1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
|
"""Functions to plot raw M/EEG data."""
from __future__ import print_function
# Authors: Eric Larson <larson.eric.d@gmail.com>
# Jaakko Leppakangas <jaeilepp@student.jyu.fi>
#
# License: Simplified BSD
import copy
from functools import partial
import numpy as np
from ..annotations import _annotations_starts_stops
from ..externals.six import string_types
from ..io.pick import (pick_types, _pick_data_channels, pick_info,
_PICK_TYPES_KEYS, pick_channels, channel_type)
from ..io.meas_info import create_info
from ..utils import verbose, get_config, _ensure_int
from ..time_frequency import psd_welch
from ..defaults import _handle_default
from .topo import _plot_topo, _plot_timeseries, _plot_timeseries_unified
from .utils import (_toggle_options, _toggle_proj, tight_layout,
_layout_figure, _plot_raw_onkey, figure_nobar, plt_show,
_plot_raw_onscroll, _mouse_click, _find_channel_idx,
_helper_raw_resize, _select_bads, _onclick_help,
_setup_browser_offsets, _compute_scalings, plot_sensors,
_radio_clicked, _set_radio_button, _handle_topomap_bads,
_change_channel_group, _plot_annotations, _setup_butterfly,
_handle_decim, _setup_plot_projector, _check_cov,
_set_ax_label_style, _draw_vert_line, warn)
from .evoked import _plot_lines
def _plot_update_raw_proj(params, bools):
"""Deal with changed proj."""
if bools is not None:
inds = np.where(bools)[0]
params['info']['projs'] = [copy.deepcopy(params['projs'][ii])
for ii in inds]
params['proj_bools'] = bools
params['projector'], params['whitened_ch_names'] = _setup_plot_projector(
params['info'], params['noise_cov'], True, params['use_noise_cov'])
params['update_fun']()
params['plot_fun']()
def _update_raw_data(params):
"""Deal with time or proj changed."""
from scipy.signal import filtfilt
start = params['t_start']
start -= params['first_time']
stop = params['raw'].time_as_index(start + params['duration'])[0]
start = params['raw'].time_as_index(start)[0]
data_picks = _pick_data_channels(params['raw'].info)
data, times = params['raw'][:, start:stop]
if params['projector'] is not None:
data = np.dot(params['projector'], data)
# remove DC
if params['remove_dc'] is True:
data -= np.mean(data, axis=1)[:, np.newaxis]
if params['ba'] is not None:
# filter with the same defaults as `raw.filter`, except
# we might as well actually filter the bad segments, too
these_bounds = np.unique(
np.maximum(np.minimum(params['filt_bounds'], start), stop))
for start_, stop_ in zip(these_bounds[:-1], these_bounds[1:]):
data[data_picks, start_:stop:] = \
filtfilt(params['ba'][0], params['ba'][1],
data[data_picks, start_:stop_], axis=1, padlen=0)
# scale
for di in range(data.shape[0]):
ch_name = params['info']['ch_names'][di]
# stim channels should be hard limited
if params['types'][di] == 'stim':
norm = float(max(data[di]))
elif ch_name in params['whitened_ch_names'] and \
ch_name not in params['info']['bads']:
norm = params['scalings']['whitened']
else:
norm = params['scalings'][params['types'][di]]
data[di] /= norm if norm != 0 else 1.
# clip
if params['clipping'] == 'transparent':
data[np.logical_or(data > 1, data < -1)] = np.nan
elif params['clipping'] == 'clamp':
data = np.clip(data, -1, 1, data)
params['data'] = data
params['times'] = times
def _pick_bad_channels(event, params):
"""Select or drop bad channels onpick."""
# Both bad lists are updated. params['info'] used for colors.
if params['fig_annotation'] is not None:
return
bads = params['raw'].info['bads']
params['info']['bads'] = _select_bads(event, params, bads)
_plot_update_raw_proj(params, None)
def plot_raw(raw, events=None, duration=10.0, start=0.0, n_channels=20,
bgcolor='w', color=None, bad_color=(0.8, 0.8, 0.8),
event_color='cyan', scalings=None, remove_dc=True, order=None,
show_options=False, title=None, show=True, block=False,
highpass=None, lowpass=None, filtorder=4, clipping=None,
show_first_samp=False, proj=True, group_by='type',
butterfly=False, decim='auto', noise_cov=None, event_id=None):
"""Plot raw data.
Parameters
----------
raw : instance of Raw
The raw data to plot.
events : array | None
Events to show with vertical bars.
duration : float
Time window (s) to plot. The lesser of this value and the duration
of the raw file will be used.
start : float
Initial time to show (can be changed dynamically once plotted). If
show_first_samp is True, then it is taken relative to
``raw.first_samp``.
n_channels : int
Number of channels to plot at once. Defaults to 20. Has no effect if
``order`` is 'position', 'selection' or 'butterfly'.
bgcolor : color object
Color of the background.
color : dict | color object | None
Color for the data traces. If None, defaults to::
dict(mag='darkblue', grad='b', eeg='k', eog='k', ecg='m',
emg='k', ref_meg='steelblue', misc='k', stim='k',
resp='k', chpi='k')
bad_color : color object
Color to make bad channels.
event_color : color object | dict
Color to use for events. Can also be a dict with
``{event_number: color}`` pairings. Use ``event_number==-1`` for
any event numbers in the events list that are not in the dictionary.
scalings : dict | None
Scaling factors for the traces. If any fields in scalings are 'auto',
the scaling factor is set to match the 99.5th percentile of a subset of
the corresponding data. If scalings == 'auto', all scalings fields are
set to 'auto'. If any fields are 'auto' and data is not preloaded, a
subset of times up to 100mb will be loaded. If None, defaults to::
dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6, ecg=5e-4,
emg=1e-3, ref_meg=1e-12, misc=1e-3, stim=1,
resp=1, chpi=1e-4, whitened=1e2)
remove_dc : bool
If True remove DC component when plotting data.
order : array of int | None
Order in which to plot data. If the array is shorter than the number of
channels, only the given channels are plotted. If None (default), all
channels are plotted. If ``group_by`` is ``'position'`` or
``'selection'``, the ``order`` parameter is used only for selecting the
channels to be plotted.
show_options : bool
If True, a dialog for options related to projection is shown.
title : str | None
The title of the window. If None, and either the filename of the
raw object or '<unknown>' will be displayed as title.
show : bool
Show figure if True.
block : bool
Whether to halt program execution until the figure is closed.
