1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
|
# -*- coding: utf-8 -*-
"""Functions to make simple plots with M/EEG data."""
from __future__ import print_function
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Cathy Nangini <cnangini@gmail.com>
# Mainak Jas <mainak@neuro.hut.fi>
#
# License: Simplified BSD
import copy
from glob import glob
from itertools import cycle
import os.path as op
import warnings
from distutils.version import LooseVersion
from collections import defaultdict
import numpy as np
from scipy import linalg
from ..defaults import DEFAULTS
from ..surface import read_surface
from ..externals.six import string_types
from ..io.proj import make_projector
from ..io.pick import _DATA_CH_TYPES_SPLIT, pick_types
from ..source_space import read_source_spaces, SourceSpaces
from ..utils import logger, verbose, get_subjects_dir, warn
from ..io.pick import _picks_by_type
from ..filter import estimate_ringing_samples
from .utils import tight_layout, _get_color_list, _prepare_trellis, plt_show
@verbose
def plot_cov(cov, info, exclude=[], colorbar=True, proj=False, show_svd=True,
show=True, verbose=None):
"""Plot Covariance data.
Parameters
----------
cov : instance of Covariance
The covariance matrix.
info: dict
Measurement info.
exclude : list of string | str
List of channels to exclude. If empty do not exclude any channel.
If 'bads', exclude info['bads'].
colorbar : bool
Show colorbar or not.
proj : bool
Apply projections or not.
show_svd : bool
Plot also singular values of the noise covariance for each sensor
type. We show square roots ie. standard deviations.
show : bool
Show figure if True.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
fig_cov : instance of matplotlib.pyplot.Figure
The covariance plot.
fig_svd : instance of matplotlib.pyplot.Figure | None
The SVD spectra plot of the covariance.
"""
if exclude == 'bads':
exclude = info['bads']
picks_list = \
_picks_by_type(info, meg_combined=False, ref_meg=False,
exclude=exclude)
picks_by_type = dict(picks_list)
ch_names = [n for n in cov.ch_names if n not in exclude]
ch_idx = [cov.ch_names.index(n) for n in ch_names]
info_ch_names = info['ch_names']
idx_by_type = defaultdict(list)
for ch_type, sel in picks_by_type.items():
idx_by_type[ch_type] = [ch_names.index(info_ch_names[c])
for c in sel if info_ch_names[c] in ch_names]
idx_names = [(idx_by_type[key],
'%s covariance' % DEFAULTS['titles'][key],
DEFAULTS['units'][key],
DEFAULTS['scalings'][key])
for key in _DATA_CH_TYPES_SPLIT
if len(idx_by_type[key]) > 0]
C = cov.data[ch_idx][:, ch_idx]
if proj:
projs = copy.deepcopy(info['projs'])
# Activate the projection items
for p in projs:
p['active'] = True
P, ncomp, _ = make_projector(projs, ch_names)
if ncomp > 0:
logger.info(' Created an SSP operator (subspace dimension'
' = %d)' % ncomp)
C = np.dot(P, np.dot(C, P.T))
else:
logger.info(' The projection vectors do not apply to these '
'channels.')
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
fig_cov, axes = plt.subplots(1, len(idx_names), squeeze=False,
figsize=(3.8 * len(idx_names), 3.7))
for k, (idx, name, _, _) in enumerate(idx_names):
vlim = np.max(np.abs(C[idx][:, idx]))
im = axes[0, k].imshow(C[idx][:, idx], interpolation="nearest",
norm=Normalize(vmin=-vlim, vmax=vlim),
cmap='RdBu_r')
axes[0, k].set(title=name)
if colorbar:
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(axes[0, k])
cax = divider.append_axes("right", size="5.5%", pad=0.05)
plt.colorbar(im, cax=cax, format='%.0e')
fig_cov.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.2, 0.26)
tight_layout(fig=fig_cov)
fig_svd = None
if show_svd:
fig_svd, axes = plt.subplots(1, len(idx_names), squeeze=False,
figsize=(3.8 * len(idx_names), 3.7))
for k, (idx, name, unit, scaling) in enumerate(idx_names):
s = linalg.svd(C[idx][:, idx], compute_uv=False)
# Protect against true zero singular values
s[s <= 0] = 1e-10 * s[s > 0].min()
s = np.sqrt(s) * scaling
axes[0, k].plot(s)
axes[0, k].set(ylabel=u'Noise σ (%s)' % unit, yscale='log',
xlabel='Eigenvalue index', title=name)
tight_layout(fig=fig_svd)
plt_show(show)
return fig_cov, fig_svd
def plot_source_spectrogram(stcs, freq_bins, tmin=None, tmax=None,
source_index=None, colorbar=False, show=True):
"""Plot source power in time-freqency grid.
