File: test_evoked.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (355 lines) | stat: -rw-r--r-- 14,633 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Cathy Nangini <cnangini@gmail.com>
#          Mainak Jas <mainak@neuro.hut.fi>
#          Jona Sassenhagen <jona.sassenhagen@gmail.com>
#
# License: Simplified BSD

import os.path as op

import numpy as np
from numpy.testing import assert_allclose
import pytest

import mne
from mne import (read_events, Epochs, read_cov, compute_covariance,
                 make_fixed_length_events)
from mne.io import read_raw_fif
from mne.utils import run_tests_if_main, catch_logging
from mne.viz.evoked import plot_compare_evokeds
from mne.viz.utils import _fake_click
from mne.stats import _parametric_ci
from mne.datasets import testing

# Set our plotters to test mode
import matplotlib
matplotlib.use('Agg')  # for testing don't use X server

base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
evoked_fname = op.join(base_dir, 'test-ave.fif')
raw_fname = op.join(base_dir, 'test_raw.fif')
raw_sss_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')
cov_fname = op.join(base_dir, 'test-cov.fif')
event_name = op.join(base_dir, 'test-eve.fif')
event_id, tmin, tmax = 1, -0.1, 0.1

# Use a subset of channels for plotting speed
# make sure we have a magnetometer and a pair of grad pairs for topomap.
picks = [0, 1, 2, 3, 4, 6, 7, 61, 122, 183, 244, 305]
sel = [0, 7]


def _get_epochs():
    """Get epochs."""
    raw = read_raw_fif(raw_fname)
    raw.add_proj([], remove_existing=True)
    events = read_events(event_name)
    epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks,
                    decim=10, verbose='error')
    epochs.info['bads'] = [epochs.ch_names[-1]]
    epochs.info.normalize_proj()
    return epochs


def _get_epochs_delayed_ssp():
    """Get epochs with delayed SSP."""
    raw = read_raw_fif(raw_fname)
    events = read_events(event_name)
    reject = dict(mag=4e-12)
    epochs_delayed_ssp = Epochs(raw, events[:10], event_id, tmin, tmax,
                                picks=picks, proj='delayed', reject=reject,
                                verbose='error')
    epochs_delayed_ssp.info.normalize_proj()
    return epochs_delayed_ssp


def test_plot_evoked_cov():
    """Test plot_evoked with noise_cov."""
    return
    import matplotlib.pyplot as plt
    evoked = _get_epochs().average()
    cov = read_cov(cov_fname)
    cov['projs'] = []  # avoid warnings
    evoked.plot(noise_cov=cov, time_unit='s')
    with pytest.raises(TypeError, match='Covariance'):
        evoked.plot(noise_cov=1., time_unit='s')
    with pytest.raises(IOError, match='No such file'):
        evoked.plot(noise_cov='nonexistent-cov.fif', time_unit='s')
    raw = read_raw_fif(raw_sss_fname)
    events = make_fixed_length_events(raw)
    epochs = Epochs(raw, events, picks=picks)
    cov = compute_covariance(epochs)
    evoked_sss = epochs.average()
    with pytest.warns(RuntimeWarning, match='relative scaling'):
        evoked_sss.plot(noise_cov=cov, time_unit='s')
    plt.close('all')


@pytest.mark.slowtest
def test_plot_evoked():
    """Test evoked.plot."""
    import matplotlib.pyplot as plt
    evoked = _get_epochs().average()
    fig = evoked.plot(proj=True, hline=[1], exclude=[], window_title='foo',
                      time_unit='s')
    # Test a click
    ax = fig.get_axes()[0]
    line = ax.lines[0]
    _fake_click(fig, ax,
                [line.get_xdata()[0], line.get_ydata()[0]], 'data')
    _fake_click(fig, ax,
                [ax.get_xlim()[0], ax.get_ylim()[1]], 'data')
    # plot with bad channels excluded & spatial_colors & zorder
    evoked.plot(exclude='bads', time_unit='s')