Useful for setting bad channels on the fly by clicking on a line.
May not work on all systems / platforms.
highpass : float | None
Highpass to apply when displaying data.
lowpass : float | None
Lowpass to apply when displaying data.
filtorder : int
Filtering order. Note that for efficiency and simplicity,
filtering during plotting uses forward-backward IIR filtering,
so the effective filter order will be twice ``filtorder``.
Filtering the lines for display may also produce some edge
artifacts (at the left and right edges) of the signals
during display. Filtering requires scipy >= 0.10.
clipping : str | None
If None, channels are allowed to exceed their designated bounds in
the plot. If "clamp", then values are clamped to the appropriate
range for display, creating step-like artifacts. If "transparent",
then excessive values are not shown, creating gaps in the traces.
show_first_samp : bool
If True, show time axis relative to the ``raw.first_samp``.
proj : bool
Whether to apply projectors prior to plotting (default is ``True``).
Individual projectors can be enabled/disabled interactively (see
Notes). This argument only affects the plot; use ``raw.apply_proj()``
to modify the data stored in the Raw object.
group_by : str
How to group channels. ``'type'`` groups by channel type,
``'original'`` plots in the order of ch_names, ``'selection'`` uses
Elekta's channel groupings (only works for Neuromag data),
``'position'`` groups the channels by the positions of the sensors.
``'selection'`` and ``'position'`` modes allow custom selections by
using lasso selector on the topomap. Pressing ``ctrl`` key while
selecting allows appending to the current selection. Channels marked as
bad appear with red edges on the topomap. ``'type'`` and ``'original'``
groups the channels by type in butterfly mode whereas ``'selection'``
and ``'position'`` use regional grouping. ``'type'`` and ``'original'``
modes are overridden with ``order`` keyword.
butterfly : bool
Whether to start in butterfly mode. Defaults to False.
decim : int | 'auto'
Amount to decimate the data during display for speed purposes.
You should only decimate if the data are sufficiently low-passed,
otherwise aliasing can occur. The 'auto' mode (default) uses
the decimation that results in a sampling rate least three times
larger than ``min(info['lowpass'], lowpass)`` (e.g., a 40 Hz lowpass
will result in at least a 120 Hz displayed sample rate).
noise_cov : instance of Covariance | str | None
Noise covariance used to whiten the data while plotting.
Whitened data channels are scaled by ``scalings['whitened']``,
and their channel names are shown in italic.
Can be a string to load a covariance from disk.
See also :meth:`mne.Evoked.plot_white` for additional inspection
of noise covariance properties when whitening evoked data.
For data processed with SSS, the effective dependence between
magnetometers and gradiometers may introduce differences in scaling,
consider using :meth:`mne.Evoked.plot_white`.
.. versionadded:: 0.16.0
event_id : dict | None
Event IDs used to show at event markers (default None shows
theh event numbers).
.. versionadded:: 0.16.0
Returns
-------
fig : Instance of matplotlib.figure.Figure
Raw traces.
Notes
-----
The arrow keys (up/down/left/right) can typically be used to navigate
between channels and time ranges, but this depends on the backend
matplotlib is configured to use (e.g., mpl.use('TkAgg') should work). The
left/right arrows will scroll by 25% of ``duration``, whereas
shift+left/shift+right will scroll by 100% of ``duration``. The scaling can
be adjusted with - and + (or =) keys. The viewport dimensions can be
adjusted with page up/page down and home/end keys. Full screen mode can be
toggled with the F11 key. To mark or un-mark a channel as bad, click on a
channel label or a channel trace. The changes will be reflected immediately
in the raw object's ``raw.info['bads']`` entry.
If projectors are present, a button labelled "Proj" in the lower right
corner of the plot window opens a secondary control window, which allows
enabling/disabling specific projectors individually. This provides a means
of interactively observing how each projector would affect the raw data if
it were applied.
Annotation mode is toggled by pressing 'a', butterfly mode by pressing
'b', and whitening mode (when ``noise_cov is not None``) by pressing 'w'.
"""
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.signal import butter
color = _handle_default('color', color)
scalings = _compute_scalings(scalings, raw)
scalings = _handle_default('scalings_plot_raw', scalings)
if clipping is not None and clipping not in ('clamp', 'transparent'):
raise ValueError('clipping must be None, "clamp", or "transparent", '
'not %s' % clipping)
# figure out the IIR filtering parameters
nyq = raw.info['sfreq'] / 2.
