File: misc.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (1047 lines) | stat: -rw-r--r-- 37,711 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
# -*- coding: utf-8 -*-
"""Functions to make simple plots with M/EEG data."""

from __future__ import print_function

# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Cathy Nangini <cnangini@gmail.com>
#          Mainak Jas <mainak@neuro.hut.fi>
#
# License: Simplified BSD

import copy
from glob import glob
from itertools import cycle
import os.path as op
import warnings
from distutils.version import LooseVersion
from collections import defaultdict

import numpy as np
from scipy import linalg

from ..defaults import DEFAULTS
from ..surface import read_surface
from ..externals.six import string_types
from ..io.proj import make_projector
from ..io.pick import _DATA_CH_TYPES_SPLIT, pick_types
from ..source_space import read_source_spaces, SourceSpaces
from ..utils import logger, verbose, get_subjects_dir, warn
from ..io.pick import _picks_by_type
from ..filter import estimate_ringing_samples
from .utils import tight_layout, _get_color_list, _prepare_trellis, plt_show


@verbose
def plot_cov(cov, info, exclude=[], colorbar=True, proj=False, show_svd=True,
             show=True, verbose=None):
    """Plot Covariance data.

    Parameters
    ----------
    cov : instance of Covariance
        The covariance matrix.
    info: dict
        Measurement info.
    exclude : list of string | str
        List of channels to exclude. If empty do not exclude any channel.
        If 'bads', exclude info['bads'].
    colorbar : bool
        Show colorbar or not.
    proj : bool
        Apply projections or not.
    show_svd : bool
        Plot also singular values of the noise covariance for each sensor
        type. We show square roots ie. standard deviations.
    show : bool
        Show figure if True.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    fig_cov : instance of matplotlib.pyplot.Figure
        The covariance plot.
    fig_svd : instance of matplotlib.pyplot.Figure | None
        The SVD spectra plot of the covariance.
    """
    if exclude == 'bads':
        exclude = info['bads']
    picks_list = \
        _picks_by_type(info, meg_combined=False, ref_meg=False,
                       exclude=exclude)
    picks_by_type = dict(picks_list)

    ch_names = [n for n in cov.ch_names if n not in exclude]
    ch_idx = [cov.ch_names.index(n) for n in ch_names]

    info_ch_names = info['ch_names']
    idx_by_type = defaultdict(list)
    for ch_type, sel in picks_by_type.items():
        idx_by_type[ch_type] = [ch_names.index(info_ch_names[c])
                                for c in sel if info_ch_names[c] in ch_names]

    idx_names = [(idx_by_type[key],
                  '%s covariance' % DEFAULTS['titles'][key],
                  DEFAULTS['units'][key],
                  DEFAULTS['scalings'][key])
                 for key in _DATA_CH_TYPES_SPLIT
                 if len(idx_by_type[key]) > 0]
    C = cov.data[ch_idx][:, ch_idx]

    if proj:
        projs = copy.deepcopy(info['projs'])

        #   Activate the projection items
        for p in projs:
            p['active'] = True

        P, ncomp, _ = make_projector(projs, ch_names)
        if ncomp > 0:
            logger.info('    Created an SSP operator (subspace dimension'
                        ' = %d)' % ncomp)
            C = np.dot(P, np.dot(C, P.T))
        else:
            logger.info('    The projection vectors do not apply to these '
                        'channels.')

    import matplotlib.pyplot as plt
    from matplotlib.colors import Normalize

    fig_cov, axes = plt.subplots(1, len(idx_names), squeeze=False,
                                 figsize=(3.8 * len(idx_names), 3.7))
    for k, (idx, name, _, _) in enumerate(idx_names):
        vlim = np.max(np.abs(C[idx][:, idx]))
        im = axes[0, k].imshow(C[idx][:, idx], interpolation="nearest",
                               norm=Normalize(vmin=-vlim, vmax=vlim),
                               cmap='RdBu_r')
        axes[0, k].set(title=name)

        if colorbar:
            from mpl_toolkits.axes_grid1 import make_axes_locatable
            divider = make_axes_locatable(axes[0, k])
            cax = divider.append_axes("right", size="5.5%", pad=0.05)
            plt.colorbar(im, cax=cax, format='%.0e')

    fig_cov.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.2, 0.26)
    tight_layout(fig=fig_cov)

    fig_svd = None
    if show_svd:
        fig_svd, axes = plt.subplots(1, len(idx_names), squeeze=False,
                                     figsize=(3.8 * len(idx_names), 3.7))
        for k, (idx, name, unit, scaling) in enumerate(idx_names):
            s = linalg.svd(C[idx][:, idx], compute_uv=False)
            # Protect against true zero singular values
            s[s <= 0] = 1e-10 * s[s > 0].min()
            s = np.sqrt(s) * scaling
            axes[0, k].plot(s)
            axes[0, k].set(ylabel=u'Noise σ (%s)' % unit, yscale='log',
                           xlabel='Eigenvalue index', title=name)
        tight_layout(fig=fig_svd)

    plt_show(show)

    return fig_cov, fig_svd


def plot_source_spectrogram(stcs, freq_bins, tmin=None, tmax=None,
                            source_index=None, colorbar=False, show=True):
    """Plot source power in time-freqency grid.

