est.max()]])
    ax.axvline(0, color='k', ls=':', lw=1)
    ax.axhline(0, color='k', ls=':', lw=1)
    # Colors are "bluish green" and "vermilion" taken from:
    #  http://bconnelly.net/2013/10/creating-colorblind-friendly-figures/
    ax.plot(evoked.times, snr_est, color=[0.0, 0.6, 0.5])
    ax.plot(evoked.times, snr - 1, color=[0.8, 0.4, 0.0])
    ax.set(xlim=lims[:2], ylim=lims[2:], ylabel='SNR', xlabel='Time (s)')
    if evoked.comment is not None:
        ax.set_title(evoked.comment)
    plt_show(show)
    return fig


def plot_evoked_joint(evoked, times="peaks", title='', picks=None,
                      exclude=None, show=True, ts_args=None,
                      topomap_args=None):
    """Plot evoked data as butterfly plot and add topomaps for time points.

    Parameters
    ----------
    evoked : instance of Evoked
        The evoked instance.
    times : float | array of floats | "auto" | "peaks"
        The time point(s) to plot. If "auto", 5 evenly spaced topographies
        between the first and last time instant will be shown. If "peaks",
        finds time points automatically by checking for 3 local maxima in
        Global Field Power. Defaults to "peaks".
    title : str | None
        The title. If `None`, suppress printing channel type. If an empty
        string, a default title is created. Defaults to ''.
    picks : array-like of int | None
        The indices of channels to plot. If None show all. Defaults to None.
    exclude : None | list of str | 'bads'
        Channels names to exclude from being shown. If 'bads', the
        bad channels are excluded. Defaults to None.
    show : bool
        Show figure if True. Defaults to True.
    ts_args : None | dict
        A dict of `kwargs` that are forwarded to :meth:`mne.Evoked.plot` to
        style the butterfly plot. If they are not in this dict, the following
        defaults are passed: ``spatial_colors=True``, ``zorder='std'``.
        ``show`` and ``exclude`` are illegal.
        If None, no customizable arguments will be passed.
        Defaults to `None`.
    topomap_args : None | dict
        A dict of `kwargs` that are forwarded to
        :meth:`mne.Evoked.plot_topomap` to style the topomaps.
        If it is not in this dict, ``outlines='skirt'``
        will be passed. `show`, `times`, `colorbar` are illegal`
        If None, no customizable arguments will be passed.
        Defaults to `None`.

    Returns
    -------
    fig : instance of matplotlib.figure.Figure | list
        The figure object containing the plot. If `evoked` has multiple
        channel types, a list of figures, one for each channel type, is
        returned.

    Notes
    -----
    .. versionadded:: 0.12.0
    """
    import matplotlib.pyplot as plt

    if ts_args is not None and not isinstance(ts_args, dict):
        raise TypeError('ts_args must be dict or None, got type %s'
                        % (type(ts_args),))
    ts_args = dict() if ts_args is None else ts_args.copy()
    ts_args['time_unit'], evoked_times = _check_time_unit(
        ts_args.get('time_unit', 's'), evoked.times)
    if topomap_args is None:
        topomap_args = dict()

    illegal_args = {"show", 'times', 'exclude'}
    for args in (ts_args, topomap_args):
        if any((x in args for x in illegal_args)):
            raise ValueError("Don't pass any of {} as *_args.".format(
                ", ".join(list(illegal_args))))
    if ("axes" in ts_args) or ("axes" in topomap_args):
        if not ("axes" in ts_args) and ("axes" in topomap_args):
            raise ValueError("If one of `ts_args` and `topomap_args` contains "
                             "'axes', the other must, too.")
        if "axes" in ts_args:
            _validate_if_list_of_axes([ts_args["axes"]], 1)
        n_topomaps = (3 if times is None else len(times)) + 1
        if "axes" in topomap_args:
            _validate_if_list_of_axes(list(topomap_args["axes"]), n_topomaps)

    # channel selection
    # simply create a new evoked object with the desired channel selection
    evoked = _pick_inst(evoked, picks, exclude, copy=True)
    info = evoked.info
    ch_types = _get_channel_types(info, restrict_data_types=True)

    # if multiple sensor types: one plot per channel type, recursive call
    if len(ch_types) > 1:
        if "axes" in ts_args or "axes" in topomap_args:
            raise NotImplementedError(
                "Currently, passing axes manually (via `ts_args` or "
                "`topomap_args`) is not supported for multiple channel types.")
        figs = list()
        for this_type in ch_types:  # pick only the corresponding channel type
            ev_ = evoked.copy().pick_channels(
                [info['ch_names'][idx] for idx in range(info['nchan'])
                 if channel_type(info, idx) == this_type])
            if len(_get_channel_types(ev_.info)) > 1:
                raise RuntimeError('Possibly infinite loop due to channel '
                                   'selection problem. This should never '
                                   'happen! Please check your channel types.')
            figs.append(
                plot_evoked_joint(
                    ev_, times=times, title=title, show=show, ts_args=ts_args,
                    exclude=list(), topomap_args=topomap_args))
        return figs