Parameters
----------
stcs : list of SourceEstimate
Source power for consecutive time windows, one SourceEstimate object
should be provided for each frequency bin.
freq_bins : list of tuples of float
Start and end points of frequency bins of interest.
tmin : float
Minimum time instant to show.
tmax : float
Maximum time instant to show.
source_index : int | None
Index of source for which the spectrogram will be plotted. If None,
the source with the largest activation will be selected.
colorbar : bool
If true, a colorbar will be added to the plot.
show : bool
Show figure if True.
"""
import matplotlib.pyplot as plt
# Input checks
if len(stcs) == 0:
raise ValueError('cannot plot spectrogram if len(stcs) == 0')
stc = stcs[0]
if tmin is not None and tmin < stc.times[0]:
raise ValueError('tmin cannot be smaller than the first time point '
'provided in stcs')
if tmax is not None and tmax > stc.times[-1] + stc.tstep:
raise ValueError('tmax cannot be larger than the sum of the last time '
'point and the time step, which are provided in stcs')
# Preparing time-frequency cell boundaries for plotting
if tmin is None:
tmin = stc.times[0]
if tmax is None:
tmax = stc.times[-1] + stc.tstep
time_bounds = np.arange(tmin, tmax + stc.tstep, stc.tstep)
freq_bounds = sorted(set(np.ravel(freq_bins)))
freq_ticks = copy.deepcopy(freq_bounds)
# Reject time points that will not be plotted and gather results
source_power = []
for stc in stcs:
stc = stc.copy() # copy since crop modifies inplace
stc.crop(tmin, tmax - stc.tstep)
source_power.append(stc.data)
source_power = np.array(source_power)
# Finding the source with maximum source power
if source_index is None:
source_index = np.unravel_index(source_power.argmax(),
source_power.shape)[1]
# If there is a gap in the frequency bins record its locations so that it
# can be covered with a gray horizontal bar
gap_bounds = []
for i in range(len(freq_bins) - 1):
lower_bound = freq_bins[i][1]
upper_bound = freq_bins[i + 1][0]
if lower_bound != upper_bound:
freq_bounds.remove(lower_bound)
gap_bounds.append((lower_bound, upper_bound))
# Preparing time-frequency grid for plotting
time_grid, freq_grid = np.meshgrid(time_bounds, freq_bounds)
# Plotting the results
fig = plt.figure(figsize=(9, 6))
plt.pcolor(time_grid, freq_grid, source_power[:, source_index, :],
cmap='Reds')
ax = plt.gca()
ax.set(title='Source power', xlabel='Time (s)', ylabel='Frequency (Hz)')
time_tick_labels = [str(np.round(t, 2)) for t in time_bounds]
n_skip = 1 + len(time_bounds) // 10
for i in range(len(time_bounds)):
if i % n_skip != 0:
time_tick_labels[i] = ''
ax.set_xticks(time_bounds)
ax.set_xticklabels(time_tick_labels)
plt.xlim(time_bounds[0], time_bounds[-1])
plt.yscale('log')
ax.set_yticks(freq_ticks)
ax.set_yticklabels([np.round(freq, 2) for freq in freq_ticks])
plt.ylim(freq_bounds[0], freq_bounds[-1])
plt.grid(True, ls='-')
if colorbar:
plt.colorbar()
tight_layout(fig=fig)
# Covering frequency gaps with horizontal bars
for lower_bound, upper_bound in gap_bounds:
plt.barh(lower_bound, time_bounds[-1] - time_bounds[0], upper_bound -
lower_bound, time_bounds[0], color='#666666')
plt_show(show)
return fig
def _plot_mri_contours(mri_fname, surfaces, src, orientation='coronal',
slices=None, show=True):
"""Plot BEM contours on anatomical slices."""