    Parameters
    ----------
    stcs : list of SourceEstimate
        Source power for consecutive time windows, one SourceEstimate object
        should be provided for each frequency bin.
    freq_bins : list of tuples of float
        Start and end points of frequency bins of interest.
    tmin : float
        Minimum time instant to show.
    tmax : float
        Maximum time instant to show.
    source_index : int | None
        Index of source for which the spectrogram will be plotted. If None,
        the source with the largest activation will be selected.
    colorbar : bool
        If true, a colorbar will be added to the plot.
    show : bool
        Show figure if True.
    """
    import matplotlib.pyplot as plt

    # Input checks
    if len(stcs) == 0:
        raise ValueError('cannot plot spectrogram if len(stcs) == 0')

    stc = stcs[0]
    if tmin is not None and tmin < stc.times[0]:
        raise ValueError('tmin cannot be smaller than the first time point '
                         'provided in stcs')
    if tmax is not None and tmax > stc.times[-1] + stc.tstep:
        raise ValueError('tmax cannot be larger than the sum of the last time '
                         'point and the time step, which are provided in stcs')

    # Preparing time-frequency cell boundaries for plotting
    if tmin is None:
        tmin = stc.times[0]
    if tmax is None:
        tmax = stc.times[-1] + stc.tstep
    time_bounds = np.arange(tmin, tmax + stc.tstep, stc.tstep)
    freq_bounds = sorted(set(np.ravel(freq_bins)))
    freq_ticks = copy.deepcopy(freq_bounds)

    # Reject time points that will not be plotted and gather results
    source_power = []
    for stc in stcs:
        stc = stc.copy()  # copy since crop modifies inplace
        stc.crop(tmin, tmax - stc.tstep)
        source_power.append(stc.data)
    source_power = np.array(source_power)

    # Finding the source with maximum source power
    if source_index is None:
        source_index = np.unravel_index(source_power.argmax(),
                                        source_power.shape)[1]

    # If there is a gap in the frequency bins record its locations so that it
    # can be covered with a gray horizontal bar
    gap_bounds = []
    for i in range(len(freq_bins) - 1):
        lower_bound = freq_bins[i][1]
        upper_bound = freq_bins[i + 1][0]
        if lower_bound != upper_bound:
            freq_bounds.remove(lower_bound)
            gap_bounds.append((lower_bound, upper_bound))

    # Preparing time-frequency grid for plotting
    time_grid, freq_grid = np.meshgrid(time_bounds, freq_bounds)

    # Plotting the results
    fig = plt.figure(figsize=(9, 6))
    plt.pcolor(time_grid, freq_grid, source_power[:, source_index, :],
               cmap='Reds')
    ax = plt.gca()

    ax.set(title='Source power', xlabel='Time (s)', ylabel='Frequency (Hz)')

    time_tick_labels = [str(np.round(t, 2)) for t in time_bounds]
    n_skip = 1 + len(time_bounds) // 10
    for i in range(len(time_bounds)):
        if i % n_skip != 0:
            time_tick_labels[i] = ''

    ax.set_xticks(time_bounds)
    ax.set_xticklabels(time_tick_labels)
    plt.xlim(time_bounds[0], time_bounds[-1])
    plt.yscale('log')
    ax.set_yticks(freq_ticks)
    ax.set_yticklabels([np.round(freq, 2) for freq in freq_ticks])
    plt.ylim(freq_bounds[0], freq_bounds[-1])

    plt.grid(True, ls='-')
    if colorbar:
        plt.colorbar()
    tight_layout(fig=fig)

    # Covering frequency gaps with horizontal bars
    for lower_bound, upper_bound in gap_bounds:
        plt.barh(lower_bound, time_bounds[-1] - time_bounds[0], upper_bound -
                 lower_bound, time_bounds[0], color='#666666')

    plt_show(show)
    return fig


def _plot_mri_contours(mri_fname, surfaces, src, orientation='coronal',
                       slices=None, show=True):
    """Plot BEM contours on anatomical slices."""
    import matplotlib.pyplot as plt
    import nibabel as nib