if highpass is None and lowpass is None:
ba = filt_bounds = None
else:
filtorder = int(filtorder)
if filtorder <= 0:
raise ValueError('filtorder (%s) must be >= 1' % filtorder)
if highpass is not None and highpass <= 0:
raise ValueError('highpass must be > 0, not %s' % highpass)
if lowpass is not None and lowpass >= nyq:
raise ValueError('lowpass must be < nyquist (%s), not %s'
% (nyq, lowpass))
if highpass is None:
ba = butter(filtorder, lowpass / nyq, 'lowpass', analog=False)
elif lowpass is None:
ba = butter(filtorder, highpass / nyq, 'highpass', analog=False)
else:
if lowpass <= highpass:
raise ValueError('lowpass (%s) must be > highpass (%s)'
% (lowpass, highpass))
ba = butter(filtorder, [highpass / nyq, lowpass / nyq], 'bandpass',
analog=False)
sr, sp = _annotations_starts_stops(raw, ('edge', 'bad_acq_skip'),
invert=True)
filt_bounds = np.unique(np.concatenate([sr, sp]))
# make a copy of info, remove projection (for now)
info = raw.info.copy()
projs = info['projs']
info['projs'] = []
n_times = raw.n_times
# allow for raw objects without filename, e.g., ICA
if title is None:
title = raw._filenames
if len(title) == 0: # empty list or absent key
title = '<unknown>'
elif len(title) == 1:
title = title[0]
else: # if len(title) > 1:
title = '%s ... (+ %d more) ' % (title[0], len(title) - 1)
if len(title) > 60:
title = '...' + title[-60:]
elif not isinstance(title, string_types):
raise TypeError('title must be None or a string')
if events is not None:
event_times = events[:, 0].astype(float) - raw.first_samp
event_times /= info['sfreq']
event_nums = events[:, 2]
else:
event_times = event_nums = None
# reorganize the data in plotting order
inds = list()
types = list()
for t in ['grad', 'mag']:
inds += [pick_types(info, meg=t, ref_meg=False, exclude=[])]
types += [t] * len(inds[-1])
for t in ['hbo', 'hbr']:
inds += [pick_types(info, meg=False, ref_meg=False, fnirs=t,
exclude=[])]
types += [t] * len(inds[-1])
pick_kwargs = dict(meg=False, ref_meg=False, exclude=[])
for key in _PICK_TYPES_KEYS:
if key not in ['meg', 'fnirs']:
pick_kwargs[key] = True
inds += [pick_types(raw.info, **pick_kwargs)]
types += [key] * len(inds[-1])
pick_kwargs[key] = False
inds = np.concatenate(inds).astype(int)
if not len(inds) == len(info['ch_names']):
raise RuntimeError('Some channels not classified, please report '
'this problem')
# put them back to original or modified order for natural plotting
reord = np.argsort(inds)
types = [types[ri] for ri in reord]
if isinstance(order, (np.ndarray, list, tuple)):
# put back to original order first, then use new order
inds = inds[reord][order]
elif order is not None:
raise ValueError('Unkown order, should be array-like. '
'Got "%s" (%s).' % (order, type(order)))
if group_by in ['selection', 'position']:
selections, fig_selection = _setup_browser_selection(raw, group_by)
selections = {k: np.intersect1d(v, inds) for k, v in
selections.items()}
elif group_by == 'original':
if order is None:
order = np.arange(len(inds))
inds = inds[reord[:len(order)]]
elif group_by != 'type':
raise ValueError('Unknown group_by type %s' % group_by)
if not isinstance(event_color, dict):
event_color = {-1: event_color}
event_color = dict((_ensure_int(key, 'event_color key'), event_color[key])
for key in event_color)
for key in event_color:
if key <= 0 and key != -1:
raise KeyError('only key <= 0 allowed is -1 (cannot use %s)'
% key)
decim, data_picks = _handle_decim(info, decim, lowpass)
noise_cov = _check_cov(noise_cov, info)
# set up projection and data parameters
duration = min(raw.times[-1], float(duration))
first_time = raw._first_time if show_first_samp else 0
start += first_time
event_id_rev = {val: key for key, val in (event_id or {}).items()}
params = dict(raw=raw, ch_start=0, t_start=start, duration=duration,
info=info, projs=projs, remove_dc=remove_dc, ba=ba,
n_channels=n_channels, scalings=scalings, types=types,
n_times=n_times, event_times=event_times, inds=inds,
event_nums=event_nums, clipping=clipping, fig_proj=None,
first_time=first_time, added_label=list(), butterfly=False,
group_by=group_by, orig_inds=inds.copy(), decim=decim,
data_picks=data_picks, event_id_rev=event_id_rev,
noise_cov=noise_cov, use_noise_cov=noise_cov is not None,
filt_bounds=filt_bounds)
if group_by in ['selection', 'position']:
params['fig_selection'] = fig_selection
params['selections'] = selections
params['radio_clicked'] = partial(_radio_clicked, params=params)
fig_selection.radio.on_clicked(params['radio_clicked'])
lasso_callback = partial(_set_custom_selection, params=params)
fig_selection.canvas.mpl_connect('lasso_event', lasso_callback)
_prepare_mne_browse_raw(params, title, bgcolor, color, bad_color, inds,
n_channels)
# plot event_line first so it's in the back
event_lines = [params['ax'].plot([np.nan], color=event_color[ev_num])[0]
for ev_num in sorted(event_color.keys())]
params['plot_fun'] = partial(_plot_raw_traces, params=params, color=color,
bad_color=bad_color, event_lines=event_lines,
event_color=event_color)
_plot_annotations(raw, params)
params['update_fun'] = partial(_update_raw_data, params=params)
params['pick_bads_fun'] = partial(_pick_bad_channels, params=params)
params['label_click_fun'] = partial(_label_clicked, params=params)
params['scale_factor'] = 1.0
# set up callbacks
opt_button = None
if len(raw.info['projs']) > 0 and not raw.proj:
ax_button = plt.subplot2grid((10, 10), (9, 9))
params['ax_button'] = ax_button
params['apply_proj'] = proj
opt_button = mpl.widgets.Button(ax_button, 'Proj')
callback_option = partial(_toggle_options, params=params)
opt_button.on_clicked(callback_option)
callback_key = partial(_plot_raw_onkey, params=params)
params['fig'].canvas.mpl_connect('key_press_event', callback_key)
callback_scroll = partial(_plot_raw_onscroll, params=params)
params['fig'].canvas.mpl_connect('scroll_event', callback_scroll)
callback_pick = partial(_mouse_click, params=params)
params['fig'].canvas.mpl_connect('button_press_event', callback_pick)
callback_resize = partial(_helper_raw_resize, params=params)
params['fig'].canvas.mpl_connect('resize_event', callback_resize)
# As here code is shared with plot_evoked, some extra steps:
# first the actual plot update function
params['plot_update_proj_callback'] = _plot_update_raw_proj
# then the toggle handler
callback_proj = partial(_toggle_proj, params=params)
# store these for use by callbacks in the options figure
params['callback_proj'] = callback_proj
params['callback_key'] = callback_key
# have to store this, or it could get garbage-collected
params['opt_button'] = opt_button
params['update_vertline'] = partial(_draw_vert_line, params=params)
# do initial plots
callback_proj('none')
_layout_figure(params)
# deal with projectors
if show_options:
_toggle_options(None, params)
callback_close = partial(_close_event, params=params)
params['fig'].canvas.mpl_connect('close_event', callback_close)
# initialize the first selection set
if group_by in ['selection', 'position']:
_radio_clicked(fig_selection.radio.labels[0]._text, params)
callback_selection_key = partial(_selection_key_press, params=params)
callback_selection_scroll = partial(_selection_scroll, params=params)
params['fig_selection'].canvas.mpl_connect('close_event',
callback_close)
params['fig_selection'].canvas.mpl_connect('key_press_event',
callback_selection_key)
params['fig_selection'].canvas.mpl_connect('scroll_event',
callback_selection_scroll)
if butterfly:
_setup_butterfly(params)
try:
plt_show(show, block=block)
except TypeError: # not all versions have this
plt_show(show)
return params['fig']
def _selection_scroll(event, params):
"""Handle scroll in selection dialog."""