import matplotlib.pyplot as plt
import nibabel as nib
# plot axes (x, y, z) as data axes (0, 1, 2)
if orientation == 'coronal':
x, y, z = 0, 1, 2
elif orientation == 'axial':
x, y, z = 2, 0, 1
elif orientation == 'sagittal':
x, y, z = 2, 1, 0
else:
raise ValueError("Orientation must be 'coronal', 'axial' or "
"'sagittal'. Got %s." % orientation)
# Load the T1 data
nim = nib.load(mri_fname)
data = nim.get_data()
try:
affine = nim.affine
except AttributeError: # older nibabel
affine = nim.get_affine()
n_sag, n_axi, n_cor = data.shape
orientation_name2axis = dict(sagittal=0, axial=1, coronal=2)
orientation_axis = orientation_name2axis[orientation]
if slices is None:
n_slices = data.shape[orientation_axis]
slices = np.linspace(0, n_slices, 12, endpoint=False).astype(np.int)
# create of list of surfaces
surfs = list()
trans = linalg.inv(affine)
# XXX : next line is a hack don't ask why
trans[:3, -1] = [n_sag // 2, n_axi // 2, n_cor // 2]
for file_name, color in surfaces:
surf = dict()
surf['rr'], surf['tris'] = read_surface(file_name)
# move back surface to MRI coordinate system
surf['rr'] = nib.affines.apply_affine(trans, surf['rr'])
surfs.append((surf, color))
src_points = list()
if isinstance(src, SourceSpaces):
for src_ in src:
points = src_['rr'][src_['inuse'].astype(bool)] * 1e3
src_points.append(nib.affines.apply_affine(trans, points))
elif src is not None:
raise TypeError("src needs to be None or SourceSpaces instance, not "
"%s" % repr(src))
fig, axs = _prepare_trellis(len(slices), 4)
for ax, sl in zip(axs, slices):
# adjust the orientations for good view
if orientation == 'coronal':
dat = data[:, :, sl].transpose()
elif orientation == 'axial':
dat = data[:, sl, :]
elif orientation == 'sagittal':
dat = data[sl, :, :]
# First plot the anatomical data
ax.imshow(dat, cmap=plt.cm.gray)
ax.set_autoscale_on(False)
ax.axis('off')
# and then plot the contours on top
for surf, color in surfs:
with warnings.catch_warnings(record=True): # ignore contour warn
warnings.simplefilter('ignore')
ax.tricontour(surf['rr'][:, x], surf['rr'][:, y],
surf['tris'], surf['rr'][:, z],
levels=[sl], colors=color, linewidths=1.0,
zorder=1)
for sources in src_points:
in_slice = np.logical_and(sources[:, z] > sl - 0.5,
sources[:, z] < sl + 0.5)
ax.scatter(sources[in_slice, x], sources[in_slice, y], marker='.',
color='#FF00FF', s=1, zorder=2)
plt.subplots_adjust(left=0., bottom=0., right=1., top=1., wspace=0.,
hspace=0.)
plt_show(show)
return fig
def plot_bem(subject=None, subjects_dir=None, orientation='coronal',
slices=None, brain_surfaces=None, src=None, show=True):
"""Plot BEM contours on anatomical slices.
Parameters
----------
subject : str
Subject name.
subjects_dir : str | None
Path to the SUBJECTS_DIR. If None, the path is obtained by using
the environment variable SUBJECTS_DIR.
orientation : str
'coronal' or 'axial' or 'sagittal'.
slices : list of int
Slice indices.
brain_surfaces : None | str | list of str
One or more brain surface to plot (optional). Entries should correspond
to files in the subject's ``surf`` directory (e.g. ``"white"``).
src : None | SourceSpaces | str
SourceSpaces instance or path to a source space to plot individual
sources as scatter-plot. Only sources lying in the shown slices will be
visible, sources that lie between visible slices are not shown. Path
can be absolute or relative to the subject's ``bem`` folder.
show : bool
Show figure if True.
Returns
-------
fig : Instance of matplotlib.figure.Figure
The figure.