    # plot axes (x, y, z) as data axes (0, 1, 2)
    if orientation == 'coronal':
        x, y, z = 0, 1, 2
    elif orientation == 'axial':
        x, y, z = 2, 0, 1
    elif orientation == 'sagittal':
        x, y, z = 2, 1, 0
    else:
        raise ValueError("Orientation must be 'coronal', 'axial' or "
                         "'sagittal'. Got %s." % orientation)

    # Load the T1 data
    nim = nib.load(mri_fname)
    data = nim.get_data()
    try:
        affine = nim.affine
    except AttributeError:  # older nibabel
        affine = nim.get_affine()

    n_sag, n_axi, n_cor = data.shape
    orientation_name2axis = dict(sagittal=0, axial=1, coronal=2)
    orientation_axis = orientation_name2axis[orientation]

    if slices is None:
        n_slices = data.shape[orientation_axis]
        slices = np.linspace(0, n_slices, 12, endpoint=False).astype(np.int)

    # create of list of surfaces
    surfs = list()

    trans = linalg.inv(affine)
    # XXX : next line is a hack don't ask why
    trans[:3, -1] = [n_sag // 2, n_axi // 2, n_cor // 2]

    for file_name, color in surfaces:
        surf = dict()
        surf['rr'], surf['tris'] = read_surface(file_name)
        # move back surface to MRI coordinate system
        surf['rr'] = nib.affines.apply_affine(trans, surf['rr'])
        surfs.append((surf, color))

    src_points = list()
    if isinstance(src, SourceSpaces):
        for src_ in src:
            points = src_['rr'][src_['inuse'].astype(bool)] * 1e3
            src_points.append(nib.affines.apply_affine(trans, points))
    elif src is not None:
        raise TypeError("src needs to be None or SourceSpaces instance, not "
                        "%s" % repr(src))

    fig, axs = _prepare_trellis(len(slices), 4)

    for ax, sl in zip(axs, slices):

        # adjust the orientations for good view
        if orientation == 'coronal':
            dat = data[:, :, sl].transpose()
        elif orientation == 'axial':
            dat = data[:, sl, :]
        elif orientation == 'sagittal':
            dat = data[sl, :, :]

        # First plot the anatomical data
        ax.imshow(dat, cmap=plt.cm.gray)
        ax.set_autoscale_on(False)
        ax.axis('off')

        # and then plot the contours on top
        for surf, color in surfs:
            with warnings.catch_warnings(record=True):  # ignore contour warn
                warnings.simplefilter('ignore')
                ax.tricontour(surf['rr'][:, x], surf['rr'][:, y],
                              surf['tris'], surf['rr'][:, z],
                              levels=[sl], colors=color, linewidths=1.0,
                              zorder=1)

        for sources in src_points:
            in_slice = np.logical_and(sources[:, z] > sl - 0.5,
                                      sources[:, z] < sl + 0.5)
            ax.scatter(sources[in_slice, x], sources[in_slice, y], marker='.',
                       color='#FF00FF', s=1, zorder=2)

    plt.subplots_adjust(left=0., bottom=0., right=1., top=1., wspace=0.,
                        hspace=0.)
    plt_show(show)
    return fig


def plot_bem(subject=None, subjects_dir=None, orientation='coronal',
             slices=None, brain_surfaces=None, src=None, show=True):
    """Plot BEM contours on anatomical slices.

    Parameters
    ----------
    subject : str
        Subject name.
    subjects_dir : str | None
        Path to the SUBJECTS_DIR. If None, the path is obtained by using
        the environment variable SUBJECTS_DIR.
    orientation : str
        'coronal' or 'axial' or 'sagittal'.
    slices : list of int
        Slice indices.
    brain_surfaces : None | str | list of str
        One or more brain surface to plot (optional). Entries should correspond
        to files in the subject's ``surf`` directory (e.g. ``"white"``).
    src : None | SourceSpaces | str
        SourceSpaces instance or path to a source space to plot individual
        sources as scatter-plot. Only sources lying in the shown slices will be
        visible, sources that lie between visible slices are not shown. Path
        can be absolute or relative to the subject's ``bem`` folder.
    show : bool
        Show figure if True.

    Returns
    -------
    fig : Instance of matplotlib.figure.Figure
        The figure.