    # set up time points to show topomaps for
    times_sec = _process_times(evoked, times, few=True)
    del times
    _, times_ts = _check_time_unit(ts_args['time_unit'], times_sec)

    # prepare axes for topomap
    if ("axes" not in topomap_args) or ("axes" not in ts_args):
        fig, ts_ax, map_ax, cbar_ax = _prepare_joint_axes(len(times_sec),
                                                          figsize=(8.0, 4.2))
    else:
        ts_ax = ts_args["axes"]
        del ts_args["axes"]
        map_ax = topomap_args["axes"][:-1]
        cbar_ax = topomap_args["axes"][-1]
        del topomap_args["axes"]
        fig = cbar_ax.figure

    # butterfly/time series plot
    # most of this code is about passing defaults on demand
    ts_args_def = dict(picks=None, unit=True, ylim=None, xlim='tight',
                       proj=False, hline=None, units=None, scalings=None,
                       titles=None, gfp=False, window_title=None,
                       spatial_colors=True, zorder='std')
    ts_args_def.update(ts_args)
    _plot_evoked(evoked, axes=ts_ax, show=False, plot_type='butterfly',
                 exclude=[], set_tight_layout=False, **ts_args_def)

    # handle title
    # we use a new axis for the title to handle scaling of plots
    old_title = ts_ax.get_title()
    ts_ax.set_title('')
    if title is not None:
        title_ax = plt.subplot(4, 3, 2)
        if title == '':
            title = old_title
        title_ax.text(.5, .5, title, transform=title_ax.transAxes,
                      horizontalalignment='center',
                      verticalalignment='center')
        title_ax.axis('off')

    # topomap
    contours = topomap_args.get('contours', 6)
    ch_type = ch_types.pop()  # set should only contain one element
    # Since the data has all the ch_types, we get the limits from the plot.
    vmin, vmax = ts_ax.get_ylim()
    norm = ch_type == 'grad'
    vmin = 0 if norm else vmin
    vmin, vmax = _setup_vmin_vmax(evoked.data, vmin, vmax, norm)
    if not isinstance(contours, (list, np.ndarray)):
        locator, contours = _set_contour_locator(vmin, vmax, contours)
    else:
        locator = None

    topomap_args_pass = topomap_args.copy()
    topomap_args_pass['outlines'] = topomap_args.get('outlines', 'skirt')
    topomap_args_pass['contours'] = contours
    evoked.plot_topomap(times=times_sec, axes=map_ax, show=False,
                        colorbar=False, **topomap_args_pass)

    if topomap_args.get('colorbar', True):
        from matplotlib import ticker
        cbar = plt.colorbar(map_ax[0].images[0], cax=cbar_ax)
        if isinstance(contours, (list, np.ndarray)):
            cbar.set_ticks(contours)
        else:
            if locator is None:
                locator = ticker.MaxNLocator(nbins=5)
            cbar.locator = locator
        cbar.update_ticks()

    plt.subplots_adjust(left=.1, right=.93, bottom=.14,
                        top=1. if title is not None else 1.2)

    # connection lines
    # draw the connection lines between time series and topoplots
    lines = [_connection_line(timepoint, fig, ts_ax, map_ax_)
             for timepoint, map_ax_ in zip(times_ts, map_ax)]
    for line in lines:
        fig.lines.append(line)

    # mark times in time series plot
    for timepoint in times_ts:
        ts_ax.axvline(timepoint, color='grey', linestyle='-',
                      linewidth=1.5, alpha=.66, zorder=0)

    # show and return it
    plt_show(show)
    return fig


def _aux_setup_styles(conditions, style_dict, style, default):
    """Set linestyles and colors for plot_compare_evokeds."""
    # check user-supplied style to condition matching
    tags = set([tag for cond in conditions for tag in cond.split("/")])
    msg = ("Can't map between conditions and the provided {0}. Make sure "
           "you have provided keys in the format of '/'-separated tags, "
           "and that these correspond to '/'-separated tags for the condition "
           "names (e.g., conditions like 'Visual/Right', and styles like "
           "'colors=dict(Visual='red'))'. The offending tag was '{1}'.")
    for key in style_dict:
        for tag in key.split("/"):
            if tag not in tags:
                raise ValueError(msg.format(style, tag))

