File: test_3d.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (479 lines) | stat: -rw-r--r-- 21,117 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Mainak Jas <mainak@neuro.hut.fi>
#          Mark Wronkiewicz <wronk.mark@gmail.com>
#
# License: Simplified BSD

import os.path as op

import numpy as np
import pytest

from mne import (make_field_map, pick_channels_evoked, read_evokeds,
                 read_trans, read_dipole, SourceEstimate, VectorSourceEstimate,
                 VolSourceEstimate, make_sphere_model, use_coil_def,
                 setup_volume_source_space, read_forward_solution)
from mne.io import read_raw_ctf, read_raw_bti, read_raw_kit, read_info
from mne.io.meas_info import write_dig
from mne.io.pick import pick_info
from mne.io.constants import FIFF
from mne.viz import (plot_sparse_source_estimates, plot_source_estimates,
                     snapshot_brain_montage, plot_head_positions,
                     plot_alignment, plot_volume_source_estimates)
from mne.viz.utils import _fake_click
from mne.utils import (requires_mayavi, requires_pysurfer, run_tests_if_main,
                       _import_mlab, requires_nibabel, check_version,
                       traits_test, requires_version)
from mne.datasets import testing
from mne.source_space import read_source_spaces
from mne.bem import read_bem_solution, read_bem_surfaces


# Set our plotters to test mode
import matplotlib
matplotlib.use('Agg')  # for testing don't use X server

data_dir = testing.data_path(download=False)
subjects_dir = op.join(data_dir, 'subjects')
trans_fname = op.join(data_dir, 'MEG', 'sample',
                      'sample_audvis_trunc-trans.fif')
src_fname = op.join(data_dir, 'subjects', 'sample', 'bem',
                    'sample-oct-6-src.fif')
dip_fname = op.join(data_dir, 'MEG', 'sample', 'sample_audvis_trunc_set1.dip')
ctf_fname = op.join(data_dir, 'CTF', 'testdata_ctf.ds')

io_dir = op.join(op.abspath(op.dirname(__file__)), '..', '..', 'io')
base_dir = op.join(io_dir, 'tests', 'data')
evoked_fname = op.join(base_dir, 'test-ave.fif')

fwd_fname = op.join(data_dir, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-vol-7-fwd.fif')

base_dir = op.join(io_dir, 'bti', 'tests', 'data')
pdf_fname = op.join(base_dir, 'test_pdf_linux')
config_fname = op.join(base_dir, 'test_config_linux')
hs_fname = op.join(base_dir, 'test_hs_linux')
sqd_fname = op.join(io_dir, 'kit', 'tests', 'data', 'test.sqd')

coil_3d = """# custom cube coil def
1   9999    1   8  3e-03  0.000e+00     "QuSpin ZFOPM 3mm cube"
  0.1250 -0.750e-03 -0.750e-03 -0.750e-03  0.000  0.000  1.000
  0.1250 -0.750e-03  0.750e-03 -0.750e-03  0.000  0.000  1.000
  0.1250  0.750e-03 -0.750e-03 -0.750e-03  0.000  0.000  1.000
  0.1250  0.750e-03  0.750e-03 -0.750e-03  0.000  0.000  1.000
  0.1250 -0.750e-03 -0.750e-03  0.750e-03  0.000  0.000  1.000
  0.1250 -0.750e-03  0.750e-03  0.750e-03  0.000  0.000  1.000
  0.1250  0.750e-03 -0.750e-03  0.750e-03  0.000  0.000  1.000
  0.1250  0.750e-03  0.750e-03  0.750e-03  0.000  0.000  1.000
"""


def test_plot_head_positions():
    """Test plotting of head positions."""
    import matplotlib.pyplot as plt
    info = read_info(evoked_fname)
    pos = np.random.RandomState(0).randn(4, 10)
    pos[:, 0] = np.arange(len(pos))
    destination = (0., 0., 0.04)
    with pytest.warns(None):  # old MPL will cause a warning
        plot_head_positions(pos)
        if check_version('matplotlib', '1.4'):
            plot_head_positions(pos, mode='field', info=info,
                                destination=destination)
        else:
            pytest.raises(RuntimeError, plot_head_positions, pos, mode='field',
                          info=info, destination=destination)
        plot_head_positions([pos, pos])  # list support
        pytest.raises(ValueError, plot_head_positions, ['pos'])
        pytest.raises(ValueError, plot_head_positions, pos[:, :9])
    pytest.raises(ValueError, plot_head_positions, pos, 'foo')
    with pytest.raises(ValueError, match='shape'):
        with pytest.warns(None):  # old mpl no viridis warning
            plot_head_positions(pos, axes=1.)
    plt.close('all')