    See Also
    --------
    mne.viz.plot_alignment
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)

    # Get the MRI filename
    mri_fname = op.join(subjects_dir, subject, 'mri', 'T1.mgz')
    if not op.isfile(mri_fname):
        raise IOError('MRI file "%s" does not exist' % mri_fname)

    # Get the BEM surface filenames
    bem_path = op.join(subjects_dir, subject, 'bem')

    if not op.isdir(bem_path):
        raise IOError('Subject bem directory "%s" does not exist' % bem_path)

    surfaces = []
    for surf_name, color in (('*inner_skull', '#FF0000'),
                             ('*outer_skull', '#FFFF00'),
                             ('*outer_skin', '#FFAA80')):
        surf_fname = glob(op.join(bem_path, surf_name + '.surf'))
        if len(surf_fname) > 0:
            surf_fname = surf_fname[0]
            logger.info("Using surface: %s" % surf_fname)
            surfaces.append((surf_fname, color))

    if brain_surfaces is not None:
        if isinstance(brain_surfaces, string_types):
            brain_surfaces = (brain_surfaces,)
        for surf_name in brain_surfaces:
            for hemi in ('lh', 'rh'):
                surf_fname = op.join(subjects_dir, subject, 'surf',
                                     hemi + '.' + surf_name)
                if op.exists(surf_fname):
                    surfaces.append((surf_fname, '#00DD00'))
                else:
                    raise IOError("Surface %s does not exist." % surf_fname)

    if isinstance(src, string_types):
        if not op.exists(src):
            src_ = op.join(subjects_dir, subject, 'bem', src)
            if op.exists(src_):
                src = src_
            else:
                raise IOError("%s does not exist" % src)
        src = read_source_spaces(src)
    elif src is not None and not isinstance(src, SourceSpaces):
        raise TypeError("src needs to be None, str or SourceSpaces instance, "
                        "not %s" % repr(src))

    if len(surfaces) == 0:
        raise IOError('No surface files found. Surface files must end with '
                      'inner_skull.surf, outer_skull.surf or outer_skin.surf')

    # Plot the contours
    return _plot_mri_contours(mri_fname, surfaces, src, orientation, slices,
                              show)


def plot_events(events, sfreq=None, first_samp=0, color=None, event_id=None,
                axes=None, equal_spacing=True, show=True):
    """Plot events to get a visual display of the paradigm.

    Parameters
    ----------
    events : array, shape (n_events, 3)
        The events.
    sfreq : float | None
        The sample frequency. If None, data will be displayed in samples (not
        seconds).
    first_samp : int
        The index of the first sample. Typically the raw.first_samp
        attribute. It is needed for recordings on a Neuromag
        system as the events are defined relative to the system
        start and not to the beginning of the recording.
    color : dict | None
        Dictionary of event_id value and its associated color. If None,
        colors are automatically drawn from a default list (cycled through if
        number of events longer than list of default colors).
    event_id : dict | None
        Dictionary of event label (e.g. 'aud_l') and its associated
        event_id value. Label used to plot a legend. If None, no legend is
        drawn.
    axes : instance of matplotlib.axes.AxesSubplot
       The subplot handle.
    equal_spacing : bool
        Use equal spacing between events in y-axis.
    show : bool
        Show figure if True.

    Returns
    -------
    fig : matplotlib.figure.Figure
        The figure object containing the plot.

    Notes
    -----
    .. versionadded:: 0.9.0
    """
    if sfreq is None:
        sfreq = 1.0
        xlabel = 'Samples'
    else:
        xlabel = 'Time (s)'

    events = np.asarray(events)
    unique_events = np.unique(events[:, 2])

    if event_id is not None:
        # get labels and unique event ids from event_id dict,
        # sorted by value
        event_id_rev = dict((v, k) for k, v in event_id.items())
        conditions, unique_events_id = zip(*sorted(event_id.items(),
                                                   key=lambda x: x[1]))

        for this_event in unique_events_id:
            if this_event not in unique_events:
                raise ValueError('%s from event_id is not present in events.'
                                 % this_event)

        for this_event in unique_events:
            if this_event not in unique_events_id:
                warn('event %s missing from event_id will be ignored'
                     % this_event)
    else:
        unique_events_id = unique_events

    color = _handle_event_colors(unique_events, color, unique_events_id)
    import matplotlib.pyplot as plt

    fig = None
    if axes is None:
        fig = plt.figure()
    ax = axes if axes else plt.gca()

    unique_events_id = np.array(unique_events_id)
    min_event = np.min(unique_events_id)
    max_event = np.max(unique_events_id)

    for idx, ev in enumerate(unique_events_id):
        ev_mask = events[:, 2] == ev
        kwargs = {}
        if event_id is not None:
            event_label = '{0} ({1})'.format(event_id_rev[ev],
                                             np.sum(ev_mask))
            kwargs['label'] = event_label
        if ev in color:
            kwargs['color'] = color[ev]
        if equal_spacing:
            ax.plot((events[ev_mask, 0] - first_samp) / sfreq,
                    (idx + 1) * np.ones(ev_mask.sum()), '.', **kwargs)
        else:
            ax.plot((events[ev_mask, 0] - first_samp) / sfreq,
                    events[ev_mask, 2], '.', **kwargs)