if event.step < 0:
_change_channel_group(-1, params)
elif event.step > 0:
_change_channel_group(1, params)
def _selection_key_press(event, params):
"""Handle keys in selection dialog."""
if event.key == 'down':
_change_channel_group(-1, params)
elif event.key == 'up':
_change_channel_group(1, params)
elif event.key == 'escape':
_close_event(event, params)
def _close_event(event, params):
"""Handle closing of raw browser with selections."""
import matplotlib.pyplot as plt
if 'fig_selection' in params:
plt.close(params['fig_selection'])
for fig in ['fig_annotation', 'fig_help', 'fig_proj']:
if params[fig] is not None:
plt.close(params[fig])
plt.close(params['fig'])
def _label_clicked(pos, params):
"""Select bad channels."""
if params['butterfly']:
return
labels = params['ax'].yaxis.get_ticklabels()
offsets = np.array(params['offsets']) + params['offsets'][0]
line_idx = np.searchsorted(offsets, pos[1])
text = labels[line_idx].get_text()
if len(text) == 0:
return
if 'fig_selection' in params:
ch_idx = _find_channel_idx(text, params)
_handle_topomap_bads(text, params)
else:
ch_idx = [params['ch_start'] + line_idx]
bads = params['info']['bads']
if text in bads:
while text in bads: # to make sure duplicates are removed
bads.remove(text)
color = vars(params['lines'][line_idx])['def_color']
for idx in ch_idx:
params['ax_vscroll'].patches[idx].set_color(color)
else:
bads.append(text)
color = params['bad_color']
for idx in ch_idx:
params['ax_vscroll'].patches[idx].set_color(color)
params['raw'].info['bads'] = bads
_plot_update_raw_proj(params, None)
_data_types = ('mag', 'grad', 'eeg', 'seeg', 'ecog')
def _set_psd_plot_params(info, proj, picks, ax, area_mode):
"""Set PSD plot params."""
import matplotlib.pyplot as plt
if area_mode not in [None, 'std', 'range']:
raise ValueError('"area_mode" must be "std", "range", or None')
# XXX this could be refactored more with e.g., plot_evoked
# XXX when it's refactored, Report._render_raw will need to be updated
megs = ['mag', 'grad', False, False, False]
eegs = [False, False, True, False, False]
seegs = [False, False, False, True, False]
ecogs = [False, False, False, False, True]
titles = _handle_default('titles', None)
units = _handle_default('units', None)
scalings = _handle_default('scalings', None)
picks_list = list()
titles_list = list()
units_list = list()
scalings_list = list()
for meg, eeg, seeg, ecog, name in zip(megs, eegs, seegs, ecogs,
_data_types):
these_picks = pick_types(info, meg=meg, eeg=eeg, seeg=seeg, ecog=ecog,
ref_meg=False)
if picks is not None:
these_picks = np.intersect1d(these_picks, picks)
if len(these_picks) > 0:
picks_list.append(these_picks)
titles_list.append(titles[name])
units_list.append(units[name])
scalings_list.append(scalings[name])
if len(picks_list) == 0:
raise RuntimeError('No data channels found')
if ax is not None:
if isinstance(ax, plt.Axes):
ax = [ax]
if len(ax) != len(picks_list):
raise ValueError('For this dataset with picks=None %s axes '
'must be supplied, got %s'
% (len(picks_list), len(ax)))
ax_list = ax
del picks
fig = None
if ax is None:
fig = plt.figure()
ax_list = list()
for ii in range(len(picks_list)):
# Make x-axes change together
if ii > 0:
ax_list.append(plt.subplot(len(picks_list), 1, ii + 1,
sharex=ax_list[0]))
else:
ax_list.append(plt.subplot(len(picks_list), 1, ii + 1))
make_label = True
else:
fig = ax_list[0].get_figure()
make_label = len(ax_list) == len(fig.axes)
return (fig, picks_list, titles_list, units_list, scalings_list,
ax_list, make_label)
def _convert_psds(psds, dB, estimate, scaling, unit, ch_names):
"""Convert PSDs to dB (if necessary) and appropriate units.
The following table summarizes the relationship between the value of
parameters ``dB`` and ``estimate``, and the type of plot and corresponding
units.
| dB | estimate | plot | units |
|-------+-------------+------+-------------------|
| True | 'power' | PSD | amp**2/Hz (dB) |
| True | 'amplitude' | ASD | amp/sqrt(Hz) (dB) |
| True | 'auto' | PSD | amp**2/Hz (dB) |
| False | 'power' | PSD | amp**2/Hz |
| False | 'amplitude' | ASD | amp/sqrt(Hz) |
| False | 'auto' | ASD | amp/sqrt(Hz) |
where amp are the units corresponding to the variable, as specified by
``unit``.