    # test selective updating of dict keys is working.
    evoked.plot(hline=[1], units=dict(mag='femto foo'), time_unit='s')
    evoked_delayed_ssp = _get_epochs_delayed_ssp().average()
    evoked_delayed_ssp.plot(proj='interactive', time_unit='s')
    evoked_delayed_ssp.apply_proj()
    pytest.raises(RuntimeError, evoked_delayed_ssp.plot,
                  proj='interactive', time_unit='s')
    evoked_delayed_ssp.info['projs'] = []
    pytest.raises(RuntimeError, evoked_delayed_ssp.plot,
                  proj='interactive', time_unit='s')
    pytest.raises(RuntimeError, evoked_delayed_ssp.plot,
                  proj='interactive', axes='foo', time_unit='s')
    plt.close('all')

    # test GFP only
    evoked.plot(gfp='only', time_unit='s')
    pytest.raises(ValueError, evoked.plot, gfp='foo', time_unit='s')

    # plot with bad channels excluded, spatial_colors, zorder & pos. layout
    evoked.rename_channels({'MEG 0133': 'MEG 0000'})
    evoked.plot(exclude=evoked.info['bads'], spatial_colors=True, gfp=True,
                zorder='std', time_unit='s')
    evoked.plot(exclude=[], spatial_colors=True, zorder='unsorted',
                time_unit='s')
    pytest.raises(TypeError, evoked.plot, zorder='asdf', time_unit='s')
    plt.close('all')

    evoked.plot_sensors()  # Test plot_sensors
    plt.close('all')

    evoked.pick_channels(evoked.ch_names[:4])
    with catch_logging() as log_file:
        evoked.plot(verbose=True, time_unit='s')
    assert 'Need more than one' in log_file.getvalue()


def test_plot_evoked_image():
    """Test plot_evoked_image."""
    import matplotlib.pyplot as plt
    evoked = _get_epochs().average()
    evoked.plot_image(proj=True, time_unit='ms')

    # fail nicely on NaN
    evoked_nan = evoked.copy()
    evoked_nan.data[:, 0] = np.nan
    pytest.raises(ValueError, evoked_nan.plot)
    with np.errstate(invalid='ignore'):
        pytest.raises(ValueError, evoked_nan.plot_image)
        pytest.raises(ValueError, evoked_nan.plot_joint)

    # test mask
    evoked.plot_image(picks=[1, 2], mask=evoked.data > 0, time_unit='s')
    evoked.plot_image(picks=[1, 2], mask_cmap=None, colorbar=False,
                      mask=np.ones(evoked.data.shape).astype(bool),
                      time_unit='s')
    with pytest.warns(RuntimeWarning, match='not adding contour'):
        evoked.plot_image(picks=[1, 2], mask=None, mask_style="both",
                          time_unit='s')
    with pytest.raises(ValueError, match='must have the same shape'):
        evoked.plot_image(mask=evoked.data[1:, 1:] > 0, time_unit='s')

    # plot with bad channels excluded
    evoked.plot_image(exclude='bads', cmap='interactive', time_unit='s')
    plt.close('all')

    with pytest.raises(ValueError, match='not unique'):
        evoked.plot_image(picks=[0, 0], time_unit='s')  # duplicates

    ch_names = evoked.ch_names[3:5]
    picks = [evoked.ch_names.index(ch) for ch in ch_names]
    evoked.plot_image(show_names="all", time_unit='s', picks=picks)
    yticklabels = plt.gca().get_yticklabels()
    for tick_target, tick_observed in zip(ch_names, yticklabels):
        assert tick_target in str(tick_observed)
    evoked.plot_image(show_names=True, time_unit='s')