    if equal_spacing:
        ax.set_ylim(0, unique_events_id.size + 1)
        ax.set_yticks(1 + np.arange(unique_events_id.size))
        ax.set_yticklabels(unique_events_id)
    else:
        ax.set_ylim([min_event - 1, max_event + 1])

    ax.set(xlabel=xlabel, ylabel='Events id')

    ax.grid(True)

    fig = fig if fig is not None else plt.gcf()
    if event_id is not None:
        box = ax.get_position()
        ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
        ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
        fig.canvas.draw()
    plt_show(show)
    return fig


def _get_presser(fig):
    """Get our press callback."""
    import matplotlib
    callbacks = fig.canvas.callbacks.callbacks['button_press_event']
    func = None
    for key, val in callbacks.items():
        if LooseVersion(matplotlib.__version__) >= '3':
            func = val()
        else:
            func = val.func
        if func.__class__.__name__ == 'partial':
            break
        else:
            func = None
    assert func is not None
    return func


def plot_dipole_amplitudes(dipoles, colors=None, show=True):
    """Plot the amplitude traces of a set of dipoles.

    Parameters
    ----------
    dipoles : list of instance of Dipoles
        The dipoles whose amplitudes should be shown.
    colors: list of colors | None
        Color to plot with each dipole. If None default colors are used.
    show : bool
        Show figure if True.

    Returns
    -------
    fig : matplotlib.figure.Figure
        The figure object containing the plot.

    Notes
    -----
    .. versionadded:: 0.9.0
    """
    import matplotlib.pyplot as plt
    if colors is None:
        colors = cycle(_get_color_list())
    fig, ax = plt.subplots(1, 1)
    xlim = [np.inf, -np.inf]
    for dip, color in zip(dipoles, colors):
        ax.plot(dip.times, dip.amplitude * 1e9, color=color, linewidth=1.5)
        xlim[0] = min(xlim[0], dip.times[0])
        xlim[1] = max(xlim[1], dip.times[-1])
    ax.set(xlim=xlim, xlabel='Time (s)', ylabel='Amplitude (nAm)')
    if show:
        fig.show(warn=False)
    return fig


def adjust_axes(axes, remove_spines=('top', 'right'), grid=True):
    """Adjust some properties of axes.

    Parameters
    ----------
    axes : list
        List of axes to process.
    remove_spines : list of str
        Which axis spines to remove.
    grid : bool
        Turn grid on (True) or off (False).
    """
    axes = [axes] if not isinstance(axes, (list, tuple, np.ndarray)) else axes
    for ax in axes:
        if grid:
            ax.grid(zorder=0)
        for key in remove_spines:
            ax.spines[key].set_visible(False)


def _filter_ticks(lims, fscale):
    """Create approximately spaced ticks between lims."""
    if fscale == 'linear':
        return None, None  # let matplotlib handle it
    lims = np.array(lims)
    ticks = list()
    for exp in range(int(np.floor(np.log10(lims[0]))),
                     int(np.floor(np.log10(lims[1]))) + 1):
        ticks += (np.array([1, 2, 4]) * (10 ** exp)).tolist()
    ticks = np.array(ticks)
    ticks = ticks[(ticks >= lims[0]) & (ticks <= lims[1])]
    ticklabels = [('%g' if t < 1 else '%d') % t for t in ticks]
    return ticks, ticklabels


def _get_flim(flim, fscale, freq, sfreq=None):
    """Get reasonable frequency limits."""
    if flim is None:
        if freq is None:
            flim = [0.1 if fscale == 'log' else 0., sfreq / 2.]
        else:
            if fscale == 'linear':
                flim = [freq[0]]
            else:
                flim = [freq[0] if freq[0] > 0 else 0.1 * freq[1]]
            flim += [freq[-1]]
    if fscale == 'log':
        if flim[0] <= 0:
            raise ValueError('flim[0] must be positive, got %s' % flim[0])
    elif flim[0] < 0:
        raise ValueError('flim[0] must be non-negative, got %s' % flim[0])
    return flim


def _check_fscale(fscale):
    """Check for valid fscale."""
    if not isinstance(fscale, string_types) or fscale not in ('log', 'linear'):
        raise ValueError('fscale must be "log" or "linear", got %s'
                         % (fscale,))


def plot_filter(h, sfreq, freq=None, gain=None, title=None, color='#1f77b4',
                flim=None, fscale='log', alim=(-60, 10), show=True):
    """Plot properties of a filter.