"""
where = np.where(psds.min(1) <= 0)[0]
dead_ch = ', '.join(ch_names[ii] for ii in where)
if len(where) > 0:
if dB:
msg = "Infinite value in PSD for channel(s) %s. " \
"These channels might be dead." % dead_ch
else:
msg = "Zero value in PSD for channel(s) %s. " \
"These channels might be dead." % dead_ch
warn(msg, UserWarning)
if estimate == 'auto':
estimate = 'power' if dB else 'amplitude'
if estimate == 'amplitude':
np.sqrt(psds, out=psds)
psds *= scaling
ylabel = r'$\mathrm{%s / \sqrt{Hz}}$' % unit
else:
psds *= scaling * scaling
ylabel = r'$\mathrm{%s^2}/Hz}$' % unit
if dB:
np.log10(np.maximum(psds, np.finfo(float).tiny), out=psds)
psds *= 10
ylabel += r'$\ \mathrm{(dB)}$'
return ylabel
@verbose
def plot_raw_psd(raw, tmin=0., tmax=np.inf, fmin=0, fmax=np.inf, proj=False,
n_fft=None, picks=None, ax=None, color='black',
area_mode='std', area_alpha=0.33, n_overlap=0,
dB=True, estimate='auto', average=False, show=True, n_jobs=1,
line_alpha=None, spatial_colors=None, xscale='linear',
reject_by_annotation=True, verbose=None):
"""Plot the power spectral density across channels.
Different channel types are drawn in sub-plots. When the data has been
processed with a bandpass, lowpass or highpass filter, dashed lines
indicate the boundaries of the filter (--). The line noise frequency is
also indicated with a dashed line (-.).
Parameters
----------
raw : instance of io.Raw
The raw instance to use.
tmin : float
Start time for calculations.
tmax : float
End time for calculations.
fmin : float
Start frequency to consider.
fmax : float
End frequency to consider.
proj : bool
Apply projection.
n_fft : int | None
Number of points to use in Welch FFT calculations.
Default is None, which uses the minimum of 2048 and the
number of time points.
picks : array-like of int | None
List of channels to use. Cannot be None if `ax` is supplied. If both
`picks` and `ax` are None, separate subplots will be created for
each standard channel type (`mag`, `grad`, and `eeg`).
ax : instance of matplotlib Axes | None
Axes to plot into. If None, axes will be created.
color : str | tuple
A matplotlib-compatible color to use. Has no effect when
spatial_colors=True.
area_mode : str | None
Mode for plotting area. If 'std', the mean +/- 1 STD (across channels)
will be plotted. If 'range', the min and max (across channels) will be
plotted. Bad channels will be excluded from these calculations.
If None, no area will be plotted. If average=False, no area is plotted.
area_alpha : float
Alpha for the area.
n_overlap : int
The number of points of overlap between blocks. The default value
is 0 (no overlap).
dB : bool
Plot Power Spectral Density (PSD), in units (amplitude**2/Hz (dB)) if
``dB=True``, and ``estimate='power'`` or ``estimate='auto'``. Plot PSD
in units (amplitude**2/Hz) if ``dB=False`` and,
``estimate='power'``. Plot Amplitude Spectral Density (ASD), in units
(amplitude/sqrt(Hz)), if ``dB=False`` and ``estimate='amplitude'`` or
``estimate='auto'``. Plot ASD, in units (amplitude/sqrt(Hz) (db)), if
``dB=True`` and ``estimate='amplitude'``.
estimate : str, {'auto', 'power', 'amplitude'}
Can be "power" for power spectral density (PSD), "amplitude" for
amplitude spectrum density (ASD), or "auto" (default), which uses
"power" when dB is True and "amplitude" otherwise.
average : bool
If False (default), the PSDs of all channels is displayed. No averaging
is done and parameters area_mode and area_alpha are ignored. When
False, it is possible to paint an area (hold left mouse button and
drag) to plot a topomap.
show : bool
Show figure if True.
n_jobs : int
Number of jobs to run in parallel.
line_alpha : float | None
Alpha for the PSD line. Can be None (default) to use 1.0 when
``average=True`` and 0.1 when ``average=False``.
spatial_colors : bool
Whether to use spatial colors. Only used when ``average=False``.
xscale : str
Can be 'linear' (default) or 'log'.
reject_by_annotation : bool
Whether to omit bad segments from the data while computing the
PSD. If True, annotated segments with a description that starts
with 'bad' are omitted. Has no effect if ``inst`` is an Epochs or
Evoked object. Defaults to True.
.. versionadded:: 0.15.0
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
fig : instance of matplotlib figure
Figure with frequency spectra of the data channels.
"""
from matplotlib.ticker import ScalarFormatter
if average and spatial_colors:
raise ValueError('Average and spatial_colors cannot be enabled '
'simultaneously.')
if spatial_colors is None:
spatial_colors = False if average else True
fig, picks_list, titles_list, units_list, scalings_list, ax_list, \
make_label = _set_psd_plot_params(raw.info, proj, picks, ax, area_mode)
del ax
if line_alpha is None:
line_alpha = 1.0 if average else 0.75
line_alpha = float(line_alpha)
psd_list = list()
ylabels = list()
if n_fft is None:
tmax = raw.times[-1] if not np.isfinite(tmax) else tmax
n_fft = min(np.diff(raw.time_as_index([tmin, tmax]))[0] + 1, 2048)
for ii, picks in enumerate(picks_list):
ax = ax_list[ii]
psds, freqs = psd_welch(raw, tmin=tmin, tmax=tmax, picks=picks,
fmin=fmin, fmax=fmax, proj=proj, n_fft=n_fft,
n_overlap=n_overlap, n_jobs=n_jobs,
reject_by_annotation=reject_by_annotation)
ylabel = _convert_psds(psds, dB, estimate, scalings_list[ii],
units_list[ii],
[raw.ch_names[pi] for pi in picks])
if average:
psd_mean = np.mean(psds, axis=0)
if area_mode == 'std':
psd_std = np.std(psds, axis=0)
hyp_limits = (psd_mean - psd_std, psd_mean + psd_std)
elif area_mode == 'range':
hyp_limits = (np.min(psds, axis=0), np.max(psds, axis=0))
else: # area_mode is None
hyp_limits = None
ax.plot(freqs, psd_mean, color=color, alpha=line_alpha,
linewidth=0.5)
if hyp_limits is not None:
ax.fill_between(freqs, hyp_limits[0], y2=hyp_limits[1],
color=color, alpha=area_alpha)
else:
psd_list.append(psds)
if make_label:
if ii == len(picks_list) - 1:
ax.set_xlabel('Frequency (Hz)')
ax.set_ylabel(ylabel)
ax.set_title(titles_list[ii])
ax.set_xlim(freqs[0], freqs[-1])
ylabels.append(ylabel)
for key, ls in zip(['lowpass', 'highpass', 'line_freq'],
['--', '--', '-.']):
if raw.info[key] is not None:
for ax in ax_list:
ax.axvline(raw.info[key], color='k', linestyle=ls, alpha=0.25,
linewidth=2, zorder=2)
if not average:
picks = np.concatenate(picks_list)
psd_list = np.concatenate(psd_list)
types = np.array([channel_type(raw.info, idx) for idx in picks])