See Also
--------
mne.viz.plot_alignment
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
# Get the MRI filename
mri_fname = op.join(subjects_dir, subject, 'mri', 'T1.mgz')
if not op.isfile(mri_fname):
raise IOError('MRI file "%s" does not exist' % mri_fname)
# Get the BEM surface filenames
bem_path = op.join(subjects_dir, subject, 'bem')
if not op.isdir(bem_path):
raise IOError('Subject bem directory "%s" does not exist' % bem_path)
surfaces = []
for surf_name, color in (('*inner_skull', '#FF0000'),
('*outer_skull', '#FFFF00'),
('*outer_skin', '#FFAA80')):
surf_fname = glob(op.join(bem_path, surf_name + '.surf'))
if len(surf_fname) > 0:
surf_fname = surf_fname[0]
logger.info("Using surface: %s" % surf_fname)
surfaces.append((surf_fname, color))
if brain_surfaces is not None:
if isinstance(brain_surfaces, string_types):
brain_surfaces = (brain_surfaces,)
for surf_name in brain_surfaces:
for hemi in ('lh', 'rh'):
surf_fname = op.join(subjects_dir, subject, 'surf',
hemi + '.' + surf_name)
if op.exists(surf_fname):
surfaces.append((surf_fname, '#00DD00'))
else:
raise IOError("Surface %s does not exist." % surf_fname)
if isinstance(src, string_types):
if not op.exists(src):
src_ = op.join(subjects_dir, subject, 'bem', src)
if op.exists(src_):
src = src_
else:
raise IOError("%s does not exist" % src)
src = read_source_spaces(src)
elif src is not None and not isinstance(src, SourceSpaces):
raise TypeError("src needs to be None, str or SourceSpaces instance, "
"not %s" % repr(src))
if len(surfaces) == 0:
raise IOError('No surface files found. Surface files must end with '
'inner_skull.surf, outer_skull.surf or outer_skin.surf')
# Plot the contours
return _plot_mri_contours(mri_fname, surfaces, src, orientation, slices,
show)
def plot_events(events, sfreq=None, first_samp=0, color=None, event_id=None,
axes=None, equal_spacing=True, show=True):
"""Plot events to get a visual display of the paradigm.
Parameters
----------
events : array, shape (n_events, 3)
The events.
sfreq : float | None
The sample frequency. If None, data will be displayed in samples (not
seconds).
first_samp : int
The index of the first sample. Typically the raw.first_samp
attribute. It is needed for recordings on a Neuromag
system as the events are defined relative to the system
start and not to the beginning of the recording.
color : dict | None
Dictionary of event_id value and its associated color. If None,
colors are automatically drawn from a default list (cycled through if
number of events longer than list of default colors).
event_id : dict | None
Dictionary of event label (e.g. 'aud_l') and its associated
event_id value. Label used to plot a legend. If None, no legend is
drawn.
axes : instance of matplotlib.axes.AxesSubplot
The subplot handle.
equal_spacing : bool
Use equal spacing between events in y-axis.
show : bool
Show figure if True.
Returns
-------
fig : matplotlib.figure.Figure
The figure object containing the plot.
Notes
-----
.. versionadded:: 0.9.0
"""
if sfreq is None:
sfreq = 1.0
xlabel = 'Samples'
else:
xlabel = 'Time (s)'
events = np.asarray(events)
unique_events = np.unique(events[:, 2])
if event_id is not None:
# get labels and unique event ids from event_id dict,
# sorted by value
event_id_rev = dict((v, k) for k, v in event_id.items())
conditions, unique_events_id = zip(*sorted(event_id.items(),
key=lambda x: x[1]))
for this_event in unique_events_id:
if this_event not in unique_events:
raise ValueError('%s from event_id is not present in events.'
% this_event)
for this_event in unique_events:
if this_event not in unique_events_id:
warn('event %s missing from event_id will be ignored'
% this_event)
else:
unique_events_id = unique_events
color = _handle_event_colors(unique_events, color, unique_events_id)
import matplotlib.pyplot as plt
fig = None
if axes is None:
fig = plt.figure()
ax = axes if axes else plt.gca()
unique_events_id = np.array(unique_events_id)
min_event = np.min(unique_events_id)
max_event = np.max(unique_events_id)
for idx, ev in enumerate(unique_events_id):
ev_mask = events[:, 2] == ev
kwargs = {}
if event_id is not None:
event_label = '{0} ({1})'.format(event_id_rev[ev],
np.sum(ev_mask))
kwargs['label'] = event_label
if ev in color:
kwargs['color'] = color[ev]
if equal_spacing:
ax.plot((events[ev_mask, 0] - first_samp) / sfreq,
(idx + 1) * np.ones(ev_mask.sum()), '.', **kwargs)
else:
ax.plot((events[ev_mask, 0] - first_samp) / sfreq,
events[ev_mask, 2], '.', **kwargs)
if equal_spacing:
ax.set_ylim(0, unique_events_id.size + 1)
ax.set_yticks(1 + np.arange(unique_events_id.size))
ax.set_yticklabels(unique_events_id)
else:
ax.set_ylim([min_event - 1, max_event + 1])
ax.set(xlabel=xlabel, ylabel='Events id')
ax.grid(True)
fig = fig if fig is not None else plt.gcf()
if event_id is not None:
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
fig.canvas.draw()
plt_show(show)
return fig
def _get_presser(fig):
"""Get our press callback."""