    # check condition to style matching, and fill in defaults
    condition_warning = "Condition {0} could not be mapped to a " + style
    style_warning = ". Using the default of {0}.".format(default)
    for condition in conditions:
        if condition not in style_dict:
            if "/" not in condition:
                warn(condition_warning.format(condition) + style_warning)
                style_dict[condition] = default
            for style_ in style_dict:
                if style_ in condition.split("/"):
                    style_dict[condition] = style_dict[style_]
                    break

    return style_dict


def _truncate_yaxis(axes, ymin, ymax, orig_ymin, orig_ymax, fraction,
                    any_positive, any_negative, truncation_style):
    """Truncate the y axis in plot_compare_evokeds."""
    if truncation_style != "max_ticks":
        abs_lims = (orig_ymax if orig_ymax > np.abs(orig_ymin)
                    else np.abs(orig_ymin))
        ymin_, ymax_ = (-(abs_lims // fraction), abs_lims // fraction)
        # user supplied ymin and ymax overwrite everything
        if ymin is not None and ymin > ymin_:
            ymin_ = ymin
        if ymax is not None and ymax < ymax_:
            ymax_ = ymax
        yticks = (ymin_ if any_negative else 0, ymax_ if any_positive else 0)
        axes.set_yticks(yticks)
        ymin_bound, ymax_bound = (-(abs_lims // fraction),
                                  abs_lims // fraction)
        # user supplied ymin and ymax still overwrite everything
        if ymin is not None and ymin > ymin_bound:
            ymin_bound = ymin
        if ymax is not None and ymax < ymax_bound:
            ymax_bound = ymax
        precision = 0.25  # round to .25
        if ymin is None:
            ymin_bound = round(ymin_bound / precision) * precision
        if ymin is None:
            ymax_bound = round(ymax_bound / precision) * precision
        axes.spines['left'].set_bounds(ymin_bound, ymax_bound)
    else:  # code stolen from seaborn
        yticks = axes.get_yticks()
        firsttick = np.compress(yticks >= min(axes.get_ylim()),
                                yticks)[0]
        lasttick = np.compress(yticks <= max(axes.get_ylim()),
                               yticks)[-1]
        axes.spines['left'].set_bounds(firsttick, lasttick)
        newticks = yticks.compress(yticks <= lasttick)
        newticks = newticks.compress(newticks >= firsttick)
        axes.set_yticks(newticks)
        ymin_bound, ymax_bound = newticks[[0, -1]]
    return ymin_bound, ymax_bound


def _combine_grad(evoked, picks):
    """Create a new instance of Evoked with combined gradiometers (RMSE)."""
    def pair_and_combine(data):
        data = data ** 2
        data = (data[::2, :] + data[1::2, :]) / 2
        return np.sqrt(data)
    picks, ch_names = _grad_pair_pick_and_name(evoked.info, picks)
    this_data = pair_and_combine(evoked.data[picks, :])
    ch_names = ch_names[::2]
    evoked = evoked.copy().pick_channels(ch_names)
    combined_ch_names = [ch_name[:-1] + "X" for ch_name in ch_names]
    evoked.rename_channels({c_old: c_new for c_old, c_new
                            in zip(evoked.ch_names, combined_ch_names)})
    evoked.data = this_data
    return evoked


def _check_loc_legal(loc, what='your choice', default=1):
    """Check if loc is a legal location for MPL subordinate axes."""
    true_default = {"show_legend": 3, "show_sensors": 4}.get(what, default)
    if isinstance(loc, bool) and loc:
        loc = true_default
    loc_dict = {'upper right': 1, 'upper left': 2, 'lower left': 3,
                'lower right': 4, 'right': 5, 'center left': 6,
                'center right': 7, 'lower center': 8, 'upper center': 9,
                'center': 10}
    loc_ = loc_dict.get(loc, loc)
    if loc_ not in range(11):
        raise ValueError(str(loc) + " is not a legal MPL loc, please supply"
                         "another value for " + what + ".")
    return loc_


def _format_evokeds_colors(evokeds, cmap, colors):
    """Set up to have evokeds as a dict as well as colors."""
    from ..evoked import Evoked, _check_evokeds_ch_names_times

    if isinstance(evokeds, Evoked):
        evokeds = dict(Evoked=evokeds)  # title becomes 'Evoked'
    elif not isinstance(evokeds, dict):  # it's assumed to be a list
        if (cmap is not None) and (colors is None):
            colors = dict((str(ii + 1), ii) for ii, _ in enumerate(evokeds))
        evokeds = dict((str(ii + 1), evoked)
                       for ii, evoked in enumerate(evokeds))
    else:
        assert isinstance(evokeds, dict)
        if (colors is None) and cmap is not None:
            raise ValueError('If evokeds is a dict and a cmap is passed, '
                             'you must specify the colors.')
    for cond in evokeds.keys():
        _validate_type(cond, 'str', "Conditions")
    # Now make sure all values are list of Evoked objects
    evokeds = {condition: [v] if isinstance(v, Evoked) else v
               for condition, v in evokeds.items()}