    Parameters
    ----------
    h : dict or ndarray
        An IIR dict or 1D ndarray of coefficients (for FIR filter).
    sfreq : float
        Sample rate of the data (Hz).
    freq : array-like or None
        The ideal response frequencies to plot (must be in ascending order).
        If None (default), do not plot the ideal response.
    gain : array-like or None
        The ideal response gains to plot.
        If None (default), do not plot the ideal response.
    title : str | None
        The title to use. If None (default), deteremine the title based
        on the type of the system.
    color : color object
        The color to use (default '#1f77b4').
    flim : tuple or None
        If not None, the x-axis frequency limits (Hz) to use.
        If None, freq will be used. If None (default) and freq is None,
        ``(0.1, sfreq / 2.)`` will be used.
    fscale : str
        Frequency scaling to use, can be "log" (default) or "linear".
    alim : tuple
        The y-axis amplitude limits (dB) to use (default: (-60, 10)).
    show : bool
        Show figure if True (default).

    Returns
    -------
    fig : matplotlib.figure.Figure
        The figure containing the plots.

    See Also
    --------
    mne.filter.create_filter
    plot_ideal_filter

    Notes
    -----
    .. versionadded:: 0.14
    """
    from scipy.signal import freqz, group_delay
    import matplotlib.pyplot as plt
    sfreq = float(sfreq)
    _check_fscale(fscale)
    flim = _get_flim(flim, fscale, freq, sfreq)
    if fscale == 'log':
        omega = np.logspace(np.log10(flim[0]), np.log10(flim[1]), 1000)
    else:
        omega = np.linspace(flim[0], flim[1], 1000)
    omega /= sfreq / (2 * np.pi)
    if isinstance(h, dict):  # IIR h.ndim == 2:  # second-order sections
        if 'sos' in h:
            from scipy.signal import sosfilt
            h = h['sos']
            H = np.ones(len(omega), np.complex128)
            gd = np.zeros(len(omega))
            for section in h:
                this_H = freqz(section[:3], section[3:], omega)[1]
                H *= this_H
                with warnings.catch_warnings(record=True):  # singular GD
                    warnings.simplefilter('ignore')
                    gd += group_delay((section[:3], section[3:]), omega)[1]
            n = estimate_ringing_samples(h)
            delta = np.zeros(n)
            delta[0] = 1
            h = sosfilt(h, delta)
        else:
            from scipy.signal import lfilter
            n = estimate_ringing_samples((h['b'], h['a']))
            delta = np.zeros(n)
            delta[0] = 1
            H = freqz(h['b'], h['a'], omega)[1]
            with warnings.catch_warnings(record=True):  # singular GD
                warnings.simplefilter('ignore')
                gd = group_delay((h['b'], h['a']), omega)[1]
            h = lfilter(h['b'], h['a'], delta)
        title = 'SOS (IIR) filter' if title is None else title
    else:
        H = freqz(h, worN=omega)[1]
        with warnings.catch_warnings(record=True):  # singular GD
            warnings.simplefilter('ignore')
            gd = group_delay((h, [1.]), omega)[1]
        title = 'FIR filter' if title is None else title
    gd /= sfreq
    # eventually axes could be a parameter
    fig, (ax_time, ax_freq, ax_delay) = plt.subplots(3)
    t = np.arange(len(h)) / sfreq
    f = omega * sfreq / (2 * np.pi)
    ax_time.plot(t, h, color=color)
    ax_time.set(xlim=t[[0, -1]], xlabel='Time (s)',
                ylabel='Amplitude', title=title)
    mag = 10 * np.log10(np.maximum((H * H.conj()).real, 1e-20))
    ax_freq.plot(f, mag, color=color, linewidth=2, zorder=4)
    if freq is not None and gain is not None:
        plot_ideal_filter(freq, gain, ax_freq, fscale=fscale,
                          title=None, show=False)
    ax_freq.set(ylabel='Magnitude (dB)', xlabel='', xscale=fscale)
    sl = slice(0 if fscale == 'linear' else 1, None, None)
    ax_delay.plot(f[sl], gd[sl], color=color, linewidth=2, zorder=4)
    ax_delay.set(xlim=flim, ylabel='Group delay (s)', xlabel='Frequency (Hz)',
                 xscale=fscale)
    xticks, xticklabels = _filter_ticks(flim, fscale)
    dlim = [0, 1.05 * gd[1:].max()]
    for ax, ylim, ylabel in ((ax_freq, alim, 'Amplitude (dB)'),
                             (ax_delay, dlim, 'Delay (s)')):
        if xticks is not None:
            ax.set(xticks=xticks)
            ax.set(xticklabels=xticklabels)
        ax.set(xlim=flim, ylim=ylim, xlabel='Frequency (Hz)', ylabel=ylabel)
    adjust_axes([ax_time, ax_freq, ax_delay])
    tight_layout()
    plt_show(show)
    return fig


def plot_ideal_filter(freq, gain, axes=None, title='', flim=None, fscale='log',
                      alim=(-60, 10), color='r', alpha=0.5, linestyle='--',
                      show=True):
    """Plot an ideal filter response.