import matplotlib
callbacks = fig.canvas.callbacks.callbacks['button_press_event']
func = None
for key, val in callbacks.items():
if LooseVersion(matplotlib.__version__) >= '3':
func = val()
else:
func = val.func
if func.__class__.__name__ == 'partial':
break
else:
func = None
assert func is not None
return func
def plot_dipole_amplitudes(dipoles, colors=None, show=True):
"""Plot the amplitude traces of a set of dipoles.
Parameters
----------
dipoles : list of instance of Dipoles
The dipoles whose amplitudes should be shown.
colors: list of colors | None
Color to plot with each dipole. If None default colors are used.
show : bool
Show figure if True.
Returns
-------
fig : matplotlib.figure.Figure
The figure object containing the plot.
Notes
-----
.. versionadded:: 0.9.0
"""
import matplotlib.pyplot as plt
if colors is None:
colors = cycle(_get_color_list())
fig, ax = plt.subplots(1, 1)
xlim = [np.inf, -np.inf]
for dip, color in zip(dipoles, colors):
ax.plot(dip.times, dip.amplitude * 1e9, color=color, linewidth=1.5)
xlim[0] = min(xlim[0], dip.times[0])
xlim[1] = max(xlim[1], dip.times[-1])
ax.set(xlim=xlim, xlabel='Time (s)', ylabel='Amplitude (nAm)')
if show:
fig.show(warn=False)
return fig
def adjust_axes(axes, remove_spines=('top', 'right'), grid=True):
"""Adjust some properties of axes.
Parameters
----------
axes : list
List of axes to process.
remove_spines : list of str
Which axis spines to remove.
grid : bool
Turn grid on (True) or off (False).
"""
axes = [axes] if not isinstance(axes, (list, tuple, np.ndarray)) else axes
for ax in axes:
if grid:
ax.grid(zorder=0)
for key in remove_spines:
ax.spines[key].set_visible(False)
def _filter_ticks(lims, fscale):
"""Create approximately spaced ticks between lims."""
if fscale == 'linear':
return None, None # let matplotlib handle it
lims = np.array(lims)
ticks = list()
for exp in range(int(np.floor(np.log10(lims[0]))),
int(np.floor(np.log10(lims[1]))) + 1):
ticks += (np.array([1, 2, 4]) * (10 ** exp)).tolist()
ticks = np.array(ticks)
ticks = ticks[(ticks >= lims[0]) & (ticks <= lims[1])]
ticklabels = [('%g' if t < 1 else '%d') % t for t in ticks]
return ticks, ticklabels
def _get_flim(flim, fscale, freq, sfreq=None):
"""Get reasonable frequency limits."""
if flim is None:
if freq is None:
flim = [0.1 if fscale == 'log' else 0., sfreq / 2.]
else:
if fscale == 'linear':
flim = [freq[0]]
else:
flim = [freq[0] if freq[0] > 0 else 0.1 * freq[1]]
flim += [freq[-1]]
if fscale == 'log':
if flim[0] <= 0:
raise ValueError('flim[0] must be positive, got %s' % flim[0])
elif flim[0] < 0:
raise ValueError('flim[0] must be non-negative, got %s' % flim[0])
return flim
def _check_fscale(fscale):
"""Check for valid fscale."""
if not isinstance(fscale, string_types) or fscale not in ('log', 'linear'):
raise ValueError('fscale must be "log" or "linear", got %s'
% (fscale,))
def plot_filter(h, sfreq, freq=None, gain=None, title=None, color='#1f77b4',
flim=None, fscale='log', alim=(-60, 10), show=True):
"""Plot properties of a filter.