    # Check that all elements are of type evoked
    for this_evoked in evokeds.values():
        for ev in this_evoked:
            _validate_type(ev, Evoked, "All evokeds entries ", "Evoked")

    # Check that all evoked objects have the same time axis and channels
    all_evoked = sum(evokeds.values(), [])
    _check_evokeds_ch_names_times(all_evoked)

    return evokeds, colors


def _setup_styles(conditions, styles, cmap, colors, linestyles):
    """Set up plotting styles for each condition."""
    import matplotlib.pyplot as plt
    # continuous colors
    the_colors, color_conds, color_order = None, None, None
    colors_are_float = False
    if cmap is not None:
        for color_value in colors.values():
            try:
                float(color_value)
            except ValueError:
                raise TypeError("If ``cmap`` is not None, the values of "
                                "``colors`` must be numeric. Got %s" %
                                type(color_value))
        cmapper = getattr(plt.cm, cmap, cmap)
        color_conds = list(colors.keys())
        all_colors = [colors[cond] for cond in color_conds]
        color_order = np.array(all_colors).argsort()
        color_indices = color_order.argsort()

        if all([isinstance(color, Integral) for color in all_colors]):
            msg = "Integer colors detected, mapping to rank positions ..."
            n_colors = len(all_colors)
            colors_ = {cond: ind for cond, ind in
                       zip(color_conds, color_indices)}

            def convert_colors(color):
                return colors_[color]
        else:
            for color in all_colors:
                if not 0 <= color <= 1:
                    raise ValueError("Values of colors must be all-integer or "
                                     "floats between 0 and 1, got %s." % color)
            msg = "Float colors detected, mapping to percentiles ..."
            n_colors = 101  # percentiles plus 1 if we have 1.0s
            colors_old = colors.copy()

            def convert_colors(color):
                return int(colors_old[color] * 100)
            colors_are_float = True
        logger.info(msg)
        the_colors = cmapper(np.linspace(0, 1, n_colors))

        colors = dict()
        for cond in conditions:
            cond_ = cond.split("/")
            for color in color_conds:
                if color in cond_:
                    colors[cond] = the_colors[convert_colors(color)]
                    continue

    # categorical colors
    if not isinstance(colors, dict):
        colors_ = _get_color_list()
        if len(conditions) > len(colors_):
            msg = ("Trying to plot more than {0} conditions. We provide"
                   "only {0} default colors. Please supply colors manually.")
            raise ValueError(msg.format(len(colors_)))
        colors = dict((condition, color) for condition, color
                      in zip(conditions, colors_))
    else:
        colors = _aux_setup_styles(conditions, colors, "color", "grey")

    # linestyles
    if not isinstance(linestyles, dict):
        linestyles = dict((condition, linestyle) for condition, linestyle in
                          zip(conditions, ['-'] * len(conditions)))
    else:
        linestyles = _aux_setup_styles(conditions, linestyles,
                                       "linestyle", "-")

    # finally, put it all together
    if styles is None:
        styles = dict()

    for condition, color, linestyle in zip(conditions, colors, linestyles):
        styles[condition] = styles.get(condition, dict())
        styles[condition]['c'] = styles[condition].get('c', colors[condition])
        styles[condition]['linestyle'] = styles[condition].get(
            'linestyle', linestyles[condition])

    return styles, the_colors, color_conds, color_order, colors_are_float


def plot_compare_evokeds(evokeds, picks=None, gfp=False, colors=None,
                         linestyles=['-'], styles=None, cmap=None,
                         vlines="auto", ci=0.95, truncate_yaxis="max_ticks",
                         truncate_xaxis=True, ylim=dict(), invert_y=False,
                         show_sensors=None, show_legend=True,
                         split_legend=False, axes=None, title=None, show=True):
    """Plot evoked time courses for one or more conditions and/or channels.