@testing.requires_testing_data
@requires_pysurfer
@requires_mayavi
@traits_test
def test_plot_sparse_source_estimates():
    """Test plotting of (sparse) source estimates."""
    sample_src = read_source_spaces(src_fname)

    # dense version
    vertices = [s['vertno'] for s in sample_src]
    n_time = 5
    n_verts = sum(len(v) for v in vertices)
    stc_data = np.zeros((n_verts * n_time))
    stc_size = stc_data.size
    stc_data[(np.random.rand(stc_size // 20) * stc_size).astype(int)] = \
        np.random.RandomState(0).rand(stc_data.size // 20)
    stc_data.shape = (n_verts, n_time)
    stc = SourceEstimate(stc_data, vertices, 1, 1)

    colormap = 'mne_analyze'
    plot_source_estimates(stc, 'sample', colormap=colormap,
                          background=(1, 1, 0),
                          subjects_dir=subjects_dir, colorbar=True,
                          clim='auto')
    pytest.raises(TypeError, plot_source_estimates, stc, 'sample',
                  figure='foo', hemi='both', clim='auto',
                  subjects_dir=subjects_dir)

    # now do sparse version
    vertices = sample_src[0]['vertno']
    inds = [111, 333]
    stc_data = np.zeros((len(inds), n_time))
    stc_data[0, 1] = 1.
    stc_data[1, 4] = 2.
    vertices = [vertices[inds], np.empty(0, dtype=np.int)]
    stc = SourceEstimate(stc_data, vertices, 1, 1)
    plot_sparse_source_estimates(sample_src, stc, bgcolor=(1, 1, 1),
                                 opacity=0.5, high_resolution=False)


@testing.requires_testing_data
@requires_mayavi
@traits_test
def test_plot_evoked_field():
    """Test plotting evoked field."""
    evoked = read_evokeds(evoked_fname, condition='Left Auditory',
                          baseline=(-0.2, 0.0))
    evoked = pick_channels_evoked(evoked, evoked.ch_names[::10])  # speed
    for t in ['meg', None]:
        with pytest.warns(RuntimeWarning, match='projection'):
            maps = make_field_map(evoked, trans_fname, subject='sample',
                                  subjects_dir=subjects_dir, n_jobs=1,
                                  ch_type=t)
        evoked.plot_field(maps, time=0.1)


@testing.requires_testing_data
@requires_mayavi
@traits_test
def test_plot_alignment(tmpdir):
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = str(tmpdir)
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{'coord_frame': 5, 'ident': 1, 'kind': 1,
            'r': [-0.08061612, -0.02908875, -0.04131077]},
           {'coord_frame': 5, 'ident': 2, 'kind': 1,
            'r': [0.00146763, 0.08506715, -0.03483611]},
           {'coord_frame': 5, 'ident': 3, 'kind': 1,
            'r': [0.08436285, -0.02850276, -0.04127743]}]
    write_dig(fiducials_path, fid, 5)