Parameters
----------
h : dict or ndarray
An IIR dict or 1D ndarray of coefficients (for FIR filter).
sfreq : float
Sample rate of the data (Hz).
freq : array-like or None
The ideal response frequencies to plot (must be in ascending order).
If None (default), do not plot the ideal response.
gain : array-like or None
The ideal response gains to plot.
If None (default), do not plot the ideal response.
title : str | None
The title to use. If None (default), deteremine the title based
on the type of the system.
color : color object
The color to use (default '#1f77b4').
flim : tuple or None
If not None, the x-axis frequency limits (Hz) to use.
If None, freq will be used. If None (default) and freq is None,
``(0.1, sfreq / 2.)`` will be used.
fscale : str
Frequency scaling to use, can be "log" (default) or "linear".
alim : tuple
The y-axis amplitude limits (dB) to use (default: (-60, 10)).
show : bool
Show figure if True (default).
Returns
-------
fig : matplotlib.figure.Figure
The figure containing the plots.
See Also
--------
mne.filter.create_filter
plot_ideal_filter
Notes
-----
.. versionadded:: 0.14
"""
from scipy.signal import freqz, group_delay
import matplotlib.pyplot as plt
sfreq = float(sfreq)
_check_fscale(fscale)
flim = _get_flim(flim, fscale, freq, sfreq)
if fscale == 'log':
omega = np.logspace(np.log10(flim[0]), np.log10(flim[1]), 1000)
else:
omega = np.linspace(flim[0], flim[1], 1000)
omega /= sfreq / (2 * np.pi)
if isinstance(h, dict): # IIR h.ndim == 2: # second-order sections
if 'sos' in h:
from scipy.signal import sosfilt
h = h['sos']
H = np.ones(len(omega), np.complex128)
gd = np.zeros(len(omega))
for section in h:
this_H = freqz(section[:3], section[3:], omega)[1]
H *= this_H
with warnings.catch_warnings(record=True): # singular GD
warnings.simplefilter('ignore')
gd += group_delay((section[:3], section[3:]), omega)[1]
n = estimate_ringing_samples(h)
delta = np.zeros(n)
delta[0] = 1
h = sosfilt(h, delta)
else:
from scipy.signal import lfilter
n = estimate_ringing_samples((h['b'], h['a']))
delta = np.zeros(n)
delta[0] = 1
H = freqz(h['b'], h['a'], omega)[1]
with warnings.catch_warnings(record=True): # singular GD
warnings.simplefilter('ignore')
gd = group_delay((h['b'], h['a']), omega)[1]
h = lfilter(h['b'], h['a'], delta)
title = 'SOS (IIR) filter' if title is None else title
else:
H = freqz(h, worN=omega)[1]
with warnings.catch_warnings(record=True): # singular GD
warnings.simplefilter('ignore')
gd = group_delay((h, [1.]), omega)[1]
title = 'FIR filter' if title is None else title
gd /= sfreq
# eventually axes could be a parameter
fig, (ax_time, ax_freq, ax_delay) = plt.subplots(3)
t = np.arange(len(h)) / sfreq
f = omega * sfreq / (2 * np.pi)
ax_time.plot(t, h, color=color)
ax_time.set(xlim=t[[0, -1]], xlabel='Time (s)',
ylabel='Amplitude', title=title)
mag = 10 * np.log10(np.maximum((H * H.conj()).real, 1e-20))
ax_freq.plot(f, mag, color=color, linewidth=2, zorder=4)
if freq is not None and gain is not None:
plot_ideal_filter(freq, gain, ax_freq, fscale=fscale,
title=None, show=False)
ax_freq.set(ylabel='Magnitude (dB)', xlabel='', xscale=fscale)
sl = slice(0 if fscale == 'linear' else 1, None, None)
ax_delay.plot(f[sl], gd[sl], color=color, linewidth=2, zorder=4)
ax_delay.set(xlim=flim, ylabel='Group delay (s)', xlabel='Frequency (Hz)',
xscale=fscale)
xticks, xticklabels = _filter_ticks(flim, fscale)
dlim = [0, 1.05 * gd[1:].max()]
for ax, ylim, ylabel in ((ax_freq, alim, 'Amplitude (dB)'),
(ax_delay, dlim, 'Delay (s)')):
if xticks is not None:
ax.set(xticks=xticks)
ax.set(xticklabels=xticklabels)
ax.set(xlim=flim, ylim=ylim, xlabel='Frequency (Hz)', ylabel=ylabel)
adjust_axes([ax_time, ax_freq, ax_delay])
tight_layout()
plt_show(show)
return fig
def plot_ideal_filter(freq, gain, axes=None, title='', flim=None, fscale='log',
alim=(-60, 10), color='r', alpha=0.5, linestyle='--',
show=True):
"""Plot an ideal filter response.