    Parameters
    ----------
    evokeds : instance of mne.Evoked | list | dict
        If a single Evoked instance, it is plotted as a time series.
        If a dict whose values are Evoked objects, the contents are plotted as
        single time series each and the keys are used as condition labels.
        If a list of Evokeds, the contents are plotted with indices as labels.
        If a [dict/list] of lists, the unweighted mean is plotted as a time
        series and the parametric confidence interval is plotted as a shaded
        area. All instances must have the same shape - channel numbers, time
        points etc.
        If dict, keys must be of type str.
    picks : None | int | list of int
        If int or list of int, the indices of the sensors to average and plot.
        If multiple channel types are selected, one figure will be returned for
        each channel type.
        If the selected channels are gradiometers, the signal from
        corresponding (gradiometer) pairs will be combined.
        If None, it defaults to all data channels, in which case the global
        field power will be plotted for all channel type available.
    gfp : bool
        If True, the channel type wise GFP is plotted.
        If `picks` is an empty list (default), this is set to True.
    colors : list | dict | None
        If a list, will be sequentially used for line colors.
        If a dict, can map evoked keys or '/'-separated (HED) tags to
        conditions.
        For example, if `evokeds` is a dict with the keys "Aud/L", "Aud/R",
        "Vis/L", "Vis/R", `colors` can be `dict(Aud='r', Vis='b')` to map both
        Aud/L and Aud/R to the color red and both Visual conditions to blue.
        If None (default), a sequence of desaturated colors is used.
        If `cmap` is None, `colors` will indicate how each condition is
        colored with reference to its position on the colormap - see `cmap`
        below. In that case, the values of colors must be either integers,
        in which case they will be mapped to colors in rank order; or floats
        between 0 and 1, in which case they will be mapped to percentiles of
        the colormap.
    linestyles : list | dict
        If a list, will be sequentially and repeatedly used for evoked plot
        linestyles.
        If a dict, can map the `evoked` keys or '/'-separated (HED) tags to
        conditions.
        For example, if evokeds is a dict with the keys "Aud/L", "Aud/R",
        "Vis/L", "Vis/R", `linestyles` can be `dict(L='--', R='-')` to map both
        Aud/L and Vis/L to dashed lines and both Right-side conditions to
        straight lines.
    styles : dict | None
        If a dict, keys must map to evoked keys or conditions, and values must
        be a dict of legal inputs to `matplotlib.pyplot.plot`. These
        parameters will be passed to the line plot call of the corresponding
        condition, overriding defaults.
        E.g., if evokeds is a dict with the keys "Aud/L", "Aud/R",
        "Vis/L", "Vis/R", `styles` can be `{"Aud/L": {"linewidth": 1}}` to set
        the linewidth for "Aud/L" to 1. Note that HED ('/'-separated) tags are
        not supported.
    cmap : None | str | tuple
        If not None, plot evoked activity with colors from a color gradient
        (indicated by a str referencing a matplotlib colormap - e.g., "viridis"
        or "Reds").
        If ``evokeds`` is a list and ``colors`` is `None`, the color will
        depend on the list position. If ``colors`` is a list, it must contain
        integers where the list positions correspond to ``evokeds``, and the
        value corresponds to the position on the colorbar.
        If ``evokeds`` is a dict, ``colors`` should be a dict mapping from
        (potentially HED-style) condition tags to numbers corresponding to
        positions on the colorbar - rank order for integers, or floats for
        percentiles. E.g., ::

            evokeds={"cond1/A": ev1, "cond2/A": ev2, "cond3/A": ev3, "B": ev4},
            cmap='viridis', colors=dict(cond1=1 cond2=2, cond3=3),
            linestyles={"A": "-", "B": ":"}

        If ``cmap`` is a tuple of length 2, the first item must be
        a string which will become the colorbar label, and the second one
        must indicate a colormap, e.g. ::

            cmap=('conds', 'viridis'), colors=dict(cond1=1 cond2=2, cond3=3),

    vlines : "auto" | list of float
        A list in seconds at which to plot dashed vertical lines.
        If "auto" and the supplied data includes 0, it is set to [0.]
        and a vertical bar is plotted at time 0. If an empty list is passed,
        no vertical lines are plotted.
    ci : float | callable | None | bool
        If not None and ``evokeds`` is a [list/dict] of lists, a shaded
        confidence interval is drawn around the individual time series. If
        float, a percentile bootstrap method is used to estimate the confidence
        interval and this value determines the CI width. E.g., if this value is
        .95 (the default), the 95% confidence interval is drawn. If a callable,
        it must take as its single argument an array (observations x times) and
        return the upper and lower confidence bands.
        If None or False, no confidence band is plotted.
        If True, a 95% bootstrapped confidence interval is drawn.
    truncate_yaxis : bool | str
        If not False, the left y axis spine is truncated to reduce visual
        clutter. If 'max_ticks', the spine is truncated at the minimum and
        maximum ticks. Else, it is truncated to half the max absolute value,
        rounded to .25. Defaults to "max_ticks".
    truncate_xaxis : bool
        If True, the x axis is truncated to span from the first to the last.
        xtick. Defaults to True.
    ylim : dict | None
        ylim for plots (after scaling has been applied). e.g.
        ylim = dict(eeg=[-20, 20])
        Valid keys are eeg, mag, grad, misc. If None, the ylim parameter
        for each channel equals the pyplot default.
    invert_y : bool
        If True, negative values are plotted up (as is sometimes done
        for ERPs out of tradition). Defaults to False.
    show_sensors: bool | int | str | None
        If not False, channel locations are plotted on a small head circle.
        If int or str, the position of the axes (forwarded to
        ``mpl_toolkits.axes_grid1.inset_locator.inset_axes``).
        If None, defaults to True if ``gfp`` is False, else to False.
    show_legend : bool | str | int
        If not False, show a legend. If int or str, it is the position of the
        legend axes (forwarded to
        ``mpl_toolkits.axes_grid1.inset_locator.inset_axes``).
    split_legend : bool
        If True, the legend shows color and linestyle separately; `colors` must
        not be None. Defaults to True if ``cmap`` is not None, else defaults to
        False.
    axes : None | `matplotlib.axes.Axes` instance | list of `axes`
        What axes to plot to. If None, a new axes is created.
        When plotting multiple channel types, can also be a list of axes, one
        per channel type.
    title : None | str
        If str, will be plotted as figure title. If None, the channel names
        will be shown.
    show : bool
        If True, show the figure.