    # test groupby
    evoked.plot_image(group_by=dict(sel=sel), axes=dict(sel=plt.axes()))
    plt.close('all')
    for group_by, axes in (("something", dict()), (dict(), "something")):
        pytest.raises(ValueError, evoked.plot_image, group_by=group_by,
                      axes=axes)


def test_plot_white():
    """Test plot_white."""
    import matplotlib.pyplot as plt
    cov = read_cov(cov_fname)
    cov['method'] = 'empirical'
    cov['projs'] = []  # avoid warnings
    evoked = _get_epochs().average()
    # test rank param.
    evoked.plot_white(cov, rank={'mag': 101, 'grad': 201}, time_unit='s')
    evoked.plot_white(cov, rank={'mag': 101}, time_unit='s')  # test rank param
    evoked.plot_white(cov, rank={'grad': 201}, time_unit='s')
    pytest.raises(
        ValueError, evoked.plot_white, cov,
        rank={'mag': 101, 'grad': 201, 'meg': 306}, time_unit='s')
    pytest.raises(
        ValueError, evoked.plot_white, cov, rank={'meg': 306}, time_unit='s')
    evoked.plot_white([cov, cov], time_unit='s')
    plt.close('all')

    # Hack to test plotting of maxfiltered data
    evoked_sss = evoked.copy()
    sss = dict(sss_info=dict(in_order=80, components=np.arange(80)))
    evoked_sss.info['proc_history'] = [dict(max_info=sss)]
    evoked_sss.plot_white(cov, rank={'meg': 64}, time_unit='s')
    pytest.raises(
        ValueError, evoked_sss.plot_white, cov, rank={'grad': 201},
        time_unit='s')
    evoked_sss.plot_white(cov, time_unit='s')
    plt.close('all')


def test_plot_compare_evokeds():
    """Test plot_compare_evokeds."""
    import matplotlib.pyplot as plt
    rng = np.random.RandomState(0)
    evoked = _get_epochs().average()
    # plot_compare_evokeds: test condition contrast, CI, color assignment
    fig = plot_compare_evokeds(evoked.copy().pick_types(meg='mag'),
                               show_sensors=True)
    assert len(fig.axes) == 2

    plot_compare_evokeds(
        evoked.copy().pick_types(meg='grad'), picks=[1, 2],
        show_sensors="upper right", show_legend="upper left")
    evokeds = [evoked.copy() for _ in range(10)]
    for evoked in evokeds:
        evoked.data += (rng.randn(*evoked.data.shape) *
                        np.std(evoked.data, axis=-1, keepdims=True))
    for picks in ([0], [1], [2], [0, 2], [1, 2], [0, 1, 2],):
        figs = plot_compare_evokeds([evokeds], picks=picks, ci=0.95)
        if not isinstance(figs, list):
            figs = [figs]
        for fig in figs:
            ext = fig.axes[0].collections[0].get_paths()[0].get_extents()
            xs, ylim = ext.get_points().T
            assert_allclose(xs, evoked.times[[0, -1]])
            line = fig.axes[0].lines[0]
            xs = line.get_xdata()
            assert_allclose(xs, evoked.times)
            ys = line.get_ydata()
            assert (ys < ylim[1]).all()
            assert (ys > ylim[0]).all()
        plt.close('all')