Parameters
----------
freq : array-like
The ideal response frequencies to plot (must be in ascending order).
gain : array-like or None
The ideal response gains to plot.
axes : instance of matplotlib.axes.AxesSubplot | None
The subplot handle. With None (default), axes are created.
title : str
The title to use, (default: '').
flim : tuple or None
If not None, the x-axis frequency limits (Hz) to use.
If None (default), freq used.
fscale : str
Frequency scaling to use, can be "log" (default) or "linear".
alim : tuple
If not None (default), the y-axis limits (dB) to use.
color : color object
The color to use (default: 'r').
alpha : float
The alpha to use (default: 0.5).
linestyle : str
The line style to use (default: '--').
show : bool
Show figure if True (default).
Returns
-------
fig : Instance of matplotlib.figure.Figure
The figure.
See Also
--------
plot_filter
Notes
-----
.. versionadded:: 0.14
Examples
--------
Plot a simple ideal band-pass filter::
>>> from mne.viz import plot_ideal_filter
>>> freq = [0, 1, 40, 50]
>>> gain = [0, 1, 1, 0]
>>> plot_ideal_filter(freq, gain, flim=(0.1, 100)) #doctest: +ELLIPSIS
<...Figure...>
"""
import matplotlib.pyplot as plt
xs, ys = list(), list()
my_freq, my_gain = list(), list()
if freq[0] != 0:
raise ValueError('freq should start with DC (zero) and end with '
'Nyquist, but got %s for DC' % (freq[0],))
freq = np.array(freq)
# deal with semilogx problems @ x=0
_check_fscale(fscale)
if fscale == 'log':
freq[0] = 0.1 * freq[1] if flim is None else min(flim[0], freq[1])
flim = _get_flim(flim, fscale, freq)
for ii in range(len(freq)):
xs.append(freq[ii])
ys.append(alim[0])
if ii < len(freq) - 1 and gain[ii] != gain[ii + 1]:
xs += [freq[ii], freq[ii + 1]]
ys += [alim[1]] * 2
my_freq += np.linspace(freq[ii], freq[ii + 1], 20,
endpoint=False).tolist()
my_gain += np.linspace(gain[ii], gain[ii + 1], 20,
endpoint=False).tolist()
else:
my_freq.append(freq[ii])
my_gain.append(gain[ii])
my_gain = 10 * np.log10(np.maximum(my_gain, 10 ** (alim[0] / 10.)))
if axes is None:
axes = plt.subplots(1)[1]
xs = np.maximum(xs, flim[0])
axes.fill_between(xs, alim[0], ys, color=color, alpha=0.1)
axes.plot(my_freq, my_gain, color=color, linestyle=linestyle, alpha=0.5,
linewidth=4, zorder=3)
xticks, xticklabels = _filter_ticks(flim, fscale)
axes.set(ylim=alim, xlabel='Frequency (Hz)', ylabel='Amplitude (dB)',
xscale=fscale)
if xticks is not None:
axes.set(xticks=xticks)
axes.set(xticklabels=xticklabels)
axes.set(xlim=flim)
adjust_axes(axes)
tight_layout()
plt_show(show)
return axes.figure
def _handle_event_colors(unique_events, color, unique_events_id):
"""Handle event colors."""
if color is None:
if len(unique_events) > len(_get_color_list()):
warn('More events than colors available. You should pass a list '
'of unique colors.')
colors = cycle(_get_color_list())
color = dict()
for this_event, this_color in zip(sorted(unique_events_id), colors):
color[this_event] = this_color
else:
for this_event in color:
if this_event not in unique_events_id:
raise ValueError('%s from color is not present in events '
'or event_id.' % this_event)
for this_event in unique_events_id:
if this_event not in color:
warn('Color is not available for event %d. Default colors '
'will be used.' % this_event)
return color
def plot_csd(csd, info=None, mode='csd', colorbar=True, cmap=None,
n_cols=None, show=True):
"""Plot CSD matrices.