    Returns
    -------
    fig : Figure | list of Figures
        The figure(s) in which the plot is drawn. When plotting multiple
        channel types, a list of figures, one for each channel type is
        returned.

    Notes
    -----
    When multiple channels are passed, this function combines them all, to
    get one time course for each condition. If gfp is True it combines
    channels using global field power (GFP) computation, else it is taking
    a plain mean.

    This function is useful for comparing multiple ER[P/F]s - e.g., for
    multiple conditions - at a specific location.

    It can plot:

    - a simple :class:`mne.Evoked` object,
    - a list or dict of :class:`mne.Evoked` objects (e.g., for multiple
      conditions),
    - a list or dict of lists of :class:`mne.Evoked` (e.g., for multiple
      subjects in multiple conditions).

    In the last case, it can show a confidence interval (across e.g. subjects)
    using parametric or bootstrap estimation.

    When ``picks`` includes more than one planar gradiometer, the planar
    gradiometers are combined with RMSE. For example data from a
    VectorView system with 204 gradiometers will be transformed to
    102 channels.
    """
    import matplotlib.pyplot as plt
    import matplotlib.lines as mlines

    evokeds, colors = _format_evokeds_colors(evokeds, cmap, colors)
    conditions = sorted(list(evokeds.keys()))

    # check ci parameter
    if ci is None:
        ci = False
    if ci is True:
        ci = .95
    elif ci is not False and not (isinstance(ci, np.float) or callable(ci)):
        raise TypeError('ci must be None, bool, float or callable, got %s' %
                        type(ci))

    # get and set a few limits and variables (times, channels, units)
    one_evoked = evokeds[conditions[0]][0]
    times = one_evoked.times
    info = one_evoked.info
    tmin, tmax = times[0], times[-1]

    if vlines == "auto" and (tmin < 0 and tmax > 0):
        vlines = [0.]
    _validate_type(vlines, (list, tuple), "vlines", "list or tuple")

    if isinstance(picks, Integral):
        picks = [picks]
    elif picks is None:
        logger.info("No picks, plotting the GFP ...")
        gfp = True
        picks = _pick_data_channels(info, with_ref_meg=False)

    _validate_type(picks, (list, np.ndarray), "picks",
                   "list or np.array of integers")
    for entry in picks:
        _validate_type(entry, 'int', "entries of picks", "integers")

    if len(picks) == 0:
        raise ValueError("No valid channels were found to plot the GFP. " +
                         "Use 'picks' instead to select them manually.")

    if ylim is None:
        ylim = dict()

    # deal with picks: infer indices and names
    if gfp is True:
        if show_sensors is None:
            show_sensors = False  # don't show sensors for GFP
        ch_names = ['Global Field Power']
        if len(picks) < 2:
            raise ValueError("Cannot compute GFP for fewer than 2 channels, "
                             "please pick more than %d channels." % len(picks))
    else:
        if show_sensors is None:
            show_sensors = True  # show sensors when not doing GFP
        ch_names = [one_evoked.ch_names[pick] for pick in picks]

    picks_by_types = channel_indices_by_type(info, picks)
    # keep only channel types for which there is a channel:
    ch_types = [t for t in picks_by_types if len(picks_by_types[t]) > 0]

    # let's take care of axis and figs
    if axes is not None:
        if not isinstance(axes, list):
            axes = [axes]
        _validate_if_list_of_axes(axes, obligatory_len=len(ch_types))
    else:
        axes = [plt.subplots(figsize=(8, 6))[1] for _ in range(len(ch_types))]

    if len(ch_types) > 1:
        logger.info("Multiple channel types selected, returning one figure "
                    "per type.")
        figs = list()
        for ii, t in enumerate(ch_types):
            picks_ = picks_by_types[t]
            title_ = "GFP, " + t if (title is None and gfp is True) else title
            figs.append(plot_compare_evokeds(
                evokeds, picks=picks_, gfp=gfp, colors=colors,
                linestyles=linestyles, styles=styles, vlines=vlines, ci=ci,
                truncate_yaxis=truncate_yaxis, ylim=ylim, invert_y=invert_y,
                axes=axes[ii], title=title_, show=show))
        return figs

