1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Cathy Nangini <cnangini@gmail.com>
# Mainak Jas <mainak@neuro.hut.fi>
#
# License: Simplified BSD
import os.path as op
import numpy as np
import pytest
from mne import (read_events, read_cov, read_source_spaces, read_evokeds,
read_dipole, SourceEstimate)
from mne.datasets import testing
from mne.filter import create_filter
from mne.io import read_raw_fif
from mne.minimum_norm import read_inverse_operator
from mne.viz import (plot_bem, plot_events, plot_source_spectrogram,
plot_snr_estimate, plot_filter, plot_csd)
from mne.utils import requires_nibabel, run_tests_if_main, requires_version
from mne.time_frequency import CrossSpectralDensity
# Set our plotters to test mode
import matplotlib
matplotlib.use('Agg') # for testing don't use X server
data_path = testing.data_path(download=False)
subjects_dir = op.join(data_path, 'subjects')
src_fname = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif')
inv_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-4-meg-inv.fif')
evoked_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
dip_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc_set1.dip')
base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')
cov_fname = op.join(base_dir, 'test-cov.fif')
event_fname = op.join(base_dir, 'test-eve.fif')
def _get_raw():
"""Get raw data."""
return read_raw_fif(raw_fname, preload=True)
def _get_events():
"""Get events."""
return read_events(event_fname)
@requires_version('scipy', '0.16')
def test_plot_filter():
"""Test filter plotting."""
import matplotlib.pyplot as plt
l_freq, h_freq, sfreq = 2., 40., 1000.
data = np.zeros(5000)
freq = [0, 2, 40, 50, 500]
gain = [0, 1, 1, 0, 0]
h = create_filter(data, sfreq, l_freq, h_freq, fir_design='firwin2')
plot_filter(h, sfreq)
plt.close('all')
plot_filter(h, sfreq, freq, gain)
plt.close('all')
iir = create_filter(data, sfreq, l_freq, h_freq, method='iir')
plot_filter(iir, sfreq)
plt.close('all')
plot_filter(iir, sfreq, freq, gain)
plt.close('all')
iir_ba = create_filter(data, sfreq, l_freq, h_freq, method='iir',
iir_params=dict(output='ba'))
plot_filter(iir_ba, sfreq, freq, gain)
plt.close('all')
plot_filter(h, sfreq, freq, gain, fscale='linear')
plt.close('all')
def test_plot_cov():
"""Test plotting of covariances."""
import matplotlib.pyplot as plt
raw = _get_raw()
cov = read_cov(cov_fname)
with pytest.warns(RuntimeWarning, match='projection'):
fig1, fig2 = cov.plot(raw.info, proj=True, exclude=raw.ch_names[6:])
plt.close('all')
@testing.requires_testing_data
@requires_nibabel()
def test_plot_bem():
"""Test plotting of BEM contours."""
pytest.raises(IOError, plot_bem, subject='bad-subject',
subjects_dir=subjects_dir)
pytest.raises(ValueError, plot_bem, subject='sample',
subjects_dir=subjects_dir, orientation='bad-ori')
plot_bem(subject='sample', subjects_dir=subjects_dir,
orientation='sagittal', slices=[25, 50])
plot_bem(subject='sample', subjects_dir=subjects_dir,
orientation='coronal', slices=[25, 50],
brain_surfaces='white')
plot_bem(subject='sample', subjects_dir=subjects_dir,
orientation='coronal', slices=[25, 50], src=src_fname)
def test_plot_events():
"""Test plotting events."""
import matplotlib.pyplot as plt
event_labels = {'aud_l': 1, 'aud_r': 2, 'vis_l': 3, 'vis_r': 4}
color = {1: 'green', 2: 'yellow', 3: 'red', 4: 'c'}
raw = _get_raw()
events = _get_events()
plot_events(events, raw.info['sfreq'], raw.first_samp)
plot_events(events, raw.info['sfreq'], raw.first_samp, equal_spacing=False)
# Test plotting events without sfreq
plot_events(events, first_samp=raw.first_samp)
with pytest.warns(RuntimeWarning, match='will be ignored'):
plot_events(events, raw.info['sfreq'], raw.first_samp,
event_id=event_labels)
with pytest.warns(RuntimeWarning, match='Color is not available'):
plot_events(events, raw.info['sfreq'], raw.first_samp,
color=color)
with pytest.warns(RuntimeWarning, match='event .* missing'):
plot_events(events, raw.info['sfreq'], raw.first_samp,
event_id=event_labels, color=color)
with pytest.warns(RuntimeWarning, match='event .* missing'):
pytest.raises(ValueError, plot_events, events, raw.info['sfreq'],
raw.first_samp, event_id={'aud_l': 1}, color=color)
pytest.raises(ValueError, plot_events, events, raw.info['sfreq'],
raw.first_samp, event_id={'aud_l': 111}, color=color)
plt.close('all')
@testing.requires_testing_data
def test_plot_source_spectrogram():
"""Test plotting of source spectrogram."""
import matplotlib.pyplot as plt
sample_src = read_source_spaces(op.join(subjects_dir, 'sample',
'bem', 'sample-oct-6-src.fif'))
# dense version
vertices = [s['vertno'] for s in sample_src]
n_times = 5
n_verts = sum(len(v) for v in vertices)
stc_data = np.ones((n_verts, n_times))
stc = SourceEstimate(stc_data, vertices, 1, 1)
plot_source_spectrogram([stc, stc], [[1, 2], [3, 4]])
pytest.raises(ValueError, plot_source_spectrogram, [], [])
pytest.raises(ValueError, plot_source_spectrogram, [stc, stc],
[[1, 2], [3, 4]], tmin=0)
pytest.raises(ValueError, plot_source_spectrogram, [stc, stc],
[[1, 2], [3, 4]], tmax=7)
plt.close('all')
@pytest.mark.slowtest
@testing.requires_testing_data
def test_plot_snr():
"""Test plotting SNR estimate."""
import matplotlib.pyplot as plt
inv = read_inverse_operator(inv_fname)
evoked = read_evokeds(evoked_fname, baseline=(None, 0))[0]
plot_snr_estimate(evoked, inv)
plt.close('all')
@testing.requires_testing_data
def test_plot_dipole_amplitudes():
"""Test plotting dipole amplitudes."""
import matplotlib.pyplot as plt
dipoles = read_dipole(dip_fname)
dipoles.plot_amplitudes(show=False)
plt.close('all')
def test_plot_csd():
"""Test plotting of CSD matrices."""
import matplotlib.pyplot as plt
csd = CrossSpectralDensity([1, 2, 3], ['CH1', 'CH2'],
frequencies=[(10, 20)], n_fft=1,
tmin=0, tmax=1,)
plot_csd(csd, mode='csd') # Plot cross-spectral density
plot_csd(csd, mode='coh') # Plot coherence
plt.close('all')
run_tests_if_main()
|