A sub-plot is created for each frequency. If an info object is passed to
the function, different channel types are plotted in different figures.
Parameters
----------
csd : instance of CrossSpectralDensity
The CSD matrix to plot.
info: instance of Info | None
To split the figure by channel-type, provide the measurement info.
By default, the CSD matrix is plotted as a whole.
mode : 'csd' | 'coh'
Whether to plot the cross-spectral density ('csd', the default), or
the coherence ('coh') between the channels.
colorbar : bool
Whether to show a colorbar. Defaults to ``True``.
cmap : str | None
The matplotlib colormap to use. Defaults to None, which means the
colormap will default to matplotlib's default.
n_cols : int | None
CSD matrices are plotted in a grid. This parameter controls how
many matrix to plot side by side before starting a new row. By
default, a number will be chosen to make the grid as square as
possible.
show : bool
Whether to show the figure. Defaults to ``True``.
Returns
-------
fig : list of matplotlib figures
The figures created by this function.
"""
import matplotlib.pyplot as plt
if mode not in ['csd', 'coh']:
raise ValueError('"mode" should be either "csd" or "coh".')
if info is not None:
info_ch_names = info['ch_names']
sel_eeg = pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude=[])
sel_mag = pick_types(info, meg='mag', eeg=False, ref_meg=False,
exclude=[])
sel_grad = pick_types(info, meg='grad', eeg=False, ref_meg=False,
exclude=[])
idx_eeg = [csd.ch_names.index(info_ch_names[c])
for c in sel_eeg if info_ch_names[c] in csd.ch_names]
idx_mag = [csd.ch_names.index(info_ch_names[c])
for c in sel_mag if info_ch_names[c] in csd.ch_names]
idx_grad = [csd.ch_names.index(info_ch_names[c])
for c in sel_grad if info_ch_names[c] in csd.ch_names]
indices = [idx_eeg, idx_mag, idx_grad]
titles = ['EEG', 'Magnetometers', 'Gradiometers']
if mode == 'csd':
# The units in which to plot the CSD
units = dict(eeg=u'μV²', grad=u'fT²/cm²', mag=u'fT²')
scalings = dict(eeg=1e12, grad=1e26, mag=1e30)
else:
indices = [np.arange(len(csd.ch_names))]
if mode == 'csd':
titles = ['Cross-spectral density']
# Units and scaling unknown
units = dict()
scalings = dict()
elif mode == 'coh':
titles = ['Coherence']
n_freqs = len(csd.frequencies)
if n_cols is None:
n_cols = int(np.ceil(np.sqrt(n_freqs)))
n_rows = int(np.ceil(n_freqs / float(n_cols)))
figs = []
for ind, title, ch_type in zip(indices, titles, ['eeg', 'mag', 'grad']):
if len(ind) == 0:
continue
fig, axes = plt.subplots(n_rows, n_cols, squeeze=False,
figsize=(2 * n_cols + 1, 2.2 * n_rows))
csd_mats = []
for i in range(len(csd.frequencies)):
cm = csd.get_data(index=i)[ind][:, ind]
if mode == 'csd':
cm = np.abs(cm) * scalings.get(ch_type, 1)
elif mode == 'coh':
# Compute coherence from the CSD matrix
psd = np.diag(cm).real
cm = np.abs(cm) ** 2 / psd[np.newaxis, :] / psd[:, np.newaxis]
csd_mats.append(cm)
vmax = np.max(csd_mats)
for i, (freq, mat) in enumerate(zip(csd.frequencies, csd_mats)):
ax = axes[i // n_cols][i % n_cols]
im = ax.imshow(mat, interpolation='nearest', cmap=cmap, vmin=0,
vmax=vmax)
ax.set_xticks([])
ax.set_yticks([])
if csd._is_sum:
ax.set_title('%.1f-%.1f Hz.' % (np.min(freq),
np.max(freq)))
else:
ax.set_title('%.1f Hz.' % freq)
plt.suptitle(title)
plt.subplots_adjust(top=0.8)
if colorbar:
cb = plt.colorbar(im, ax=[a for ax_ in axes for a in ax_])
if mode == 'csd':
label = u'CSD'
if ch_type in units:
label += u' (%s)' % units[ch_type]
cb.set_label(label)
elif mode == 'coh':
cb.set_label('Coherence')
figs.append(fig)
plt_show(show)
return figs
|