    # From now on there is only 1 channel type
    assert len(ch_types) == 1
    ch_type = ch_types[0]

    all_positive = gfp  # True if not gfp, False if gfp
    pos_picks = picks  # keep locations to pick for plotting
    if ch_type == "grad" and len(picks) > 1:
        logger.info('Combining all planar gradiometers with RMSE.')
        pos_picks, _ = _grad_pair_pick_and_name(one_evoked.info, picks)
        pos_picks = pos_picks[::2]
        all_positive = True
        for cond, this_evokeds in evokeds.items():
            evokeds[cond] = [_combine_grad(e, picks) for e in this_evokeds]
        ch_names = evokeds[cond][0].ch_names
        picks = range(len(ch_names))

    del info

    ymin, ymax = ylim.get(ch_type, [None, None])

    scaling = _handle_default("scalings")[ch_type]
    unit = _handle_default("units")[ch_type]

    if (ymin is None) and all_positive:
        ymin = 0.  # 'grad' and GFP are plotted as all-positive

    # if we have a dict/list of lists, we compute the grand average and the CI
    _ci_fun = None
    if ci is not False:
        if callable(ci):
            _ci_fun = ci
        else:
            from ..stats import _ci
            _ci_fun = partial(_ci, ci=ci, method="bootstrap")

    # calculate the CI
    ci_dict, data_dict = dict(), dict()
    for cond in conditions:
        this_evokeds = evokeds[cond]
        # this will fail if evokeds do not have the same structure
        # (e.g. channel count)
        data = [e.data[picks, :] * scaling for e in this_evokeds]
        data = np.array(data)
        if gfp:
            data = np.sqrt(np.mean(data * data, axis=1))
        else:
            data = np.mean(data, axis=1)  # average across channels
        if _ci_fun is not None:  # compute CI if requested:
            ci_dict[cond] = _ci_fun(data)
        # average across conditions:
        data_dict[cond] = data = np.mean(data, axis=0)
        _check_if_nan(data)

    del evokeds

    # we now have dicts for data ('evokeds' - grand averaged Evoked's)
    # and the CI ('ci_array') with cond name labels

    # style the individual condition time series
    # Styles (especially color and linestyle) are pulled from a dict 'styles'.
    # This dict has one entry per condition. Its color and linestyle entries
    # are pulled from the 'colors' and 'linestyles' dicts via '/'-tag matching
    # unless they are overwritten by entries from a user-provided 'styles'.

    # first, copy to avoid overwriting
    styles = deepcopy(styles)
    colors = deepcopy(colors)
    linestyles = deepcopy(linestyles)

    # second, check if input is valid
    if isinstance(styles, dict):
        for style_ in styles:
            if style_ not in conditions:
                raise ValueError("Could not map between 'styles' and "
                                 "conditions. Condition " + style_ +
                                 " was not found in the supplied data.")

    # third, color
    # check: is color a list?
    if (colors is not None and not isinstance(colors, string_types) and
            not isinstance(colors, dict) and len(colors) > 1):
        colors = dict((condition, color) for condition, color
                      in zip(conditions, colors))

    if cmap is not None:
        if not isinstance(cmap, string_types) and len(cmap) == 2:
            cmap_label, cmap = cmap
        else:
            cmap_label = ""

    # dealing with a split legend
    if split_legend is None:
        split_legend = cmap is not None  # default to True iff cmap is given
    if split_legend is True:
        if colors is None:
            raise ValueError(
                "If `split_legend` is True, `colors` must not be None.")
        # mpl 1.3 requires us to split it like this. with recent mpl,
        # we could use the label parameter of the Line2D
        legend_lines, legend_labels = list(), list()
        if cmap is None:  # ... one set of lines for the colors
            for color in sorted(colors.keys()):
                line = mlines.Line2D([], [], linestyle="-",
                                     color=colors[color])
                legend_lines.append(line)
                legend_labels.append(color)
        if len(list(linestyles)) > 1:  # ... one set for the linestyle
            for style, s in linestyles.items():
                line = mlines.Line2D([], [], color='k', linestyle=s)
                legend_lines.append(line)
                legend_labels.append(style)

    styles, the_colors, color_conds, color_order, colors_are_float =\
        _setup_styles(data_dict.keys(), styles, cmap, colors, linestyles)