    Parameters
    ----------
    freq : array-like
        The ideal response frequencies to plot (must be in ascending order).
    gain : array-like or None
        The ideal response gains to plot.
    axes : instance of matplotlib.axes.AxesSubplot | None
        The subplot handle. With None (default), axes are created.
    title : str
        The title to use, (default: '').
    flim : tuple or None
        If not None, the x-axis frequency limits (Hz) to use.
        If None (default), freq used.
    fscale : str
        Frequency scaling to use, can be "log" (default) or "linear".
    alim : tuple
        If not None (default), the y-axis limits (dB) to use.
    color : color object
        The color to use (default: 'r').
    alpha : float
        The alpha to use (default: 0.5).
    linestyle : str
        The line style to use (default: '--').
    show : bool
        Show figure if True (default).

    Returns
    -------
    fig : Instance of matplotlib.figure.Figure
        The figure.

    See Also
    --------
    plot_filter

    Notes
    -----
    .. versionadded:: 0.14

    Examples
    --------
    Plot a simple ideal band-pass filter::

        >>> from mne.viz import plot_ideal_filter
        >>> freq = [0, 1, 40, 50]
        >>> gain = [0, 1, 1, 0]
        >>> plot_ideal_filter(freq, gain, flim=(0.1, 100))  #doctest: +ELLIPSIS
        <...Figure...>

    """
    import matplotlib.pyplot as plt
    xs, ys = list(), list()
    my_freq, my_gain = list(), list()
    if freq[0] != 0:
        raise ValueError('freq should start with DC (zero) and end with '
                         'Nyquist, but got %s for DC' % (freq[0],))
    freq = np.array(freq)
    # deal with semilogx problems @ x=0
    _check_fscale(fscale)
    if fscale == 'log':
        freq[0] = 0.1 * freq[1] if flim is None else min(flim[0], freq[1])
    flim = _get_flim(flim, fscale, freq)
    for ii in range(len(freq)):
        xs.append(freq[ii])
        ys.append(alim[0])
        if ii < len(freq) - 1 and gain[ii] != gain[ii + 1]:
            xs += [freq[ii], freq[ii + 1]]
            ys += [alim[1]] * 2
            my_freq += np.linspace(freq[ii], freq[ii + 1], 20,
                                   endpoint=False).tolist()
            my_gain += np.linspace(gain[ii], gain[ii + 1], 20,
                                   endpoint=False).tolist()
        else:
            my_freq.append(freq[ii])
            my_gain.append(gain[ii])
    my_gain = 10 * np.log10(np.maximum(my_gain, 10 ** (alim[0] / 10.)))
    if axes is None:
        axes = plt.subplots(1)[1]
    xs = np.maximum(xs, flim[0])
    axes.fill_between(xs, alim[0], ys, color=color, alpha=0.1)
    axes.plot(my_freq, my_gain, color=color, linestyle=linestyle, alpha=0.5,
              linewidth=4, zorder=3)
    xticks, xticklabels = _filter_ticks(flim, fscale)
    axes.set(ylim=alim, xlabel='Frequency (Hz)', ylabel='Amplitude (dB)',
             xscale=fscale)
    if xticks is not None:
        axes.set(xticks=xticks)
        axes.set(xticklabels=xticklabels)
    axes.set(xlim=flim)
    adjust_axes(axes)
    tight_layout()
    plt_show(show)
    return axes.figure


def _handle_event_colors(unique_events, color, unique_events_id):
    """Handle event colors."""
    if color is None:
        if len(unique_events) > len(_get_color_list()):
            warn('More events than colors available. You should pass a list '
                 'of unique colors.')
        colors = cycle(_get_color_list())
        color = dict()
        for this_event, this_color in zip(sorted(unique_events_id), colors):
            color[this_event] = this_color
    else:
        for this_event in color:
            if this_event not in unique_events_id:
                raise ValueError('%s from color is not present in events '
                                 'or event_id.' % this_event)

        for this_event in unique_events_id:
            if this_event not in color:
                warn('Color is not available for event %d. Default colors '
                     'will be used.' % this_event)
    return color


def plot_csd(csd, info=None, mode='csd', colorbar=True, cmap=None,
             n_cols=None, show=True):
    """Plot CSD matrices.