    mlab = _import_mlab()
    evoked = read_evokeds(evoked_fname)[0]
    sample_src = read_source_spaces(src_fname)
    bti = read_raw_bti(pdf_fname, config_fname, hs_fname, convert=True,
                       preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        meg = ['helmet', 'sensors']
        if system == 'KIT':
            meg.append('ref')
        plot_alignment(info, trans_fname, subject='sample',
                       subjects_dir=subjects_dir, meg=meg)
        mlab.close(all=True)
    # KIT ref sensor coil def is defined
    mlab.close(all=True)
    info = infos['Neuromag']
    pytest.raises(TypeError, plot_alignment, 'foo', trans_fname,
                  subject='sample', subjects_dir=subjects_dir)
    pytest.raises(TypeError, plot_alignment, info, trans_fname,
                  subject='sample', subjects_dir=subjects_dir, src='foo')
    pytest.raises(ValueError, plot_alignment, info, trans_fname,
                  subject='fsaverage', subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir, head=True, skull=True,
                    brain='white')
    mlab.close(all=True)
    # no-head version
    mlab.close(all=True)
    # all coord frames
    pytest.raises(ValueError, plot_alignment, info)
    plot_alignment(info, surfaces=[])
    for coord_frame in ('meg', 'head', 'mri'):
        plot_alignment(info, meg=['helmet', 'sensors'], dig=True,
                       coord_frame=coord_frame, trans=trans_fname,
                       subject='sample', mri_fiducials=fiducials_path,
                       subjects_dir=subjects_dir, src=sample_src)
        mlab.close(all=True)
    # EEG only with strange options
    evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog_seeg.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog_seeg.set_channel_types({'EEG 001': 'ecog',
                                            'EEG 002': 'seeg'})
    with pytest.warns(RuntimeWarning, match='Cannot plot MEG'):
        plot_alignment(evoked_eeg_ecog_seeg.info, subject='sample',
                       trans=trans_fname, subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'], ecog=True, seeg=True)
    mlab.close(all=True)

    sphere = make_sphere_model(info=evoked.info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(op.join(subjects_dir, 'sample', 'bem',
                                        'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(op.join(subjects_dir, 'sample', 'bem',
                                          'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(info, subject='sample', eeg='projected',
                   meg='helmet', bem=sphere, dig=True,
                   surfaces=['brain', 'inner_skull', 'outer_skull',
                             'outer_skin'])
    plot_alignment(info, trans_fname, subject='sample', meg='helmet',
                   subjects_dir=subjects_dir, eeg='projected', bem=sphere,
                   surfaces=['head', 'brain'], src=sample_src)
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info, trans_fname, subject='sample', meg=[],
                   subjects_dir=subjects_dir, bem=bem_sol, eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info, trans_fname, subject='sample',
                   meg=True, subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'], bem=bem_surfs)
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    src = setup_volume_source_space(sphere=sphere)
    plot_alignment(info, eeg='projected', meg='helmet', bem=sphere,
                   src=src, dig=True, surfaces=['brain', 'inner_skull',
                                                'outer_skull', 'outer_skin'])
    sphere = make_sphere_model('auto', None, evoked.info)  # one layer
    plot_alignment(info, trans_fname, subject='sample', meg=False,
                   coord_frame='mri', subjects_dir=subjects_dir,
                   surfaces=['brain'], bem=sphere, show_axes=True)

    # 3D coil with no defined draw (ConvexHull)
    info_cube = pick_info(info, [0])
    info['dig'] = None
    info_cube['chs'][0]['coil_type'] = 9999
    with pytest.raises(RuntimeError, match='coil definition not found'):
        plot_alignment(info_cube, meg='sensors', surfaces=())
    coil_def_fname = op.join(tempdir, 'temp')
    with open(coil_def_fname, 'w') as fid:
        fid.write(coil_3d)
    with use_coil_def(coil_def_fname):
        plot_alignment(info_cube, meg='sensors', surfaces=(), dig=True)

    # one layer bem with skull surfaces:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['brain', 'head', 'inner_skull'], bem=sphere)
    # wrong eeg value:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir, eeg='foo')
    # wrong meg value:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir, meg='bar')
    # multiple brain surfaces:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['white', 'pial'])
    pytest.raises(TypeError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=[1])
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['foo'])
    mlab.close(all=True)


@testing.requires_testing_data
@requires_pysurfer
@requires_mayavi
@traits_test
def test_limits_to_control_points():
    """Test functionality for determining control points."""
    sample_src = read_source_spaces(src_fname)
    kwargs = dict(subjects_dir=subjects_dir, smoothing_steps=1)

    vertices = [s['vertno'] for s in sample_src]
    n_time = 5
    n_verts = sum(len(v) for v in vertices)
    stc_data = np.random.RandomState(0).rand((n_verts * n_time))
    stc_data.shape = (n_verts, n_time)
    stc = SourceEstimate(stc_data, vertices, 1, 1, 'sample')