    evoked.rename_channels({'MEG 2142': "MEG 1642"})
    assert len(plot_compare_evokeds(evoked)) == 2
    colors = dict(red='r', blue='b')
    linestyles = dict(red='--', blue='-')
    red, blue = evoked.copy(), evoked.copy()
    red.data *= 1.1
    blue.data *= 0.9
    plot_compare_evokeds([red, blue], picks=3)  # list of evokeds
    plot_compare_evokeds([red, blue], picks=3, truncate_yaxis=True,
                         vlines=[])  # also testing empty vlines here
    plot_compare_evokeds([[red, evoked], [blue, evoked]],
                         picks=3)  # list of lists
    # test picking & plotting grads
    contrast = dict()
    contrast["red/stim"] = list((evoked.copy(), red))
    contrast["blue/stim"] = list((evoked.copy(), blue))
    # test a bunch of params at once
    for evokeds_ in (evoked.copy().pick_types(meg='mag'), contrast,
                     [red, blue], [[red, evoked], [blue, evoked]]):
        plot_compare_evokeds(evokeds_, picks=0, ci=True)  # also tests CI
    plt.close('all')
    # test styling +  a bunch of other params at once
    colors, linestyles = dict(red='r', blue='b'), dict(red='--', blue='-')
    plot_compare_evokeds(contrast, colors=colors, linestyles=linestyles,
                         picks=[0, 2], vlines=[.01, -.04], invert_y=True,
                         truncate_yaxis=False, ylim=dict(mag=(-10, 10)),
                         styles={"red/stim": {"linewidth": 1}},
                         show_sensors=True)
    # various bad styles
    params = [dict(picks=3, colors=dict(fake=1)),
              dict(picks=3, styles=dict(fake=1)), dict(picks=3, gfp=True),
              dict(picks=3, show_sensors="a"),
              dict(colors=dict(red=10., blue=-2))]
    for param in params:
        pytest.raises(ValueError, plot_compare_evokeds, evoked, **param)
    pytest.raises(TypeError, plot_compare_evokeds, evoked, picks='str')
    pytest.raises(TypeError, plot_compare_evokeds, evoked, vlines='x')
    plt.close('all')
    # `evoked` must contain Evokeds
    pytest.raises(TypeError, plot_compare_evokeds, [[1, 2], [3, 4]])
    # `ci` must be float or None
    pytest.raises(TypeError, plot_compare_evokeds, contrast, ci='err')
    # test all-positive ylim
    contrast["red/stim"], contrast["blue/stim"] = red, blue
    plot_compare_evokeds(contrast, picks=[0], colors=['r', 'b'],
                         ylim=dict(mag=(1, 10)), ci=_parametric_ci,
                         truncate_yaxis='max_ticks', show_sensors=False,
                         show_legend=False)

    # sequential colors
    evokeds = (evoked, blue, red)
    contrasts = {"a{}/b".format(ii): ev for ii, ev in
                 enumerate(evokeds)}
    colors = {"a" + str(ii): ii for ii, _ in enumerate(evokeds)}
    contrasts["a1/c"] = evoked.copy()
    for split in (True, False):
        for linestyles in (["-"], {"b": "-", "c": ":"}):
            plot_compare_evokeds(
                contrasts, colors=colors, picks=[0], cmap='Reds',
                split_legend=split, linestyles=linestyles,
                ci=False, show_sensors=False)
    colors = {"a" + str(ii): ii / len(evokeds)
              for ii, _ in enumerate(evokeds)}
    plot_compare_evokeds(
        contrasts, colors=colors, picks=[0], cmap='Reds',
        split_legend=split, linestyles=linestyles, ci=False,
        show_sensors=False)
    red.info["chs"][0]["loc"][:2] = 0  # test plotting channel at zero
    plot_compare_evokeds(red, picks=[0],
                         ci=lambda x: [x.std(axis=0), -x.std(axis=0)])
    plot_compare_evokeds([red, blue], picks=[0], cmap="summer", ci=None,
                         split_legend=None)
    plot_compare_evokeds([red, blue], cmap=None, split_legend=True)
    pytest.raises(ValueError, plot_compare_evokeds, [red] * 20)
    pytest.raises(ValueError, plot_compare_evokeds, contrasts,
                  cmap='summer')

    plt.close('all')


@testing.requires_testing_data
def test_plot_ctf():
    """Test plotting of CTF evoked."""
    ctf_dir = op.join(testing.data_path(download=False), 'CTF')
    raw_fname = op.join(ctf_dir, 'testdata_ctf.ds')

    raw = mne.io.read_raw_ctf(raw_fname, preload=True)
    events = np.array([[200, 0, 1]])
    event_id = 1
    tmin, tmax = -0.1, 0.5  # start and end of an epoch in sec.
    picks = mne.pick_types(raw.info, meg=True, stim=True, eog=True,
                           ref_meg=True, exclude='bads')[::20]
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        picks=picks, preload=True, decim=10, verbose='error')
    evoked = epochs.average()
    evoked.plot_joint(times=[0.1])
    mne.viz.plot_compare_evokeds([evoked, evoked])


run_tests_if_main()