# Needed because the data does not match the info anymore.
info = create_info([raw.ch_names[p] for p in picks], raw.info['sfreq'],
types)
info['chs'] = [raw.info['chs'][p] for p in picks]
valid_channel_types = ['mag', 'grad', 'eeg', 'seeg', 'eog', 'ecg',
'emg', 'dipole', 'gof', 'bio', 'ecog', 'hbo',
'hbr', 'misc']
ch_types_used = list()
for this_type in valid_channel_types:
if this_type in types:
ch_types_used.append(this_type)
assert len(ch_types_used) == len(ax_list)
unit = ''
units = {t: yl for t, yl in zip(ch_types_used, ylabels)}
titles = {c: t for c, t in zip(ch_types_used, titles_list)}
picks = np.arange(len(psd_list))
if not spatial_colors:
spatial_colors = color
_plot_lines(psd_list, info, picks, fig, ax_list, spatial_colors,
unit, units=units, scalings=None, hline=None, gfp=False,
types=types, zorder='std', xlim=(freqs[0], freqs[-1]),
ylim=None, times=freqs, bad_ch_idx=[], titles=titles,
ch_types_used=ch_types_used, selectable=True, psd=True,
line_alpha=line_alpha, nave=None)
for ax in ax_list:
ax.grid(True, linestyle=':')
if xscale == 'log':
ax.set(xscale='log')
ax.set(xlim=[freqs[1] if freqs[0] == 0 else freqs[0], freqs[-1]])
ax.get_xaxis().set_major_formatter(ScalarFormatter())
if make_label:
tight_layout(pad=0.1, h_pad=0.1, w_pad=0.1, fig=fig)
plt_show(show)
return fig
def _prepare_mne_browse_raw(params, title, bgcolor, color, bad_color, inds,
n_channels):
"""Set up the mne_browse_raw window."""
import matplotlib.pyplot as plt
import matplotlib as mpl
size = get_config('MNE_BROWSE_RAW_SIZE')
if size is not None:
size = size.split(',')
size = tuple([float(s) for s in size])
size = tuple([float(s) for s in size])
fig = figure_nobar(facecolor=bgcolor, figsize=size)
fig.canvas.set_window_title(title if title else "Raw")
ax = plt.subplot2grid((10, 10), (0, 1), colspan=8, rowspan=9)
ax_hscroll = plt.subplot2grid((10, 10), (9, 1), colspan=8)
ax_hscroll.get_yaxis().set_visible(False)
ax_hscroll.set_xlabel('Time (s)')
ax_vscroll = plt.subplot2grid((10, 10), (0, 9), rowspan=9)
ax_vscroll.set_axis_off()
ax_help_button = plt.subplot2grid((10, 10), (0, 0), colspan=1)
help_button = mpl.widgets.Button(ax_help_button, 'Help')
help_button.on_clicked(partial(_onclick_help, params=params))
# store these so they can be fixed on resize
params['fig'] = fig
params['ax'] = ax
params['ax_hscroll'] = ax_hscroll
params['ax_vscroll'] = ax_vscroll
params['ax_help_button'] = ax_help_button
params['help_button'] = help_button
# populate vertical and horizontal scrollbars
info = params['info']
n_ch = len(inds)
if 'fig_selection' in params:
selections = params['selections']
labels = [l._text for l in params['fig_selection'].radio.labels]
# Flatten the selections dict to a list.
cis = [item for sublist in [selections[l] for l in labels] for item
in sublist]
for idx, ci in enumerate(cis):
this_color = (bad_color if info['ch_names'][ci] in
info['bads'] else color)
if isinstance(this_color, dict):
this_color = this_color[params['types'][ci]]
ax_vscroll.add_patch(mpl.patches.Rectangle((0, idx), 1, 1,
facecolor=this_color,
edgecolor=this_color))
ax_vscroll.set_ylim(len(cis), 0)
n_channels = max([len(selections[labels[0]]), n_channels])
else:
for ci in range(len(inds)):
this_color = (bad_color if info['ch_names'][inds[ci]] in
info['bads'] else color)
if isinstance(this_color, dict):
this_color = this_color[params['types'][inds[ci]]]
ax_vscroll.add_patch(mpl.patches.Rectangle((0, ci), 1, 1,
facecolor=this_color,
edgecolor=this_color))
ax_vscroll.set_ylim(n_ch, 0)
vsel_patch = mpl.patches.Rectangle((0, 0), 1, n_channels, alpha=0.5,
facecolor='w', edgecolor='w')
ax_vscroll.add_patch(vsel_patch)
params['vsel_patch'] = vsel_patch
hsel_patch = mpl.patches.Rectangle((params['t_start'], 0),
params['duration'], 1, edgecolor='k',
facecolor=(0.75, 0.75, 0.75),
alpha=0.25, linewidth=1, clip_on=False)
ax_hscroll.add_patch(hsel_patch)
params['hsel_patch'] = hsel_patch
ax_hscroll.set_xlim(params['first_time'], params['first_time'] +
params['n_times'] / float(info['sfreq']))
ax_vscroll.set_title('Ch.')