    # Test for simple use cases
    mlab = _import_mlab()
    stc.plot(**kwargs)
    stc.plot(clim=dict(pos_lims=(10, 50, 90)), **kwargs)
    stc.plot(colormap='hot', clim='auto', **kwargs)
    stc.plot(colormap='mne', clim='auto', **kwargs)
    figs = [mlab.figure(), mlab.figure()]
    stc.plot(clim=dict(kind='value', lims=(10, 50, 90)), figure=99, **kwargs)
    pytest.raises(ValueError, stc.plot, clim='auto', figure=figs, **kwargs)

    # Test for correct clim values
    with pytest.raises(ValueError, match='monotonically'):
        stc.plot(clim=dict(kind='value', pos_lims=[0, 1, 0]), **kwargs)
    with pytest.raises(ValueError, match=r'.*must be \(3,\)'):
        stc.plot(colormap='mne', clim=dict(pos_lims=(5, 10, 15, 20)), **kwargs)
    with pytest.raises(ValueError, match='must be "value" or "percent"'):
        stc.plot(clim=dict(pos_lims=(5, 10, 15), kind='foo'), **kwargs)
    with pytest.raises(ValueError, match='must be "auto" or dict'):
        stc.plot(colormap='mne', clim='foo', **kwargs)
    with pytest.raises(TypeError, match='must be an instance of'):
        plot_source_estimates('foo', clim='auto', **kwargs)
    with pytest.raises(ValueError, match='hemi'):
        stc.plot(hemi='foo', clim='auto', **kwargs)
    with pytest.raises(ValueError, match='Exactly one'):
        stc.plot(clim=dict(lims=[0, 1, 2], pos_lims=[0, 1, 2], kind='value'))

    # Test handling of degenerate data: thresholded maps
    stc._data.fill(0.)
    with pytest.warns(RuntimeWarning, match='All data were zero'):
        plot_source_estimates(stc, **kwargs)
    mlab.close(all=True)


@testing.requires_testing_data
@requires_nibabel()
def test_stc_mpl():
    """Test plotting source estimates with matplotlib."""
    import matplotlib.pyplot as plt
    sample_src = read_source_spaces(src_fname)

    vertices = [s['vertno'] for s in sample_src]
    n_time = 5
    n_verts = sum(len(v) for v in vertices)
    stc_data = np.ones((n_verts * n_time))
    stc_data.shape = (n_verts, n_time)
    stc = SourceEstimate(stc_data, vertices, 1, 1, 'sample')
    with pytest.warns(RuntimeWarning, match='not included'):
        stc.plot(subjects_dir=subjects_dir, time_unit='s', views='ven',
                 hemi='rh', smoothing_steps=2, subject='sample',
                 backend='matplotlib', spacing='oct1', initial_time=0.001,
                 colormap='Reds')
        fig = stc.plot(subjects_dir=subjects_dir, time_unit='ms', views='dor',
                       hemi='lh', smoothing_steps=2, subject='sample',
                       backend='matplotlib', spacing='ico2', time_viewer=True,
                       colormap='mne')
        time_viewer = fig.time_viewer
        _fake_click(time_viewer, time_viewer.axes[0], (0.5, 0.5))  # change t
        time_viewer.canvas.key_press_event('ctrl+right')
        time_viewer.canvas.key_press_event('left')
    pytest.raises(ValueError, stc.plot, subjects_dir=subjects_dir,
                  hemi='both', subject='sample', backend='matplotlib')
    pytest.raises(ValueError, stc.plot, subjects_dir=subjects_dir,
                  time_unit='ss', subject='sample', backend='matplotlib')
    plt.close('all')