    # We now have a 'styles' dict with one entry per condition, specifying at
    # least color and linestyles.

    ax, = axes
    del axes

    # the actual plot
    any_negative, any_positive = False, False
    for condition in conditions:
        # plot the actual data ('d') as a line
        d = data_dict[condition].T
        ax.plot(times, d, zorder=1000, label=condition, clip_on=False,
                **styles[condition])
        if np.any(d > 0) or all_positive:
            any_positive = True
        if np.any(d < 0):
            any_negative = True

        # plot the confidence interval if available
        if _ci_fun is not None:
            ci_ = ci_dict[condition]
            ax.fill_between(times, ci_[0].flatten(), ci_[1].flatten(),
                            zorder=9, color=styles[condition]['c'], alpha=.3,
                            clip_on=False)

    # truncate the y axis
    orig_ymin, orig_ymax = ax.get_ylim()
    if not any_positive:
        orig_ymax = 0
    if not any_negative:
        orig_ymin = 0

    ax.set_ylim(orig_ymin if ymin is None else ymin,
                orig_ymax if ymax is None else ymax)

    fraction = 2 if ax.get_ylim()[0] >= 0 else 3

    if truncate_yaxis is not False:
        _, ymax_bound = _truncate_yaxis(
            ax, ymin, ymax, orig_ymin, orig_ymax, fraction,
            any_positive, any_negative, truncate_yaxis)
    else:
        if truncate_yaxis is True and ymin is not None and ymin > 0:
            warn("ymin is all-positive, not truncating yaxis")
        ymax_bound = ax.get_ylim()[-1]

    title = _set_title_multiple_electrodes(
        title, "average" if gfp is False else "gfp", ch_names, ch_type=ch_type)
    ax.set_title(title)

    current_ymin = ax.get_ylim()[0]

    # plot v lines
    if invert_y is True and current_ymin < 0:
        upper_v, lower_v = -ymax_bound, ax.get_ylim()[-1]
    else:
        upper_v, lower_v = ax.get_ylim()[0], ymax_bound
    if vlines:
        ax.vlines(vlines, upper_v, lower_v, linestyles='--', colors='k',
                  linewidth=1., zorder=1)

    _setup_ax_spines(ax, vlines, tmin, tmax, invert_y, ymax_bound, unit,
                     truncate_xaxis)

    # and now for 3 "legends" ..
    # a head plot showing the sensors that are being plotted
    if show_sensors:
        _validate_type(show_sensors, (np.int, bool, str, type(None)),
                       "show_sensors", "numeric, str, None or bool")
        if not _check_ch_locs(np.array(one_evoked.info['chs'])[pos_picks]):
            warn("Cannot find channel coordinates in the supplied Evokeds. "
                 "Not showing channel locations.")
        else:
            if show_sensors is True:
                ymin, ymax = np.abs(ax.get_ylim())
                show_sensors = "lower right" if ymin > ymax else "upper right"

            pos = _auto_topomap_coords(one_evoked.info, pos_picks,
                                       ignore_overlap=True, to_sphere=True)
            head_pos = {'center': (0, 0), 'scale': (0.5, 0.5)}
            pos, outlines = _check_outlines(pos, np.array([1, 1]), head_pos)

            show_sensors = _check_loc_legal(show_sensors, "show_sensors")
            _plot_legend(pos, ["k"] * len(picks), ax, list(), outlines,
                         show_sensors, size=25)

    # the condition legend
    if len(conditions) > 1 and show_legend is not False:
        show_legend = _check_loc_legal(show_legend, "show_legend")
        legend_params = dict(loc=show_legend, frameon=True)
        if split_legend:
            if len(legend_lines) > 1:
                ax.legend(legend_lines, legend_labels,  # see above: mpl 1.3
                          ncol=1 + (len(legend_lines) // 4), **legend_params)
        else:
            ax.legend(ncol=1 + (len(conditions) // 5), **legend_params)

    # the colormap, if `cmap` is provided
    if split_legend and cmap is not None:
        # plot the colorbar ... complicated cause we don't have a heatmap
        from mpl_toolkits.axes_grid1 import make_axes_locatable
        divider = make_axes_locatable(ax)
        ax_cb = divider.append_axes("right", size="5%", pad=0.05)
        if colors_are_float:
            ax_cb.imshow(the_colors[:, np.newaxis, :], interpolation='none',
                         aspect=.05)
            color_ticks = np.array(list(set(colors.values()))) * 100
            ax_cb.set_yticks(color_ticks)
            ax_cb.set_yticklabels(color_ticks)
        else:
            ax_cb.imshow(the_colors[:, np.newaxis, :], interpolation='none')
            ax_cb.set_yticks(np.arange(len(the_colors)))
            ax_cb.set_yticklabels(np.array(color_conds)[color_order])
        ax_cb.yaxis.tick_right()
        ax_cb.set(xticks=(), ylabel=cmap_label)

    plt_show(show)
    return ax.figure