vertline_color = (0., 0.75, 0.)
params['ax_vertline'] = ax.axvline(0, color=vertline_color, zorder=4)
params['ax_vertline'].ch_name = ''
params['vertline_t'] = ax_hscroll.text(params['first_time'], 1.2, '',
color=vertline_color, fontsize=10,
va='bottom', ha='right')
params['ax_hscroll_vertline'] = ax_hscroll.axvline(0,
color=vertline_color,
zorder=2)
# make shells for plotting traces
_setup_browser_offsets(params, n_channels)
ax.set_xlim(params['t_start'], params['t_start'] + params['duration'],
False)
params['lines'] = [ax.plot([np.nan], antialiased=True, linewidth=0.5)[0]
for _ in range(n_ch)]
ax.set_yticklabels(['X' * max([len(ch) for ch in info['ch_names']])])
params['fig_annotation'] = None
params['fig_help'] = None
params['segment_line'] = None
# default key to close window
params['close_key'] = 'escape'
def _plot_raw_traces(params, color, bad_color, event_lines=None,
event_color=None):
"""Plot raw traces."""
lines = params['lines']
info = params['info']
inds = params['inds']
butterfly = params['butterfly']
if butterfly:
n_channels = len(params['offsets'])
ch_start = 0
offsets = params['offsets'][inds]
else:
n_channels = params['n_channels']
ch_start = params['ch_start']
offsets = params['offsets']
params['bad_color'] = bad_color
labels = params['ax'].yaxis.get_ticklabels()
# do the plotting
tick_list = list()
for ii in range(n_channels):
ch_ind = ii + ch_start
# let's be generous here and allow users to pass
# n_channels per view >= the number of traces available
if ii >= len(lines):
break
elif ch_ind < len(inds):
# scale to fit
ch_name = info['ch_names'][inds[ch_ind]]
tick_list += [ch_name]
offset = offsets[ii]
# do NOT operate in-place lest this get screwed up
this_data = params['data'][inds[ch_ind]] * params['scale_factor']
this_color = bad_color if ch_name in info['bads'] else color
if isinstance(this_color, dict):
this_color = this_color[params['types'][inds[ch_ind]]]
if inds[ch_ind] in params['data_picks']:
this_decim = params['decim']
else:
this_decim = 1
this_t = params['times'][::this_decim] + params['first_time']
# subtraction here gets correct orientation for flipped ylim
lines[ii].set_ydata(offset - this_data[..., ::this_decim])
lines[ii].set_xdata(this_t)
lines[ii].set_color(this_color)
vars(lines[ii])['ch_name'] = ch_name
vars(lines[ii])['def_color'] = color[params['types'][inds[ch_ind]]]
this_z = 0 if ch_name in info['bads'] else 1
if butterfly:
if ch_name not in info['bads']:
if params['types'][ii] == 'mag':
this_z = 2
elif params['types'][ii] == 'grad':
this_z = 3
for label in labels:
label.set_color('black')
else:
# set label color
this_color = (bad_color if ch_name in info['bads'] else
this_color)
labels[ii].set_color(this_color)
lines[ii].set_zorder(this_z)
else:
# "remove" lines
lines[ii].set_xdata([])
lines[ii].set_ydata([])
params['ax'].texts = [] # delete event and annotation texts
# deal with event lines
if params['event_times'] is not None:
# find events in the time window
event_times = params['event_times']
mask = np.logical_and(event_times >= params['times'][0],
event_times <= params['times'][-1])
event_times = event_times[mask]
event_nums = params['event_nums'][mask]
# plot them with appropriate colors
# go through the list backward so we end with -1, the catchall
used = np.zeros(len(event_times), bool)
ylim = params['ax'].get_ylim()
for ev_num, line in zip(sorted(event_color.keys())[::-1],
event_lines[::-1]):
mask = (event_nums == ev_num) if ev_num >= 0 else ~used
assert not np.any(used[mask])
used[mask] = True
t = event_times[mask] + params['first_time']
if len(t) > 0:
xs = list()
ys = list()
for tt in t:
xs += [tt, tt, np.nan]
ys += [0, ylim[0], np.nan]
line.set_xdata(xs)
line.set_ydata(ys)
line.set_zorder(0)
else:
line.set_xdata([])
line.set_ydata([])
# don't add event numbers for more than 50 visible events
if len(event_times) <= 50:
for ev_time, ev_num in zip(event_times, event_nums):
if -1 in event_color or ev_num in event_color:
text = params['event_id_rev'].get(ev_num, ev_num)
params['ax'].text(ev_time, -0.05, text, fontsize=8,
ha='center')
if 'segments' in params:
while len(params['ax'].collections) > 0: # delete previous annotations
params['ax'].collections.pop(-1)
segments = params['segments']
times = params['times']
ylim = params['ax'].get_ylim()
for idx, segment in enumerate(segments):
if segment[0] > times[-1] + params['first_time']:
break # Since the segments are sorted by t_start
if segment[1] < times[0] + params['first_time']:
continue
start = max(segment[0], times[0] + params['first_time'])
end = min(times[-1] + params['first_time'], segment[1])
dscr = params['annot_description'][idx]
segment_color = params['segment_colors'][dscr]
params['ax'].fill_betweenx(ylim, start, end, color=segment_color,
alpha=0.3)
params['ax'].text((start + end) / 2., ylim[0], dscr, ha='center')
# finalize plot
params['ax'].set_xlim(params['times'][0] + params['first_time'],
params['times'][0] + params['first_time'] +
params['duration'], False)
if not butterfly:
params['ax'].set_yticklabels(tick_list, rotation=0)
_set_ax_label_style(params['ax'], params)
if 'fig_selection' not in params:
params['vsel_patch'].set_y(params['ch_start'])
params['fig'].canvas.draw()
# XXX This is a hack to make sure this figure gets drawn last
# so that when matplotlib goes to calculate bounds we don't get a
# CGContextRef error on the MacOSX backend :(
if params['fig_proj'] is not None:
params['fig_proj'].canvas.draw()
def plot_raw_psd_topo(raw, tmin=0., tmax=None, fmin=0., fmax=100., proj=False,
n_fft=2048, n_overlap=0, layout=None, color='w',
fig_facecolor='k', axis_facecolor='k', dB=True,
show=True, block=False, n_jobs=1, axes=None,
verbose=None):
"""Plot channel-wise frequency spectra as topography.