@testing.requires_testing_data
@requires_nibabel()
def test_plot_dipole_mri_orthoview():
    """Test mpl dipole plotting."""
    import matplotlib.pyplot as plt
    dipoles = read_dipole(dip_fname)
    trans = read_trans(trans_fname)
    for coord_frame, idx, show_all in zip(['head', 'mri'],
                                          ['gof', 'amplitude'], [True, False]):
        fig = dipoles.plot_locations(trans, 'sample', subjects_dir,
                                     coord_frame=coord_frame, idx=idx,
                                     show_all=show_all, mode='orthoview')
        fig.canvas.scroll_event(0.5, 0.5, 1)  # scroll up
        fig.canvas.scroll_event(0.5, 0.5, -1)  # scroll down
        fig.canvas.key_press_event('up')
        fig.canvas.key_press_event('down')
        fig.canvas.key_press_event('a')  # some other key
    ax = plt.subplot(111)
    pytest.raises(TypeError, dipoles.plot_locations, trans, 'sample',
                  subjects_dir, ax=ax)
    plt.close('all')


@testing.requires_testing_data
@requires_mayavi
@traits_test
def test_snapshot_brain_montage():
    """Test snapshot brain montage."""
    info = read_info(evoked_fname)
    fig = plot_alignment(
        info, trans=None, subject='sample', subjects_dir=subjects_dir)

    xyz = np.vstack([ich['loc'][:3] for ich in info['chs']])
    ch_names = [ich['ch_name'] for ich in info['chs']]
    xyz_dict = dict(zip(ch_names, xyz))
    xyz_dict[info['chs'][0]['ch_name']] = [1, 2]  # Set one ch to only 2 vals

    # Make sure wrong types are checked
    pytest.raises(TypeError, snapshot_brain_montage, fig, xyz)

    # All chs must have 3 position values
    pytest.raises(ValueError, snapshot_brain_montage, fig, xyz_dict)

    # Make sure we raise error if the figure has no scene
    pytest.raises(TypeError, snapshot_brain_montage, fig, info)


@testing.requires_testing_data
@requires_nibabel()
@requires_version('nilearn', '0.4')
def test_plot_volume_source_estimates():
    """Test interactive plotting of volume source estimates."""
    forward = read_forward_solution(fwd_fname)
    sample_src = forward['src']

    vertices = [s['vertno'] for s in sample_src]
    n_verts = sum(len(v) for v in vertices)
    n_time = 2
    data = np.random.RandomState(0).rand(n_verts, n_time)
    vol_stc = VolSourceEstimate(data, vertices, 1, 1)

    for mode in ['glass_brain', 'stat_map']:
        with pytest.warns(None):  # sometimes get scalars/index warning
            fig = vol_stc.plot(sample_src, subject='sample',
                               subjects_dir=subjects_dir,
                               mode=mode)
        # [ax_time, ax_y, ax_x, ax_z]
        for ax_idx in [0, 2, 3, 4]:
            _fake_click(fig, fig.axes[ax_idx], (0.3, 0.5))

    with pytest.raises(ValueError, match='must be one of'):
        vol_stc.plot(sample_src, 'sample', subjects_dir, mode='abcd')
    vertices.append([])
    surface_stc = SourceEstimate(data, vertices, 1, 1)
    with pytest.raises(ValueError, match='Only Vol'):
        plot_volume_source_estimates(surface_stc, sample_src, 'sample',
                                     subjects_dir)
    with pytest.raises(ValueError, match='Negative colormap limits'):
        vol_stc.plot(sample_src, 'sample', subjects_dir,
                     clim=dict(lims=[-1, 2, 3], kind='value'))


@testing.requires_testing_data
@requires_pysurfer
@requires_mayavi
@traits_test
def test_plot_vec_source_estimates():
    """Test plotting of vector source estimates."""
    sample_src = read_source_spaces(src_fname)

    vertices = [s['vertno'] for s in sample_src]
    n_verts = sum(len(v) for v in vertices)
    n_time = 5
    data = np.random.RandomState(0).rand(n_verts, 3, n_time)
    stc = VectorSourceEstimate(data, vertices, 1, 1)

    stc.plot('sample', subjects_dir=subjects_dir)

    with pytest.raises(ValueError, match='use "pos_lims"'):
        stc.plot('sample', subjects_dir=subjects_dir,
                 clim=dict(pos_lims=[1, 2, 3]))


run_tests_if_main()