    A sub-plot is created for each frequency. If an info object is passed to
    the function, different channel types are plotted in different figures.

    Parameters
    ----------
    csd : instance of CrossSpectralDensity
        The CSD matrix to plot.
    info: instance of Info | None
        To split the figure by channel-type, provide the measurement info.
        By default, the CSD matrix is plotted as a whole.
    mode : 'csd' | 'coh'
        Whether to plot the cross-spectral density ('csd', the default), or
        the coherence ('coh') between the channels.
    colorbar : bool
        Whether to show a colorbar. Defaults to ``True``.
    cmap : str | None
        The matplotlib colormap to use. Defaults to None, which means the
        colormap will default to matplotlib's default.
    n_cols : int | None
        CSD matrices are plotted in a grid. This parameter controls how
        many matrix to plot side by side before starting a new row. By
        default, a number will be chosen to make the grid as square as
        possible.
    show : bool
        Whether to show the figure. Defaults to ``True``.

    Returns
    -------
    fig : list of matplotlib figures
        The figures created by this function.
    """
    import matplotlib.pyplot as plt

    if mode not in ['csd', 'coh']:
        raise ValueError('"mode" should be either "csd" or "coh".')

    if info is not None:
        info_ch_names = info['ch_names']
        sel_eeg = pick_types(info, meg=False, eeg=True, ref_meg=False,
                             exclude=[])
        sel_mag = pick_types(info, meg='mag', eeg=False, ref_meg=False,
                             exclude=[])
        sel_grad = pick_types(info, meg='grad', eeg=False, ref_meg=False,
                              exclude=[])
        idx_eeg = [csd.ch_names.index(info_ch_names[c])
                   for c in sel_eeg if info_ch_names[c] in csd.ch_names]
        idx_mag = [csd.ch_names.index(info_ch_names[c])
                   for c in sel_mag if info_ch_names[c] in csd.ch_names]
        idx_grad = [csd.ch_names.index(info_ch_names[c])
                    for c in sel_grad if info_ch_names[c] in csd.ch_names]
        indices = [idx_eeg, idx_mag, idx_grad]
        titles = ['EEG', 'Magnetometers', 'Gradiometers']

        if mode == 'csd':
            # The units in which to plot the CSD
            units = dict(eeg=u'μV²', grad=u'fT²/cm²', mag=u'fT²')
            scalings = dict(eeg=1e12, grad=1e26, mag=1e30)
    else:
        indices = [np.arange(len(csd.ch_names))]
        if mode == 'csd':
            titles = ['Cross-spectral density']
            # Units and scaling unknown
            units = dict()
            scalings = dict()
        elif mode == 'coh':
            titles = ['Coherence']

    n_freqs = len(csd.frequencies)

    if n_cols is None:
        n_cols = int(np.ceil(np.sqrt(n_freqs)))
    n_rows = int(np.ceil(n_freqs / float(n_cols)))

    figs = []
    for ind, title, ch_type in zip(indices, titles, ['eeg', 'mag', 'grad']):
        if len(ind) == 0:
            continue

        fig, axes = plt.subplots(n_rows, n_cols, squeeze=False,
                                 figsize=(2 * n_cols + 1, 2.2 * n_rows))

        csd_mats = []
        for i in range(len(csd.frequencies)):
            cm = csd.get_data(index=i)[ind][:, ind]
            if mode == 'csd':
                cm = np.abs(cm) * scalings.get(ch_type, 1)
            elif mode == 'coh':
                # Compute coherence from the CSD matrix
                psd = np.diag(cm).real
                cm = np.abs(cm) ** 2 / psd[np.newaxis, :] / psd[:, np.newaxis]
            csd_mats.append(cm)

        vmax = np.max(csd_mats)

        for i, (freq, mat) in enumerate(zip(csd.frequencies, csd_mats)):
            ax = axes[i // n_cols][i % n_cols]
            im = ax.imshow(mat, interpolation='nearest', cmap=cmap, vmin=0,
                           vmax=vmax)
            ax.set_xticks([])
            ax.set_yticks([])
            if csd._is_sum:
                ax.set_title('%.1f-%.1f Hz.' % (np.min(freq),
                                                np.max(freq)))
            else:
                ax.set_title('%.1f Hz.' % freq)

        plt.suptitle(title)
        plt.subplots_adjust(top=0.8)

        if colorbar:
            cb = plt.colorbar(im, ax=[a for ax_ in axes for a in ax_])
            if mode == 'csd':
                label = u'CSD'
                if ch_type in units:
                    label += u' (%s)' % units[ch_type]
                cb.set_label(label)
            elif mode == 'coh':
                cb.set_label('Coherence')

        figs.append(fig)

    plt_show(show)
    return figs