Parameters
----------
raw : instance of io.Raw
The raw instance to use.
tmin : float
Start time for calculations. Defaults to zero.
tmax : float | None
End time for calculations. If None (default), the end of data is used.
fmin : float
Start frequency to consider. Defaults to zero.
fmax : float
End frequency to consider. Defaults to 100.
proj : bool
Apply projection. Defaults to False.
n_fft : int
Number of points to use in Welch FFT calculations. Defaults to 2048.
n_overlap : int
The number of points of overlap between blocks. Defaults to 0
(no overlap).
layout : instance of Layout | None
Layout instance specifying sensor positions (does not need to be
specified for Neuromag data). If None (default), the correct layout is
inferred from the data.
color : str | tuple
A matplotlib-compatible color to use for the curves. Defaults to white.
fig_facecolor : str | tuple
A matplotlib-compatible color to use for the figure background.
Defaults to black.
axis_facecolor : str | tuple
A matplotlib-compatible color to use for the axis background.
Defaults to black.
dB : bool
If True, transform data to decibels. Defaults to True.
show : bool
Show figure if True. Defaults to True.
block : bool
Whether to halt program execution until the figure is closed.
May not work on all systems / platforms. Defaults to False.
n_jobs : int
Number of jobs to run in parallel. Defaults to 1.
axes : instance of matplotlib Axes | None
Axes to plot into. If None, axes will be created.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
fig : instance of matplotlib figure
Figure distributing one image per channel across sensor topography.
"""
if layout is None:
from ..channels.layout import find_layout
layout = find_layout(raw.info)
psds, freqs = psd_welch(raw, tmin=tmin, tmax=tmax, fmin=fmin,
fmax=fmax, proj=proj, n_fft=n_fft,
n_overlap=n_overlap, n_jobs=n_jobs)
if dB:
psds = 10 * np.log10(psds)
y_label = 'dB'
else:
y_label = 'Power'
show_func = partial(_plot_timeseries_unified, data=[psds], color=color,
times=freqs)
click_func = partial(_plot_timeseries, data=[psds], color=color,
times=freqs)
picks = _pick_data_channels(raw.info)
info = pick_info(raw.info, picks)
fig = _plot_topo(info, times=freqs, show_func=show_func,
click_func=click_func, layout=layout,
axis_facecolor=axis_facecolor,
fig_facecolor=fig_facecolor, x_label='Frequency (Hz)',
unified=True, y_label=y_label, axes=axes)
try:
plt_show(show, block=block)
except TypeError: # not all versions have this
plt_show(show)
return fig
def _set_custom_selection(params):
"""Set custom selection by lasso selector."""
chs = params['fig_selection'].lasso.selection
if len(chs) == 0:
return
labels = [l._text for l in params['fig_selection'].radio.labels]
inds = np.in1d(params['raw'].ch_names, chs)
params['selections']['Custom'] = np.where(inds)[0]
_set_radio_button(labels.index('Custom'), params=params)
def _setup_browser_selection(raw, kind, selector=True):
"""Organize browser selections."""
import matplotlib.pyplot as plt
from matplotlib.widgets import RadioButtons
from ..selection import (read_selection, _SELECTIONS, _EEG_SELECTIONS,
_divide_to_regions)
from ..utils import _get_stim_channel
if kind == 'position':
order = _divide_to_regions(raw.info)
keys = _SELECTIONS[1:] # no 'Vertex'
kind = 'position'
elif 'selection':
from ..io import RawFIF, RawArray
if not isinstance(raw, (RawFIF, RawArray)):
raise ValueError("order='selection' only works for Neuromag data. "
"Use order='position' instead.")
order = dict()
try:
stim_ch = _get_stim_channel(None, raw.info)
except ValueError:
stim_ch = ['']
keys = np.concatenate([_SELECTIONS, _EEG_SELECTIONS])
stim_ch = pick_channels(raw.ch_names, stim_ch)
for key in keys:
channels = read_selection(key, info=raw.info)
picks = pick_channels(raw.ch_names, channels)
if len(picks) == 0:
continue # omit empty selections
order[key] = np.concatenate([picks, stim_ch])
misc = pick_types(raw.info, meg=False, eeg=False, stim=True, eog=True,
ecg=True, emg=True, ref_meg=False, misc=True, resp=True,
chpi=True, exci=True, ias=True, syst=True, seeg=False,
bio=True, ecog=False, fnirs=False, exclude=())
if len(misc) > 0:
order['Misc'] = misc
keys = np.concatenate([keys, ['Misc']])
if not selector:
return order
fig_selection = figure_nobar(figsize=(2, 6), dpi=80)
fig_selection.canvas.set_window_title('Selection')
rax = plt.subplot2grid((6, 1), (2, 0), rowspan=4, colspan=1)
topo_ax = plt.subplot2grid((6, 1), (0, 0), rowspan=2, colspan=1)
keys = np.concatenate([keys, ['Custom']])
order.update({'Custom': list()}) # custom selection with lasso
plot_sensors(raw.info, kind='select', ch_type='all', axes=topo_ax,
ch_groups=kind, title='', show=False)
fig_selection.radio = RadioButtons(rax, [key for key in keys
if key in order.keys()])
for circle in fig_selection.radio.circles:
circle.set_radius(0.02) # make them smaller to prevent overlap
circle.set_edgecolor('gray') # make sure the buttons are visible
return order, fig_selection
|